Search Results

Search found 10 results on 1 pages for 'glider'.

Page 1/1 | 1 

  • Unable to add IPv6 address to sendmail access list

    - by David M. Syzdek
    I am running Sendmail 8.14.4 on Slackware 13.37. I have the following in my /etc/mail/access file and it works without any errors: Connect:127 OK Connect:10.0.1 RELAY # Net: office Connect:50.116.6.8 RELAY # Host: glider Connect:96.126.127.87 RELAY # Host: kite The above configuration also allows me to send an e-mail via IPv6 to a local user on the mail server. However, it does not allow my office to relay via IPv6. I have tried two ways of adding IPv6 networks to my access file. Method 1: Connect:127 OK Connect:10.0.1 RELAY # Net: office Connect:IPv6:2001:470:b:84a RELAY # Net: office Connect:50.116.6.8 RELAY # Host: glider Connect:96.126.127.87 RELAY # Host: kite Method 2: Connect:127 OK Connect:10.0.1 RELAY # Net: office Connect:[IPv6:2001:470:b:84a] RELAY # Net: office Connect:50.116.6.8 RELAY # Host: glider Connect:96.126.127.87 RELAY # Host: kite However whenever I try using either method 1 or 2, I am unable to relay e-mail messages through the host. /var/log/maillog entry: May 31 11:57:15 freshsalmon sm-mta[25500]: ruleset=check_relay, arg1=[IPv6:2001:470:b:84a:223:6cff:fe80:35dc], arg2=IPv6:2001:470:b:84a:223:6cff:fe80:35dc, relay=[IPv6:2001:470:b:84a:223:6cff:fe80:35dc], reject=553 5.3.0 RELAY # Net:office Test session from telnet: syzdek@blackenhawk$ telnet -6 freshsalmon.office.example.com 25 Trying 2001:470:b:84a::69... Connected to freshsalmon.office.bindlebinaries.com. Escape character is '^]'. 220 office.example.com ESMTP Sendmail 8.14.4/8.14.4; Thu, 31 May 2012 11:57:15 -0800 HELO blackenhawk.office.example.com 250 office.example.com Hello [IPv6:2001:470:b:84a:223:6cff:fe80:35dc], pleased to meet you MAIL FROM:[email protected] 553 5.3.0 RELAY # Net:office What is the correct way to add an IPv6 address/network to the access file in sendmail? Update: Apparently my access file was not working regardless. Removing the comments at the end of the line seems to have fixed the problem. Here is the lines which worked: Connect:127 OK Connect:IPv6:::1 OK # Net: office Connect:10.0.1 RELAY Connect:IPv6:2001:470:b:84a RELAY # Host: glider Connect:50.116.6.8 RELAY Connect:IPv6:2600:3c01::f03c:91ff:fedf:381a RELAY # Host: kite Connect:96.126.127.87 RELAY Connect:IPv6:2600:3c00::f03c:91ff:fedf:52a4 RELAY

    Read the article

  • NightHacking with James Gosling

    - by Yolande Poirier
    Java Evangelist Stephen Chin is back on the road for a new NightHacking Tour. He is meeting with James Gosling at Kona, Hawaii, the launch base of the Wave Glider. The Glider is an aquatic robot which communicates real-time data from the surface of the ocean. It runs on an ARM chip using Java SE Embedded.  "During this broadcast we will show some of the footage of his aquatic robots, talk through the technologies he is hacking on daily, and do Q&A with folks on the live chat" explains Stephen Chin.  Sign up for the live stream on Wednesday, October 23rd at:  8AM Hawaii Time 11AM PST 2PM EST 20:00 CET Follow @nighthackingtv for the next Nighthacking events

    Read the article

  • Nighthacking with James Gosling

    - by Yolande Poirier
    Java Evangelist Stephen Chin is back on the road for a new NightHacking Tour. He is meeting with James Gosling at Kona, Hawaii, the launch base of the Wave Glider. The Glider is an aquatic robot which communicates real-time data from the surface of the ocean. It runs on an ARM chip using Java SE Embedded.  "During this broadcast we will show some of the footage of his aquatic robots, talk through the technologies he is hacking on daily, and do Q&A with folks on the live chat" explains Stephen Chin.  Sign up for the live stream on Wednesday, October 23rd at:  8AM Hawaii Time 11AM PST 2PM EST 20:00 CET Follow @nighthackingtv for the next Nighthacking events

    Read the article

  • messed System Files on Mac PPC

    - by glider
    My buddy deleted her System folder from her PPC Mac wanting to get that space for something else. She copied it first in another drive (she had partitioned disk).She haven't emptied the Trash Bin yet. The screen just froze right after she moved the folder to Trash. We tried to use the install disk but even if we try Power-C on booting,it would try to continue,display the apple logo page then quickly follow it with black screen filled with dumps of hex codes and "We are hanging here..." We have a Windows-based PC that we tried to connect using ethernet cable but we can't find her computer from there. What should we do now???

