Search Results

Search found 18665 results on 747 pages for 'inside red gate'.

Page 1/747 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • Inside Red Gate - Introduction

    - by Simon Cooper
    I work for Red Gate Software, a software company based in Cambridge, UK. In this series of posts, I'll be discussing how we develop software at Red Gate, and what we get up to, all from a dev's perspective. Before I start the series proper, in this post I'll give you a brief background to what I have done and continue to do as part of my job. The initial few posts will be giving an overview of how the development sections of the company work. There is much more to a software company than writing the products, but as I'm a developer my experience is biased towards that, and so that is what this series will concentrate on. My background Red Gate was founded in 1999 by Neil Davidson & Simon Galbraith, who continue to be joint CEOs. I joined in September 2007, and immediately set to work writing a new Check for Updates client and server (CfU), as part of a team of 2. That was finished at the end of 2007. I then joined the SQL Compare team. The first large project I worked on was updating SQL Compare for SQL Server 2008, resulting in SQL Compare 7, followed by a UI redesign in SQL Compare 8. By the end of this project in early 2009 I had become the 'go-to' guy for the SQL Compare Engine (I'll explain what that means in a later post), which is used by most of the other tools in the SQL Tools division in one way or another. After that, we decided to expand into Oracle, and I wrote the prototype for what became the engine of Schema Compare for Oracle (SCO). In the latter half of 2009 a full project was started, resulting in the release of SCO v1 in early 2010. Near the end of 2010 I moved to the .NET division, where I joined the team working on SmartAssembly. That's what I continue to work on today. The posts in this series will cover my experience in software development at Red Gate, within the SQL Tools and .NET divisions. Hopefully, you'll find this series an interesting look at what exactly goes into producing the software at Red Gate.

    Read the article

  • Inside Red Gate - Divisions

    - by Simon Cooper
    When I joined Red Gate back in 2007, there were around 80 people in the company. Now, around 3 years later, it's grown to more than 200. It's a constant battle against Dunbar's number; the maximum number of people you can keep track of in a social group, to try and maintain that 'small company' feel that attracted myself and so many others to apply in the first place. There are several strategies the company's developed over the years to try and mitigate the effects of Dunbar's number. One of the main ones has been divisionalisation. Divisions The first division, .NET, appeared around the same time that I started in 2007. This combined the development, sales, marketing and management of the .NET tools (then, ANTS Profiler v3) into a separate section of the office. The idea was to increase the cohesion and communication between the different people involved in the entire lifecycle of the tools; from initial product development, through to marketing, then to customer support, who would feed back to the development team. This was such a success that the other development teams were re-worked around this model in 2009. Nowadays there are 4 divisions - SQL Tools, DBA, .NET, and New Business. Along the way there have been various tweaks to the details - the sales teams have been merged into the divisions, marketing and product support have been (mostly) centralised - but the same basic model remains. So, how has this helped? As Red Gate has continued to grow over the years, divisionalisation has turned Red Gate from a monolithic software company into what one person described as a 'federation of small businesses'. Each division is free to structure itself as it sees fit, it's free to decide what to concentrate development work on, organise its own newsletters and webinars, decide its own release schedule. Each division is its own small business. In terms of numbers, the size of each division varies from 20 people (.NET) to 52 (SQL Tools); well below Dunbar's number. From a developer's perspective, this means organisational structure is very flat & wide - there's only 2 layers between myself and the CEOs (not that it matters much; everyone can go and have a chat to Neil or Simon, or anyone else inbetween, whenever they want. Provided you can catch them at their desk!). As Red Gate grows, and expands into new areas, new divisions will be created as needed, old ones merged or disbanded, but the division structure will help to maintain that small-company feel that keeps Red Gate working as it does.

    Read the article

  • Inside Red Gate - Be Reasonable!

