Search Results

Search found 5 results on 1 pages for 'hok'.

Page 1/1 | 1 

  • Interesting fact #123423

    - by Tim Dexter
    Question from a customer on an internal mailing list this, succintly answered by RTF Template God, Hok-Min Q: Whats the upper limit for a sum calculation in terms of the largest number BIP can handle? A: Internally, XSL-T processor uses double precession.  Therefore the upper limit and precision will be same as double (IEEE 754 double-precision binary floating-point format, binary64). Approximately 16 significant decimal digits, max is 1.7976931348623157 x 10308 . So, now you know :)

    Read the article

  • OpenWorld Presentations and Anatomy of an RTF Template w/ files

    - by mdonohue
    For those who missed it ... or those who made it and couldn't get enough, check out the presentations delivered at OpenWorld: Overview and Roadmap The Reporting Platform for Oracle Applications Best Practices and even though it wasn't presented at OpenWorld an updated version of Anatomy of an RTF Template to include documented example files  (RTF template, Sub-Template and sample XML data) so you can re-use and play with the code directly.  Huge thanks to Tim and Hok-Min who did all the hard, original work on this example loaded with tips and tricks.  

    Read the article

  • BIP and Mapviewer Mash Up I

    - by Tim Dexter
    I was out in Yellowstone last week soaking up various wildlife and a bit too much rain ... good to be back until the 95F heat yesterday. Taking a little break from the Excel templates; the dev folks are planing an Excel patch in the next week or so that will add a mass of new functionality. At the risk of completely mis leading you I'm going to hang back a while. What I have written so far holds true and will continue to do so. This week, I have been mostly eating 'mapviewer' ... answers on a post card please, TV show and character. I had a request to show how BIP can call mapviewer and render a dynamic map in an output. So I hit the books and colleagues for some answers. Mapviewer is Oracle's geographic information system, hereby known as GIS. I use it a lot in our BIEE demos where the interaction with the maps is very impressive. Need a map of California and its congressional districts? I have contacts; Jerry and David with their little black box of maps. Once in my possession I can build highly interactive, clickable maps that allow the user to drill into more information using a very friendly interface driving BIEE content and navigation. But what about maps in BIP output? Bryan Wise, who has written some articles on this blog did some work a while back with the PL/SQL API interface. The extract for the report called a function that in turn called the mapviewer server, passing a set of mapping requirements, it then returned a URL to a cached copy of that map. Easy to then have BIP render that image. Thats still very doable. You need to install a couple of packages and then load the mapviewer java APIs into the database. Then you can write your function to the APIs. A little involved? Maybe, but the database is doing all the heavy lifting for you. I thought I would investigate another method for getting the maps back into BIP. There is a URL interface you can call, this involves building an XML message to be passed to the mapviewer server. It's pretty straightforward to use on the mapviewer side. On the BIP side things are little more tricksy. After some unexpected messing about I finally got the ubiquitous Hello World map to render using the URL method. Not the most exciting map in the world, lots of ocean and a rather long URL to get it to render. http://127.0.0.1:9704/mapviewer/omserver?xml_request=%3Cmap_request%20title=%22Hello%20World%22%20datasource=%22cagis%22%20format=%22GIF_STREAM%22/%3E Notice all of the encoding in the URL string to handle the spaces, quotes, etc. All necessary to get BIP to make the call to the mapviewer server correctly without truncating the URL if it hits a real space rather than a %20. With that in mind constructing the URL was pretty simple. I'm not going to get into the content of the URL too much, for that you need to bone up on the mapviewer XML API. Check out the home page here and the documentation here. To make the template portable I used the standard CURRENT_SERVER_URL parameter from the BIP server and declared that in my template. <?param@begin:CURRENT_SERVER_URL;'myserver'?> Ignore the 'myserver', that was just a dummy value for testing at runtime it will resolve to: 'http://yourserver:port/xmlpserver' Not quite what we need as mapviewer has its own server path, in my case I needed 'mapviewer/omserver?xml_request=' as the fixed path to the mapviewer request URL. A little concatenation and substringing later I came up with <?param@begin:mURL;concat(substring($CURRENT_SERVER_URL,1,22),'mapviewer/omserver?xml_request=')?> Thats the basic URL that I can then build on. To get the Hello World map I need to add the following: <map_request title="Hello World" datasource="cagis" format="GIF_STREAM"/> Those angle brackets were the source of my headache, BIPs XSLT engine was attempting to process them rather than just pass them. Hok Min to the rescue ... again. I owe him lunch when I get out to HQ again! To solve the problem, I needed to escape all the characters and white space and then use native XSL to assign the string to a parameter. <xsl:param xdofo:ctx="begin"name="pXML">%3Cmap_request%20title=%22Hello%20World%22 %20datasource=%22cagis%22%20format=%22GIF_STREAM%22/%3E</xsl:param> I did not need to assign it to a parameter but I felt that if I were going to do anything more serious than Hello World like plotting points of interest on the map. I would need to dynamically build the URL, so using a set of parameters or variables that I then concatenated would be easier. Now I had the initial server string and the request all I then did was combine the two using a concat: concat($mURL,$pXML) Embedding that into an image tag: <fo:external-graphic src="url({concat($mURL,$pXML)})"/> and I was done. Notice the curly braces to get the concat evaluated prior to the image call. As you will see next time, building the XML message to go onto the URL can get quite complex but I have used it with some data. Ultimately, it would be easier to build an extension to BIP to handle the data to be plotted, it would then build the XML message, call mapviewer and return a URL to the map image for BIP to render. More on that next time ...