    Read the article

  • Scala n00b: Critique my code

    - by Peter
    G'day everyone, I'm a Scala n00b (but am experienced with other languages) and am learning the language as I find time - very much enjoying it so far! Usually when learning a new language the first thing I do is implement Conway's Game of Life, since it's just complex enough to give a good sense of the language, but small enough in scope to be able to whip up in a couple of hours (most of which is spent wrestling with syntax). Anyhoo, having gone through this exercise with Scala I was hoping the Scala gurus out there might take a look at the code I've ended up with and provide feedback on it. I'm after anything - algorithmic improvements (particularly concurrent solutions!), stylistic improvements, alternative APIs or language constructs, disgust at the length of my function names - whatever feedback you've got, I'm keen to hear it! You should be able to run the following script via "scala GameOfLife.scala" - by default it will run a 20x20 board with a single glider on it - please feel free to experiment. // CONWAY'S GAME OF LIFE (SCALA) abstract class GameOfLifeBoard(val aliveCells : Set[Tuple2[Int, Int]]) { // Executes a "time tick" - returns a new board containing the next generation def tick : GameOfLifeBoard // Is the board empty? def empty : Boolean = aliveCells.size == 0 // Is the given cell alive? protected def alive(cell : Tuple2[Int, Int]) : Boolean = aliveCells contains cell // Is the given cell dead? protected def dead(cell : Tuple2[Int, Int]) : Boolean = !alive(cell) } class InfiniteGameOfLifeBoard(aliveCells : Set[Tuple2[Int, Int]]) extends GameOfLifeBoard(aliveCells) { // Executes a "time tick" - returns a new board containing the next generation override def tick : GameOfLifeBoard = new InfiniteGameOfLifeBoard(nextGeneration) // The next generation of this board protected def nextGeneration : Set[Tuple2[Int, Int]] = aliveCells flatMap neighbours filter shouldCellLiveInNextGeneration // Should the given cell should live in the next generation? protected def shouldCellLiveInNextGeneration(cell : Tuple2[Int, Int]) : Boolean = (alive(cell) && (numberOfAliveNeighbours(cell) == 2 || numberOfAliveNeighbours(cell) == 3)) || (dead(cell) && numberOfAliveNeighbours(cell) == 3) // The number of alive neighbours for the given cell protected def numberOfAliveNeighbours(cell : Tuple2[Int, Int]) : Int = aliveNeighbours(cell) size // Returns the alive neighbours for the given cell protected def aliveNeighbours(cell : Tuple2[Int, Int]) : Set[Tuple2[Int, Int]] = aliveCells intersect neighbours(cell) // Returns all neighbours (whether dead or alive) for the given cell protected def neighbours(cell : Tuple2[Int, Int]) : Set[Tuple2[Int, Int]] = Set((cell._1-1, cell._2-1), (cell._1, cell._2-1), (cell._1+1, cell._2-1), (cell._1-1, cell._2), (cell._1+1, cell._2), (cell._1-1, cell._2+1), (cell._1, cell._2+1), (cell._1+1, cell._2+1)) // Information on where the currently live cells are protected def xVals = aliveCells map { cell => cell._1 } protected def xMin = (xVals reduceLeft (_ min _)) - 1 protected def xMax = (xVals reduceLeft (_ max _)) + 1 protected def xRange = xMin until xMax + 1 protected def yVals = aliveCells map { cell => cell._2 } protected def yMin = (yVals reduceLeft (_ min _)) - 1 protected def yMax = (yVals reduceLeft (_ max _)) + 1 protected def yRange = yMin until yMax + 1 // Returns a simple graphical representation of this board override def toString : String = { var result = "" for (y <- yRange) { for (x <- xRange) { if (alive (x,y)) result += "# " else result += ". " } result += "\n" } result } // Equality stuff override def equals(other : Any) : Boolean = { other match { case that : InfiniteGameOfLifeBoard => (that canEqual this) && that.aliveCells == this.aliveCells case _ => false } } def canEqual(other : Any) : Boolean = other.isInstanceOf[InfiniteGameOfLifeBoard] override def hashCode = aliveCells.hashCode } class FiniteGameOfLifeBoard(val boardWidth : Int, val boardHeight : Int, aliveCells : Set[Tuple2[Int, Int]]) extends InfiniteGameOfLifeBoard(aliveCells) { override def tick : GameOfLifeBoard = new FiniteGameOfLifeBoard(boardWidth, boardHeight, nextGeneration) // Determines the coordinates of all of the neighbours of the given cell override protected def neighbours(cell : Tuple2[Int, Int]) : Set[Tuple2[Int, Int]] = super.neighbours(cell) filter { cell => cell._1 >= 0 && cell._1 < boardWidth && cell._2 >= 0 && cell._2 < boardHeight } // Information on where the currently live cells are override protected def xRange = 0 until boardWidth override protected def yRange = 0 until boardHeight // Equality stuff override def equals(other : Any) : Boolean = { other match { case that : FiniteGameOfLifeBoard => (that canEqual this) && that.boardWidth == this.boardWidth && that.boardHeight == this.boardHeight && that.aliveCells == this.aliveCells case _ => false } } override def canEqual(other : Any) : Boolean = other.isInstanceOf[FiniteGameOfLifeBoard] override def hashCode : Int = { 41 * ( 41 * ( 41 + super.hashCode ) + boardHeight.hashCode ) + boardWidth.hashCode } } class GameOfLife(initialBoard: GameOfLifeBoard) { // Run the game of life until the board is empty or the exact same board is seen twice // Important note: this method does NOT necessarily terminate!! def go : Unit = { var currentBoard = initialBoard var previousBoards = List[GameOfLifeBoard]() while (!currentBoard.empty && !(previousBoards contains currentBoard)) { print(27.toChar + "[2J") // ANSI: clear screen print(27.toChar + "[;H") // ANSI: move cursor to top left corner of screen println(currentBoard.toString) Thread.sleep(75) // Warning: unbounded list concatenation can result in OutOfMemoryExceptions ####TODO: replace with LRU bounded list previousBoards = List(currentBoard) ::: previousBoards currentBoard = currentBoard tick } // Print the final board print(27.toChar + "[2J") // ANSI: clear screen print(27.toChar + "[;H") // ANSI: move cursor to top left corner of screen println(currentBoard.toString) } } // Script starts here val simple = Set((1,1)) val square = Set((4,4), (4,5), (5,4), (5,5)) val glider = Set((2,1), (3,2), (1,3), (2,3), (3,3)) val initialBoard = glider (new GameOfLife(new FiniteGameOfLifeBoard(20, 20, initialBoard))).go //(new GameOfLife(new InfiniteGameOfLifeBoard(initialBoard))).go // COPYRIGHT PETER MONKS 2010 Thanks! Peter