    - by Simon Cooper
    As I discussed in my previous posts, divisions and project teams within Red Gate are allowed a lot of autonomy to manage themselves. It's not just the teams though, there's an awful lot of freedom given to individual employees within the company as well. Reasonableness How Red Gate treats it's employees is embodied in the phrase 'You will be reasonable with us, and we will be reasonable with you'. As an employee, you are trusted to do your job to the best of you ability. There's no one looking over your shoulder, no one clocking you in and out each day. Everyone is working at the company because they want to, and one of the core ideas of Red Gate is that the company exists to 'let people do the best work of their lives'. Everything is geared towards that. To help you do your job, office services and the IT department are there. If you need something to help you work better (a third or fourth monitor, footrests, or a new keyboard) then ask people in Information Systems (IS) or Office Services and you will be given it, no questions asked. Everyone has administrator access to their own machines, and you can install whatever you want on it. If there's a particular bit of software you need, then ask IS and they will buy it. As an example, last year I wanted to replace my main hard drive with an SSD; I had a summer job at school working in a computer repair shop, so knew what to do. I went to IS and asked for 'an SSD, a SATA cable, and a screwdriver'. And I got it there and then, even the screwdriver. Awesome. I screwed it in myself, copied all my main drive files across, and I was good to go. Of course, if you're not happy doing that yourself, then IS will sort it all out for you, no problems. If you need something that the company doesn't have (say, a book off Amazon, or you need some specifications printing off & bound), then everyone has a expense limit of £100 that you can use without any sign-off needed from your managers. If you need a company credit card for whatever reason, then you can get it. This freedom extends to working hours and holiday; you're expected to be in the office 11am-3pm each day, but outside those times you can work whenever you want. If you need a half-day holiday on a days notice, or even the same day, then you'll get it, unless there's a good reason you're needed that day. If you need to work from home for a day or so for whatever reason, then you can. If it's reasonable, then it's allowed. Trust issues? A lot of trust, and a lot of leeway, is given to all the people in Red Gate. Everyone is expected to work hard, do their jobs to the best of their ability, and there will be a minimum of bureaucratic obstacles that stop you doing your work. What happens if you abuse this trust? Well, an example is company trip expenses. You're free to expense what you like; food, drink, transport, etc, but if you expenses are not reasonable, then you will never travel with the company again. Simple as that. Everyone knows when they're abusing the system, so simply don't do it. Along with reasonableness, another phrase used is 'Don't be a ***'. If you act like a ***, and abuse any of the trust placed in you, even if you're the best tester, salesperson, dev, or manager in the company, then you won't be a part of the company any more. From what I know about other companies, employee trust is highly variable between companies, all the way up to CCTV trained on employee's monitors. As a dev, I want to produce well-written & useful code that solves people's problems. Being able to get whatever I need - install whatever tools I need, get time off when I need to, obtain reference books within a day - all let me do my job, and so let Red Gate help other people do their own jobs through the tools we produce. Plus, I don't think I would like working for a company that doesn't allow admin access to your own machine and blocks Facebook!