    Read the article

  • New Skool Crosstabbing

    - by Tim Dexter
    A while back I spoke about having to go back to BIP's original crosstabbing solution to achieve a certain layout. Hok Min has provided a 'man' page for the new crosstab/pivot builder for 10.1.3.4.1 users. This will make the documentation drop but for now, get it here! The old, hand method is still available but this new approach, is more efficient and flexible. That said you may need to get into the crosstab code to tweak it where the crosstab dialog can not help. I had to do this, this week but more on that later. The following explains how the crosstab wizard builds the crosstab and what the fields inside the resulting template structure are there for. To create the crosstab a new XDO command "<?crosstab:...?>" has been created. XDO Command: <?crosstab: ctvarname; data-element; rows; columns; measures; aggregation?> Parameter Description Example Ctvarname Crosstab variable name. This is automatically generated by the Add-in. C123 data-element This is the XML data element that contains the data. "//ROW" Rows This contains a list of XML elements for row headers. The ordering information is specified within "{" and "}". The first attribute is the sort element. Leaving it blank means the sort element is the same as the row header element. The attribute "o" means order. Its value can be "a" for ascending, or "d" for descending. The attribute "t" means type. Its value can be "t" for text, and "n" for numeric. There can be more than one sort elements, example: "emp-full-name {emp-lastname,o=a,t=n}{emp-firstname,o=a,t=n}. This will sort employee by last name and first name. "Region{,o=a,t=t}, District{,o=a,t=t}" In the example, the first row header is "Region". It is sort by "Region", order is ascending, and type is text. The second row header is "District". It is sort by "District", order is ascending, and type is text. Columns This contains a list of XML elements for columns headers. The ordering information is specified within "{" and "}". The first attribute is the sort element. Leaving it blank means the sort element is the same as the column header element. The attribute "o" means order. Its value can be "a" for ascending, or "d" for descending. The attribute "t" means type. Its value can be "t" for text, and "n" for numeric. There can be more than one sort elements, example: "emp-full-name {emp-lastname,o=a,t=n}{emp-firstname,o=a,t=n}. This will sort employee by last name and first name. "ProductsBrand{,o=a,t=t}, PeriodYear{,o=a,t=t}" In the example, the first column header is "ProductsBrand". It is sort by "ProductsBrand", order is ascending, and type is text. The second column header is "PeriodYear". It is sort by "District", order is ascending, and type is text. Measures This contains a list of XML elements for measures. "Revenue, PrevRevenue" Aggregation The aggregation function name. Currently, we only support "sum". "sum" Using the Oracle BI Publisher Template Builder for Word add-in, we are able to construct the following Pivot Table: The generated XDO command for this Pivot Table is as follow: <?crosstab:c547; "//ROW";"Region{,o=a,t=t}, District{,o=a,t=t}"; "ProductsBrand{,o=a,t=t},PeriodYear{,o=a,t=t}"; "Revenue, PrevRevenue";"sum"?> Running the command on the give XML data files generates this XML file "cttree.xml". Each XPath in the "cttree.xml" is described in the following table. Element XPath Count Description C0 /cttree/C0 1 This contains elements which are related to column. C1 /cttree/C0/C1 4 The first level column "ProductsBrand". There are four distinct values. They are shown in the label H element. CS /cttree/C0/C1/CS 4 The column-span value. It is used to format the crosstab table. H /cttree/C0/C1/H 4 The column header label. There are four distinct values "Enterprise", "Magicolor", "McCloskey" and "Valspar". T1 /cttree/C0/C1/T1 4 The sum for measure 1, which is Revenue. T2 /cttree/C0/C1/T2 4 The sum for measure 2, which is PrevRevenue. C2 /cttree/C0/C1/C2 8 The first level column "PeriodYear", which is the second group-by key. There are two distinct values "2001" and "2002". H /cttree/C0/C1/C2/H 8 The column header label. There are two distinct values "2001" and "2002". Since it is under C1, therefore the total number of entries is 4 x 2 => 8. T1 /cttree/C0/C1/C2/T1 8 The sum for measure 1 "Revenue". T2 /cttree/C0/C1/C2/T2 8 The sum for measure 2 "PrevRevenue". M0 /cttree/M0 1 This contains elements which are related to measures. M1 /cttree/M0/M1 1 This contains summary for measure 1. H /cttree/M0/M1/H 1 The measure 1 label, which is "Revenue". T /cttree/M0/M1/T 1 The sum of measure 1 for the entire xpath from "//ROW". M2 /cttree/M0/M2 