    Read the article

  • Contour graphs in JS or PHP ?

    - by vince83000
    Hi everybody, For a web application, I have to make a scientific graph. You can see an example here : http://www.ego-network.org/monitoring/plot_deployment.php?glider=eudoxus&deployment=Cascade&posti=4&postj=scaptemperature_lastweek&pposti=4&ppostj=scaoxygen_lastweek&hchk=&defsct=default_scatter I have 2 coordinates, time and depth, and I want the temperature to be represent by a color, exactly like the example. Someone know how to make this king of graph ? Thanks !

    Read the article

  • Java Spotlight Episode 103: 2012 Duke Choice Award Winners

    - by Roger Brinkley
    Our annual interview with the 2012 Duke Choice Award Winners recorded live at the JavaOne 2012. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes Events Oct 13, Devoxx 4 Kids Nederlands Oct 15-17, JAX London Oct 20, Devoxx 4 Kids Français Oct 22-23, Freescale Technology Forum - Japan, Tokyo Oct 30-Nov 1, Arm TechCon, Santa Clara Oct 31, JFall, Netherlands Nov 2-3, JMagreb, Morocco Nov 13-17, Devoxx, Belgium Feature Interview Duke Choice Award Winners 2012 - Show Presentation London Java CommunityThe second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. Student Nokia Developer GroupThis year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. Jelastic, Inc.Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. NATOThe first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. DuchessRather than focus on a specific geographic area like most Java User Groups (JUGs), Duchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. AgroSense ProjectImproving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. Apache Software Foundation Hadoop ProjectThe Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. Parleys.comE-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Winners not presenting at JavaOne 2012 Duke Choice Awards BOF Liquid RoboticsRobotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect.United Nations High Commissioner for RefugeesThe United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed.