    Read the article

  • Inside Red Gate - Project teams

    - by Simon Cooper
    Within each division in Red Gate, development effort is structured around one or more project teams; currently, each division contains 2-3 separate teams. These are self contained units responsible for a particular development project. Project team structure The typical size of a development team varies, but is normally around 4-7 people - one project manager, two developers, one or two testers, a technical author (who is responsible for the text within the application, website content, and help documentation) and a user experience designer (who designs and prototypes the UIs) . However, team sizes can vary from 3 up to 12, depending on the division and project. As an rule, all the team sits together in the same area of the office. (Again, this is my experience of what happens. I haven't worked in the DBA division, and SQL Tools might have changed completely since I moved to .NET. As I mentioned in my previous post, each division is free to structure itself as it sees fit.) Depending on the project, and the other needs in the division, the tech author and UX designer may be shared between several projects. Generally, developers and testers work on one project at a time. If the project is a simple point release, then it might not need a UX designer at all. However, if it's a brand new product, then a UX designer and tech author will be involved right from the start. Developers, testers, and the project manager will normally stay together in the same team as they work on different projects, unless there's a good reason to split or merge teams for a particular project. Technical authors and UX designers will normally go wherever they are needed in the division, depending on what each project needs at the time. In my case, I was working with more or less the same people for over 2 years, all the way through SQL Compare 7, 8, and Schema Compare for Oracle. This helped to build a great sense of camaraderie wihin the team, and helped to form and maintain a team identity. This, in turn, meant we worked very well together, and so the final result was that much better (as well as making the work more fun). How is a project started and run? The product manager within each division collates user feedback and ideas, does lots of research, throws in a few ideas from people within the company, and then comes up with a list of what the division should work on in the next few years. This is split up into projects, and after each project is greenlit (I'll be discussing this later on) it is then assigned to a project team, as and when they become available (I'm sure there's lots of discussions and meetings at this point that I'm not aware of!). From that point, it's entirely up to the project team. Just as divisions are autonomous, project teams are also given a high degree of autonomy. All the teams in Red Gate use some sort of vaguely agile methodology; most use some variations on SCRUM, some have experimented with Kanban. Some store the project progress on a whiteboard, some use our bug tracker, others use different methods. It all depends on what the team members think will work best for them to get the best result at the end. From that point, the project proceeds as you would expect; code gets written, tests pass and fail, discussions about how to resolve various problems are had and decided upon, and out pops a new product, new point release, new internal tool, or whatever the project's goal was. The project manager ensures that everyone works together without too much bloodshed and that thrown missiles are constrained to Nerf bullets, the developers write the code, the testers ensure it actually works, and the tech author and UX designer ensure that people will be able to use the final product to solve their problem (after all, developers make lousy UI designers and technical authors). Projects in Red Gate last a relatively short amount of time; most projects are less than 6 months. The longest was 18 months. This has evolved as the company has grown, and I suspect is a side effect of the type of software Red Gate produces. As an ISV, we sell packaged software; we only get revenue when customers purchase the ready-made tools. As a result, we only get a sellable piece of software right at the end of a project. Therefore, the longer the project lasts, the more time and money has to be invested by the company before we get any revenue from it, and the riskier the project becomes. This drives the average project time down. Small project teams are the core of how Red Gate produces software, and are what the whole development effort of the company is built around. In my next post, I'll be looking at the office itself, and how all 200 of us manage to fit on two floors of a small office building.

    Read the article

  • SQL in Boston -- Red Gate Style

    - by Adam Machanic
    You might have heard of Red Gate's famous SQL in the City events: free, full-day educational events where you can learn from Red Gate's own evangelists in addition to various MVPs and other guests. With just a tiny bit of marketing thrown in for good measure (don't worry, it's not a daylong sales pitch). Red Gate is doing a US tour this fall, and I'm happy to note that my fair city of Boston is one of the stops ... and I am one of the speakers. The event takes place on October 8 . I'll be delivering...(read more)