1 This contains summary for measure 2. H /cttree/M0/M2/H 1 The measure 2 label, which is "PrevRevenue". T /cttree/M0/M2/T 1 The sum of measure 2 for the entire xpath from "//ROW". R0 /cttree/R0 1 This contains elements which are related to row. R1 /cttree/R0/R1 4 The first level row "Region". There are four distinct values, they are shown in the label H element. H /cttree/R0/R1/H 4 This is row header label for "Region". There are four distinct values "CENTRAL REGION", "EASTERN REGION", "SOUTHERN REGION" and "WESTERN REGION". RS /cttree/R0/R1/RS 4 The row-span value. It is used to format the crosstab table. T1 /cttree/R0/R1/T1 4 The sum of measure 1 "Revenue" for each distinct "Region" value. T2 /cttree/R0/R1/T2 4 The sum of measure 1 "Revenue" for each distinct "Region" value. R1C1 /cttree/R0/R1/R1C1 16 This contains elements from combining R1 and C1. There are 4 distinct values for "Region", and four distinct values for "ProductsBrand". Therefore, the combination is 4 X 4 è 16. T1 /cttree/R0/R1/R1C1/T1 16 The sum of measure 1 "Revenue" for each combination of "Region" and "ProductsBrand". T2 /cttree/R0/R1/R1C1/T2 16 The sum of measure 2 "PrevRevenue" for each combination of "Region" and "ProductsBrand". R1C2 /cttree/R0/R1/R1C1/R1C2 32 This contains elements from combining R1, C1 and C2. There are 4 distinct values for "Region", and four distinct values for "ProductsBrand", and two distinct values of "PeriodYear". Therefore, the combination is 4 X 4 X 2 è 32. T1 /cttree/R0/R1/R1C1/R1C2/T1 32 The sum of measure 1 "Revenue" for each combination of "Region", "ProductsBrand" and "PeriodYear". T2 /cttree/R0/R1/R1C1/R1C2/T2 32 The sum of measure 2 "PrevRevenue" for each combination of "Region", "ProductsBrand" and "PeriodYear". R2 /cttree/R0/R1/R2 18 This contains elements from combining R1 "Region" and R2 "District". Since the list of values in R2 has dependency on R1, therefore the number of entries is not just a simple multiplication. H /cttree/R0/R1/R2/H 18 The row header label for R2 "District". R1N /cttree/R0/R1/R2/R1N 18 The R2 position number within R1. This is used to check if it is the last row, and draw table border accordingly. T1 /cttree/R0/R1/R2/T1 18 The sum of measure 1 "Revenue" for each combination "Region" and "District". T2 /cttree/R0/R1/R2/T2 18 The sum of measure 2 "PrevRevenue" for each combination of "Region" and "District". R2C1 /cttree/R0/R1/R2/R2C1 72 This contains elements from combining R1, R2 and C1. T1 /cttree/R0/R1/R2/R2C1/T1 72 The sum of measure 1 "Revenue" for each combination of "Region", "District" and "ProductsBrand". T2 /cttree/R0/R1/R2/R2C1/T2 72 The sum of measure 2 "PrevRevenue" for each combination of "Region", "District" and "ProductsBrand". R2C2 /cttree/R0/R1/R2/R2C1/R2C2 144 This contains elements from combining R1, R2, C1 and C2, which gives the finest level of details. M1 /cttree/R0/R1/R2/R2C1/R2C2/M1 144 The sum of measure 1 "Revenue". M2 /cttree/R0/R1/R2/R2C1/R2C2/M2 144 The sum of measure 2 "PrevRevenue". Lots to read and digest I know! Customization One new feature I discovered this week is the ability to show one column and sort by another. I had a data set that was extracting month abbreviations, we wanted to show the months across the top and some row headers to the side. As you may know XSL is not great with dates, especially recognising month names. It just wants to sort them alphabetically, so Apr comes before Jan, etc. A way around this is to generate a month number alongside the month and use that to sort. We can do that in the crosstab, sadly its not exposed in the UI yet but its doable. Go back up and take a look a the initial crosstab command. especially the Rows and Columns entries. In there you will find the sort criteria. "ProductsBrand{,o=a,t=t}, PeriodYear{,o=a,t=t}" Notice those leading commas inside the curly braces? Because there is no field preceding them it means that the crosstab should sort on the column before the brace ie PeriodYear. But you can insert another column in the data set to sort by. To get my sort working how I needed. <?crosstab:c794;"current-group()";"_Fund_Type_._Fund_Type_Display_{_Fund_Type_._Fund_Type_Sort_,o=a,t=n}";"_Fiscal_Period__Amount__._Amt_Fm_Disp_Abbr_{_Fiscal_Period__Amount__._Amt_Fiscal_Month_Sort_,o=a,t=n}";"_Execution_Facts_._Amt_";"sum"?> Excuse the horribly verbose XML tags, good ol BIEE :0) The emboldened columns are not in the crosstab but are in the data set. I just opened up the field, dropped them in and changed the type(t) value to be 'n', for number, instead of the default 'a' and my crosstab started sorting how I wanted it. If you find other tips and tricks, please share in the comments.

    Read the article

1