    Read the article

  • Duke's Choice Award Ceremony

    - by Tori Wieldt
    The 2012 Duke's Choice Awards winners and their creative, Java-based technologies and Java community contributions were honored after the Sunday night JavaOne keynotes. Sharat Chander, Group Director for Java Technology Outreach, presented the awards. "Having the community participate directly in both submission and selection truly shows how we are driving exposure of the innovation happening in the Java community," he said. Apache Software Foundation Hadoop Project The Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. AgroSense Project Improving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. JDuchess Rather than focus on a specific geographic area like most Java User Groups (JUGs), JDuchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. Jelastic, Inc. Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. Liquid Robotics Robotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect. London Java Community The second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. NATO The first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. Parleys.com E-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Student Nokia Developer Group This year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. United Nations High Commissioner for Refugees The United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed. You can read more about the winners in the current issue of Java Magazine.

    Read the article

  • A Guided Tour of Complexity

    - by JoshReuben
    I just re-read Complexity – A Guided Tour by Melanie Mitchell , protégé of Douglas Hofstadter ( author of “Gödel, Escher, Bach”) http://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitchell/dp/0199798109/ref=sr_1_1?ie=UTF8&qid=1339744329&sr=8-1 here are some notes and links:   Evolved from Cybernetics, General Systems Theory, Synergetics some interesting transdisciplinary fields to investigate: Chaos Theory - http://en.wikipedia.org/wiki/Chaos_theory – small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for chaotic systems, rendering long-term prediction impossible. System Dynamics / Cybernetics - http://en.wikipedia.org/wiki/System_Dynamics – study of how feedback changes system behavior Network Theory - http://en.wikipedia.org/wiki/Network_theory – leverage Graph Theory to analyze symmetric  / asymmetric relations between discrete objects Algebraic Topology - http://en.wikipedia.org/wiki/Algebraic_topology – leverage abstract algebra to analyze topological spaces There are limits to deterministic systems & to computation. Chaos Theory definitely applies to training an ANN (artificial neural network) – different weights will emerge depending upon the random selection of the training set. In recursive Non-Linear systems http://en.wikipedia.org/wiki/Nonlinear_system – output is not directly inferable from input. E.g. a Logistic map: Xt+1 = R Xt(1-Xt) Different types of bifurcations, attractor states and oscillations may occur – e.g. a Lorenz Attractor http://en.wikipedia.org/wiki/Lorenz_system Feigenbaum Constants http://en.wikipedia.org/wiki/Feigenbaum_constants express ratios in a bifurcation diagram for a non-linear map – the convergent limit of R (the rate of period-doubling bifurcations) is 4.6692016 Maxwell’s Demon - http://en.wikipedia.org/wiki/Maxwell%27s_demon - the Second Law of Thermodynamics has only a statistical certainty – the universe (and thus information) tends towards entropy. While any computation can theoretically be done without expending energy, with finite memory, the act of erasing memory is permanent and increases entropy. Life & thought is a counter-example to the universe’s tendency towards entropy. Leo Szilard and later Claude Shannon came up with the Information Theory of Entropy - http://en.wikipedia.org/wiki/Entropy_(information_theory) whereby Shannon entropy quantifies the expected value of a message’s information in bits in order to determine channel capacity and leverage Coding Theory (compression analysis). Ludwig Boltzmann came up with Statistical Mechanics - http://en.wikipedia.org/wiki/Statistical_mechanics – whereby our Newtonian perception of continuous reality is a probabilistic and statistical aggregate of many discrete quantum microstates. This is relevant for Quantum Information Theory http://en.wikipedia.org/wiki/Quantum_information and the Physics of Information - http://en.wikipedia.org/wiki/Physical_information. Hilbert’s Problems http://en.wikipedia.org/wiki/Hilbert's_problems pondered whether mathematics is complete, consistent, and decidable (the Decision Problem – http://en.wikipedia.org/wiki/Entscheidungsproblem – is there always an algorithm that can determine whether a statement is true).  