Search Results

Search found 3 results on 1 pages for 'hcluster'.

Page 1/1 | 1 

  • problem with hierarchical clustering in Python

    - by user248237
    I am doing a hierarchical clustering a 2 dimensional matrix by correlation distance metric (i.e. 1 - Pearson correlation). My code is the following (the data is in a variable called "data"): from hcluster import * Y = pdist(data, 'correlation') cluster_type = 'average' Z = linkage(Y, cluster_type) dendrogram(Z) The error I get is: ValueError: Linkage 'Z' contains negative distances. What causes this error? The matrix "data" that I use is simply: [[ 156.651968 2345.168618] [ 158.089968 2032.840106] [ 207.996413 2786.779081] [ 151.885804 2286.70533 ] [ 154.33665 1967.74431 ] [ 150.060182 1931.991169] [ 133.800787 1978.539644] [ 112.743217 1478.903191] [ 125.388905 1422.3247 ]] I don't see how pdist could ever produce negative numbers when taking 1 - pearson correlation. Any ideas on this? thank you.

    Read the article

  • hierarchical clustering on correlations in Python scipy/numpy?

    - by user248237
    How can I run hierarchical clustering on a correlation matrix in scipy/numpy? I have a matrix of 100 rows by 9 columns, and I'd like to hierarchically clustering by correlations of each entry across the 9 conditions. I'd like to use 1-pearson correlation as the distances for clustering. Assuming I have a numpy array "X" that contains the 100 x 9 matrix, how can I do this? I tried using hcluster, based on this example: Y=pdist(X, 'seuclidean') Z=linkage(Y, 'single') dendrogram(Z, color_threshold=0) however, pdist is not what I want since that's euclidean distance. Any ideas? thanks.

    Read the article

  • How do I print out objects in an array in python?

    - by Jonathan
    I'm writing a code which performs a k-means clustering on a set of data. I'm actually using the code from a book called collective intelligence by O'Reilly. Everything works, but in his code he uses the command line and i want to write everything in notepad++. As a reference his line is >>>kclust=clusters.kcluster(data,k=10) >>>[rownames[r] for r in k[0]] Here is my code: from PIL import Image,ImageDraw def readfile(filename): lines=[line for line in file(filename)] # First line is the column titles colnames=lines[0].strip( ).split('\t')[1:] rownames=[] data=[] for line in lines[1:]: p=line.strip( ).split('\t') # First column in each row is the rowname rownames.append(p[0]) # The data for this row is the remainder of the row data.append([float(x) for x in p[1:]]) return rownames,colnames,data from math import sqrt def pearson(v1,v2): # Simple sums sum1=sum(v1) sum2=sum(v2) # Sums of the squares sum1Sq=sum([pow(v,2) for v in v1]) sum2Sq=sum([pow(v,2) for v in v2]) # Sum of the products pSum=sum([v1[i]*v2[i] for i in range(len(v1))]) # Calculate r (Pearson score) num=pSum-(sum1*sum2/len(v1)) den=sqrt((sum1Sq-pow(sum1,2)/len(v1))*(sum2Sq-pow(sum2,2)/len(v1))) if den==0: return 0 return 1.0-num/den class bicluster: def __init__(self,vec,left=None,right=None,distance=0.0,id=None): self.left=left self.right=right self.vec=vec self.id=id self.distance=distance def hcluster(rows,distance=pearson): distances={} currentclustid=-1 # Clusters are initially just the rows clust=[bicluster(rows[i],id=i) for i in range(len(rows))] while len(clust)>1: lowestpair=(0,1) closest=distance(clust[0].vec,clust[1].vec) # loop through every pair looking for the smallest distance for i in range(len(clust)): for j in range(i+1,len(clust)): # distances is the cache of distance calculations if (clust[i].id,clust[j].id) not in distances: distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[j].vec) #print 'i' #print i #print #print 'j' #print j #print d=distances[(clust[i].id,clust[j].id)] if d<closest: closest=d lowestpair=(i,j) # calculate the average of the two clusters mergevec=[ (clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0 for i in range(len(clust[0].vec))] # create the new cluster newcluster=bicluster(mergevec,left=clust[lowestpair[0]], right=clust[lowestpair[1]], distance=closest,id=currentclustid) # cluster ids that weren't in the original set are negative currentclustid-=1 del clust[lowestpair[1]] del clust[lowestpair[0]] clust.append(newcluster) return clust[0] def kcluster(rows,distance=pearson,k=4): # Determine the minimum and maximum values for each point ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows])) for i in range(len(rows[0]))] # Create k randomly placed centroids clusters=[[random.random( )*(ranges[i][1]-ranges[i][0])+ranges[i][0] for i in range(len(rows[0]))] for j in range(k)] lastmatches=None for t in range(100): print 'Iteration %d' % t bestmatches=[[] for i in range(k)] # Find which centroid is the closest for each row for j in range(len(rows)): row=rows[j] bestmatch=0 for i in range(k): d=distance(clusters[i],row) if d<distance(clusters[bestmatch],row): bestmatch=i bestmatches[bestmatch].append(j) # If the results are the same as last time, this is complete if bestmatches==lastmatches: break lastmatches=bestmatches # Move the centroids to the average of their members for i in range(k): avgs=[0.0]*len(rows[0]) if len(bestmatches[i])>0: for rowid in bestmatches[i]: for m in range(len(rows[rowid])): avgs[m]+=rows[rowid][m] for j in range(len(avgs)): avgs[j]/=len(bestmatches[i]) clusters[i]=avgs return bestmatches

    Read the article

1