    Read the article

  • Inside Red Gate - Exercises in Leanness

    - by Simon Cooper
    There's a new movement rumbling around Red Gate Towers - the Lean Startup. At its core is the idea that you don't have to be in a company with single-digit employees to be an entrepreneur; you simply have to (being blunt) not know what you should be doing. Specifically, you accept that you don't know everything you need to know in order to create a useful, successful & profitable product. This is something that Red Gate has had problems with in the past; we've created products that weren't aimed at the correct market, or didn't solve the problem the user had (although they solved the problem we thought the users had, or the problem the users thought they had). As a result, these products weren't as successful as they could have been. The ideas at the core of the Lean Startup help to combat this tendency to build large, well-engineered products that solve the wrong problem. You need to actually test your hypotheses about what the users and the market needs, rather than just running a project based on those untested assumptions. Furthermore, these tests need to be done as fast as possible (on the order of a week) so that, if necessary, you can change the direction of the project without wasting effort going down a dead end. Over time, as more tests are done and more hypotheses are confirmed or refuted, the project moves towards something that solves users' actual problems. However, re-aligning the development teams that operate within Red Gate along these lines does itself have some issues; we've got very good at doing large, monolithic releases, with a feature set decided well in advance. Currently it takes about 2 weeks to do install & release testing before a release; this is clearly not practicable for a team doing weekly, or even daily releases. There's also many infrastructure issues to be solved; in our source control, build system, release mechanism, support pages & documentation, licensing system, update system, and download pages. All these need modifications to allow the fast releases necessary for each experiment. Not only do we have to change our infrastructure, we have to change our mindset. Doing daily releases means each release won't get nearly as much testing as 'standard' releases. As a team, we have to be prepared that there will be releases that have bugs and issues with them; not only do we have to be prepared to change direction with every experiment we do, but we have to be ready to fix any bugs that are reported very quickly as well. The SmartAssembly team is spearheading this move towards leanness within the company, using Feature Usage Reporting (FUR). We think this is a cracking feature that will really help developers learn how people use their products, but we need to confirm this hypothesis. So, over the next few weeks, we'll be running a variety of experiments on SmartAssembly to either confirm or refute our hypotheses concerning how people use SmartAssembly and apply FUR to their own products. In the rest of this series, I'll be documenting how the experiments we perform get on, and our experiences with applying the Lean Startup model to a mature product like SmartAssembly.

    Read the article

  • Inside Red Gate - Ricky Leeks

    - by Simon Cooper
    So, one of our profilers has a problem. Red Gate produces two .NET profilers - ANTS Performance Profiler (APP) and ANTS Memory Profiler (AMP). Both products help .NET developers solve problems they are virtually guaranteed to encounter at some point in their careers - slow code, and high memory usage, respectively. Everyone understands slow code - the symptoms are very obvious (an operation takes 2 hours when it should take 10 seconds), you know when you've solved it (the same operation now takes 15 seconds), and everyone understands how you can use a profiler like APP to help solve your particular problem. High memory usage is a much more subtle and misunderstood concept. How can .NET have memory leaks? The garbage collector, and how the CLR uses and frees memory, is one of the most misunderstood concepts in .NET. There's hundreds of blog posts out there covering various aspects of the GC and .NET memory, some of them helpful, some of them confusing, and some of them are just plain wrong. There's a lot of misconceptions out there. And, if you have got an application that uses far too much memory, it can be hard to wade through all the contradictory information available to even get an idea as to what's going on, let alone trying to solve it. That's where a memory profiler, like AMP, comes into play. Unfortunately, that's not the end of the issue. .NET memory management is a large, complicated, and misunderstood problem. Even armed with a profiler, you need to understand what .NET is doing with your objects, how it processes them, and how it frees them, to be able to use the profiler effectively to solve your particular problem. And that's what's wrong with AMP - even with all the thought, designs, UX sessions, and research we've put into AMP itself, some users simply don't have the knowledge required to be able to understand what AMP is telling them about how their application uses memory, and so they have problems understanding & solving their memory problem. Ricky Leeks This is where Ricky Leeks comes in. Created by one of the many...colourful...people in Red Gate, he headlines and promotes several tutorials, pages, and articles all with information on how .NET memory management actually works, with the goal to help educate developers on .NET memory management. And educating us all on how far you can push various vegetable-based puns. This, in turn, not only helps them understand and solve any memory issues they may be having, but helps them proactively code against such memory issues in their existing code. Ricky's latest outing is an interview on .NET Rocks, providing information on the Top 5 .NET Memory Management Gotchas, along with information on a free ebook on .NET Memory Management. Don't worry, there's loads more vegetable-based jokes where those came from...