Godel’s Incompleteness Theorems http://en.wikipedia.org/wiki/G%C3%B6del's_incompleteness_theorems  proved that mathematics cannot be both complete and consistent (e.g. “This statement is not provable”). Turing through the use of Turing Machines (http://en.wikipedia.org/wiki/Turing_machine symbol processors that can prove mathematical statements) and Universal Turing Machines (http://en.wikipedia.org/wiki/Universal_Turing_machine Turing Machines that can emulate other any Turing Machine via accepting programs as well as data as input symbols) that computation is limited by demonstrating the Halting Problem http://en.wikipedia.org/wiki/Halting_problem (is is not possible to know when a program will complete – you cannot build an infinite loop detector). You may be used to thinking of 1 / 2 / 3 dimensional systems, but Fractal http://en.wikipedia.org/wiki/Fractal systems are defined by self-similarity & have non-integer Hausdorff Dimensions !!!  http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension – the fractal dimension quantifies the number of copies of a self similar object at each level of detail – eg Koch Snowflake - http://en.wikipedia.org/wiki/Koch_snowflake Definitions of complexity: size, Shannon entropy, Algorithmic Information Content (http://en.wikipedia.org/wiki/Algorithmic_information_theory - size of shortest program that can generate a description of an object) Logical depth (amount of info processed), thermodynamic depth (resources required). Complexity is statistical and fractal. John Von Neumann’s other machine was the Self-Reproducing Automaton http://en.wikipedia.org/wiki/Self-replicating_machine  . Cellular Automata http://en.wikipedia.org/wiki/Cellular_automaton are alternative form of Universal Turing machine to traditional Von Neumann machines where grid cells are locally synchronized with their neighbors according to a rule. Conway’s Game of Life http://en.wikipedia.org/wiki/Conway's_Game_of_Life demonstrates various emergent constructs such as “Glider Guns” and “Spaceships”. Cellular Automatons are not practical because logical ops require a large number of cells – wasteful & inefficient. There are no compilers or general program languages available for Cellular Automatons (as far as I am aware). Random Boolean Networks http://en.wikipedia.org/wiki/Boolean_network are extensions of cellular automata where nodes are connected at random (not to spatial neighbors) and each node has its own rule –> they demonstrate the emergence of complex  & self organized behavior. Stephen Wolfram’s (creator of Mathematica, so give him the benefit of the doubt) New Kind of Science http://en.wikipedia.org/wiki/A_New_Kind_of_Science proposes the universe may be a discrete Finite State Automata http://en.wikipedia.org/wiki/Finite-state_machine whereby reality emerges from simple rules. I am 2/3 through this book. It is feasible that the universe is quantum discrete at the plank scale and that it computes itself – Digital Physics: http://en.wikipedia.org/wiki/Digital_physics – a simulated reality? Anyway, all behavior is supposedly derived from simple algorithmic rules & falls into 4 patterns: uniform , nested / cyclical, random (Rule 30 http://en.wikipedia.org/wiki/Rule_30) & mixed (Rule 110 - http://en.wikipedia.org/wiki/Rule_110 localized structures – it is this that is interesting). interaction between colliding propagating signal inputs is then information processing. Wolfram proposes the Principle of Computational Equivalence - http://mathworld.wolfram.com/PrincipleofComputationalEquivalence.html - all processes that are not obviously simple can be viewed as computations of equivalent sophistication. Meaning in information may emerge from analogy & conceptual slippages – see the CopyCat program: http://cognitrn.psych.indiana.edu/rgoldsto/courses/concepts/copycat.pdf Scale Free Networks http://en.wikipedia.org/wiki/Scale-free_network have a distribution governed by a Power Law (http://en.wikipedia.org/wiki/Power_law - much more common than Normal Distribution). They are characterized by hubs (resilience to random deletion of nodes), heterogeneity of degree values, self similarity, & small world structure. They grow via preferential attachment http://en.wikipedia.org/wiki/Preferential_attachment – tipping points triggered by positive feedback loops. 2 theories of cascading system failures in complex systems are Self-Organized Criticality http://en.wikipedia.org/wiki/Self-organized_criticality and Highly Optimized Tolerance http://en.wikipedia.org/wiki/Highly_optimized_tolerance. Computational Mechanics http://en.wikipedia.org/wiki/Computational_mechanics – use of computational methods to study phenomena governed by the principles of mechanics. This book is a great intuition pump, but does not cover the more mathematical subject of Computational Complexity Theory – http://en.wikipedia.org/wiki/Computational_complexity_theory I am currently reading this book on this subject: http://www.amazon.com/Computational-Complexity-Christos-H-Papadimitriou/dp/0201530821/ref=pd_sim_b_1   stay tuned for that review!

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

1