    Read the article

  • Tuning Red Gate: #5 of Multiple

    - by Grant Fritchey
    In the Tuning Red Gate series I've shown you how to look at a current load on the system and how to drill down to look at historical analysis of the system. I've also shown how you can see the top queries and other information from the current status of the system. I have one more thing I can show you before we need to start fixing things and showing how that affects the data collected, historical moments in time. For example, back in Post #3 I was looking at some spikes in some of the monitored resources that were taking place a couple of weeks back in time. Once I identify a moment in time that I'm interested in, I can go back to the first page of Monitor, Global Overview, and click on the icon: From this you can select the date and time you're interested in. For example, I saw some serious CPU queues last week: This then rolls back the time for all the information that's available to the Global Overview and the drill down to the server and the SQL Server instance there. This then allows me to look at the Top Queries running at this point, sort them by CPU and identify what was potentially the query that was causing the problem right when I saw the CPU queuing This ability to correlate a moment in time with the information available to you in the Analysis window makes for an excellent tool to investigate your systems going backwards in time. It really makes a huge difference in your knowledge. It's not enough to know that something happened at a particular time. You need to know what it was that was occurring. Remember, the key to tuning your systems is having enough knowledge about them. I'll post more on Tuning Red Gate as soon as I can get some queries rewritten. I'm working on that.

    Read the article

  • Inside Red Gate - The Office

    - by Simon Cooper
    The vast majority of Red Gate is on the first and second floors (the second and third floors in US parlance) of an office building in Cambridge Business Park (here we are!). As you can see, the building is split into three sections; the two wings, and the section between them. As well as being organisationally separate, the four divisions are also split up in the office; each division has it's own floor and wing, so everyone in the division is working together in the same area (.NET and DBA on the left, SQL Tools and New Business on the right). The non-divisional parts of the business share wings with the smaller divisions, again keeping each group together. The canteen One of the downsides of divisionalisation is that communication between people in different decisions is greatly reduced. This is where the canteen (aka the SQL Servery) comes in. Occupying most of the central section on the first floor, the canteen provides free cooked lunch every day, and is where everyone in the company gathers for lunch. The idea is to encourage communication between the divisions; having lunch with people in a different division you wouldn't otherwise talk to helps people keep track of what's going on elsewhere in the company. (I'm still amazed at how the canteen staff provide a wide range of superbly cooked food for over 200 people out of a kitchen in which, if you were to swing a cat, it would get severe head injuries.). There's also table tennis and table football tables that anyone can use, provided you can grab them when they're free! Office layout Cubicles are practically unheard of in the UK, and no one, including the CEOs, has separate offices. The entire office is open-plan, as you can see in this youtube video from when we first moved in (although all the empty desks are now full!). Neil & Simon, instead of having dedicated offices, move between the different divisions every few months to keep up to date with what's going on around the company; sitting with a division gives you a much better overall impression of how the division's doing than written status reports from the division heads. There's also the usual plethora of meeting rooms scattered around the place; when we first moved in in 2009 we had a competition to name them all. We've got Afoxalypse A & B, Seagulls A & B, Traffic Jam, Thinking Hats, Camelids A & B, Horses, etc. All the meeting rooms have pictures on the walls corresponding to their theme, which adds a nice bit of individuality to otherwise fairly drab meeting rooms. Generally, any meeting room can be booked by anyone at any time, although some groups have priority in certain rooms (Camelids B is used a lot for UX testing, the Interview Room is used for, well, interviews). And, as you can see from the video, each area has various pictures, post-its, notes, signs, on the walls to try and stop it being a dull office space. Yes, it's still an office, but it's designed to be as interesting and as individual as possible.

    Read the article

  • Inside Red Gate - Experimenting In Public

    - by Simon Cooper
    Over the next few weeks, we'll be performing experiments on SmartAssembly to confirm or refute various hypotheses we have about how people use the product, what is stopping them from using it to its full extent, and what we can change to make it more useful and easier to use. Some of these experiments can be done within the team, some within Red Gate, and some need to be done on external users. External testing Some external testing can be done by standard usability tests and surveys, however, there are some hypotheses that can only be tested by building a version of SmartAssembly with some things in the UI or implementation changed. We'll then be able to look at how the experimental build is used compared to the 'mainline' build, which forms our baseline or control group, and use this data to confirm or refute the relevant hypotheses. However, there are several issues we need to consider before running experiments using separate builds: Ideally, the user wouldn't know they're running an experimental SmartAssembly. We don't want users to use the experimental build like it's an experimental build, we want them to use it like it's the real mainline build. Only then will we get valid, useful, and informative data concerning our hypotheses. There's no point running the experiments if we can't find out what happens after the download. To confirm or refute some of our hypotheses, we need to find out how the tool is used once it is installed. Fortunately, we've applied feature usage reporting to the SmartAssembly codebase itself to provide us with that information. Of course, this then makes the experimental data conditional on the user agreeing to send that data back to us in the first place. Unfortunately, even though this does limit the amount of useful data we'll be getting back, and possibly skew the data, there's not much we can do about this; we don't collect feature usage data without the user's consent. Looks like we'll simply have to live with this. What if the user tries to buy the experiment? This is something that isn't really covered by the Lean Startup book; how do you support users who give you money for an experiment? If the experiment is a new feature, and the user buys a license for SmartAssembly based on that feature, then what do we do if we later decide to pivot & scrap that feature? We've either got to spend time and money bringing that feature up to production quality and into the mainline anyway, or we've got disgruntled customers. Either way is bad. Again, there's not really any good solution to this. Similarly, what if we've removed some features for an experiment and a potential new user downloads the experimental build? (As I said above, there's no indication the build is an experimental build, as we want to see what users really do with it). The crucial feature they need is missing, causing a bad trial experience, a lost potential customer, and a lost chance to help the customer with their problem. Again, this is something not really covered by the Lean Startup book, and something that doesn't have a good solution. So, some tricky issues there, not all of them with nice easy answers. Turns out the practicalities of running Lean Startup experiments are more complicated than they first seem!

    Read the article

  • Red Gate Rolls Out the Red Carpet for SQL Server Users

    SQL in the City, the unique event for database developers and administrators organized by Red Gate Software, hits the streets of London and Seattle this fall. Now in its fourth year, it features presentations by some of the world’s top SQL Server speakers. Can 41,000 DBAs really be wrong? Join 41,000 other DBAs who are following the new series from the DBA Team: the 5 Worst Days in a DBA’s Life. Part 3, As Corrupt As It Gets, is out now – read it here.

    Read the article

  • Red Gate in the Community

    - by Nick Harrison
    Much has been said recently about Red Gate's community involvement and commitment to the DotNet community. Much of this has been unduly negative. Before you start throwing stones and spewing obscenities, consider some additional facts: Red Gate's software is actually very good. I have worked on many projects where Red Gate's software was instrumental in finishing successfully. Red Gate is VERY good to the community. I have spoken at many user groups and code camps where Red Gate has been a sponsor. Red Gate consistently offers up money to pay for the venue or food, and they will often give away licenses as door prizes. There are many such community events that would not take place without Red Gate's support. All I have ever seen them ask for is to have their products mentioned or be listed as a sponsor. They don't insist on anyone following a specific script. They don't monitor how their products are showcased. They let their products speak for themselves. Red Gate sponsors the Simple Talk web site. I publish there regularly. Red Gate has never exerted editorial pressure on me. No one has ever told me we can't publish this unless you mention Red Gate products. No one has ever said, you need to say nice things about Red Gate products in order to be published. They have told me, "you need to make this less academic, so you don't alienate too many readers. "You need to actually write an introduction so people will know what you are talking about". "You need to write this so that someone who isn't a reflection nut will follow what you are trying to say." In short, they have been good editors worried about the quality of the content and what the readers are likely to be interested in. For me personally, Red Gate and Simple Talk have both been excellent to work with. As for the developer outrage… I am a little embarrassed by so much of the response that I am seeing. So much of the complaints remind me of little children whining "but you promised" Semantics aside. A promise is just a promise. It's not like they "pinky sweared". Sadly no amount name calling or "double dog daring" will change the economics of the situation. Red Gate is not a multibillion dollar corporation. They are a mid size company doing the best they can. Without a doubt, their pockets are not as deep as Microsoft's. I honestly believe that they did try to make the "freemium" model work. Sadly it did not. I have no doubt that they intended for it to work and that they tried to make it work. I also have no doubt that they labored over making this decision. This could not have been an easy decision to make. Many people are gleefully proclaiming a massive backlash against Red Gate swearing off their wonderful products and promising to bash them at every opportunity from now on. This is childish behavior that does not represent professionals. This type of behavior is more in line with bullies in the school yard than professionals in a professional community. Now for my own prediction… This back lash against Red Gate is not likely to last very long. We will all realize that we still need their products. We may look around for alternatives, but realize that they really do have the best in class for every product that they produce, and that they really are not exorbitantly priced. We will see them sponsoring Code Camps and User Groups and be reminded, "hey this isn't such a bad company". On the other hand, software shops like Red Gate, will remember this back lash and give a second thought to supporting open source projects. They will worry about getting involved when an individual wants to turn over control for a product that they developed but can no longer support alone. Who wants to run the risk of not being able to follow through on their best intentions. In the end we may all suffer, even the toddlers among us throwing the temper tantrum, "BUT YOU PROMISED!" Disclaimer Before anyone asks or jumps to conclusions, I do not get paid by Red Gate to say any of this. I have often written about their products, and I have long thought that they are a wonderful company with amazing products. If they ever open an office in the SE United States, I will be one of the first to apply.

    Read the article

  • Tuning Red Gate: #2 of Many

    - by Grant Fritchey
    In the last installment, I used the SQL Monitor tool to get a snapshot view of the current state of the servers at Red Gate that are giving us trouble. That snapshot suggested some areas where I should focus some time, primarily in which queries were being called most frequently or were running the longest. But, you don't want to just run off & start tuning queries. Remember, the foundation for query tuning is the server itself. So, I want to be sure I'm not looking at some major hardware or configuration issues that I need to address first. Rather than look at the current status of the server, I'm going to look at historical data. Clicking on the Analysis tab of SQL Monitor I get a whole list of counters that I can look at. More importantly, I can look at them over a period of time. Even more importantly, I can compare past periods with current periods to see if we're looking at a progressive issue or not. There are counters here that will give me an indication of load, and there are counters here that will tell me specifics about that load. First, I want to just look at the load to understand where the pain points might be. Trying to drill down before you have detailed information is just bad planning. First thing I'm going to check is the CPU, just to see what's up there. I have two servers I'm interested in, so I'll show you both: Looking at the last 30 days for both servers, well, let's just say that the first server is about what I would expect. It has an average baseline behavior with occasional, regular, peaks. This looks like a system with a fairly steady & predictable load that probably has a nightly batch process that spikes the processor. In short, normal stuff. The points there where the CPU drops radically. that might be worth investigating further because something changed the processing on this system a lot. But the first server. It's all over the place. There's no steady CPU behavior at all. It's spike high for long periods of time. It's up, it's down. I'm really going to have to spend time looking at CPU issues on this server to try to figure out what's up. It might be other processes being shared on the server, it might be something else. Either way, I'm going to have to spend time evaluating this CPU, especially those peeks about a week ago. Looking at the Pages/sec, again, just a measure of load, I see that there are some peaks on the rg-sql02 server, but over all, it looks like a fairly standard load. Plus, the peaks are only up to 550 pages/sec. Remember, this isn't a performance measure, but just a load measurement, but from this, I don't think we're looking at major memory issues, but I may want to correlate these counters with the CPU counters. Again, the other server looks like there's stuff going on. The load is not at all consistent. In fact there was a point earlier in the year that looks pretty severe. Plus the spikes here are twice the size of the other system. We've got a lot more load going on here and I will probably need to drill down on memory usage on this server. Taking a look at the disk transfers/sec the load on both systems seems to roughly correspond to the other load indicators. Notice that drop right in the middle of the graph for rg-sql02. I wonder if the office was closed over that period or a system was down for maintenance. If I saw spikes in memory or disk that corresponded to the drip in CPU, you can assume something was using those other resources and causing a drop, but when everything goes down, it just means that the system isn't gettting used. The disk on the rg-sql01 system isn't spiking exactly the same way as the memory & cpu, so there's a good chance (chance mind you) that any performance issues might not be disk related. However, notice that huge jump at the beginning of the month. Several disks were used more than they were for the rest of the month. That's the load on the server. What about the load on SQL Server itself? Next time.

    Read the article

  • Tuning Red Gate: #3 of Lots

    - by Grant Fritchey
    I'm drilling down into the metrics about SQL Server itself available to me in the Analysis tab of SQL Monitor to see what's up with our two problematic servers. In the previous post I'd noticed that rg-sql01 had quite a few CPU spikes. So one of the first things I want to check there is how much CPU is getting used by SQL Server itself. It's possible we're looking at some other process using up all the CPU Nope, It's SQL Server. I compared this to the rg-sql02 server: You can see that there is a more, consistently low set of CPU counters there. I clearly need to look at rg-sql01 and capture more specific data around the queries running on it to identify which ones are causing these CPU spikes. I always like to look at the Batch Requests/sec on a server, not because it's an indication of a problem, but because it gives you some idea of the load. Just how much is this server getting hit? Here are rg-sql01 and rg-sql02: Of the two, clearly rg-sql01 has a lot of activity. Remember though, that's all this is a measure of, activity. It doesn't suggest anything other than what it says, the number of requests coming in. But it's the kind of thing you want to know in order to understand how the system is used. Are you seeing a correlation between the number of requests and the CPU usage, or a reverse correlation, the number of requests drops as the CPU spikes? See, it's useful. Some of the details you can look at are Compilations/sec, Compilations/Batch and Recompilations/sec. These give you some idea of how the cache is getting used within the system. None of these showed anything interesting on either server. One metric that I like (even though I know it can be controversial) is the Page Life Expectancy. On the average server I expect see a series of mountains as the PLE climbs then drops due to a data load or something along those lines. That's not the case here: Those spikes back in January suggest that the servers weren't really being used much. The PLE on the rg-sql01 seems to be somewhat consistent growing to 3 hours or so then dropping, but the rg-sql02 PLE looks like it might be all over the map. Instead of continuing to look at this high level gathering data view, I'm going to drill down on rg-sql02 and see what it's done for the last week: And now we begin to see where we might have an issue. Memory on this system is getting flushed every 1/2 hour or so. I'm going to check another metric, scans: Whoa! I'm going back to the system real quick to look at some disk information again for rg-sql02. Here is the average disk queue length on the server: and the transfers Right, I think I have a guess as to what's up here. We're seeing memory get flushed constantly and we're seeing lots of scans. The disks are queuing, especially that F drive, and there are lots of requests that correspond to the scans and the memory flushes. In short, we've got queries that are scanning the data, a lot, so we either have bad queries or bad indexes. I'm going back to the server overview for rg-sql02 and check the Top 10 expensive queries. I'm modifying it to show me the last 3 days and the totals, so I'm not looking at some maintenance routine that ran 10 minutes ago and is skewing the results: OK. I need to look into these queries that are getting executed this much. They're generating a lot of reads, but which queries are generating the most reads: Ow, all still going against the same database. This is where I'm going to temporarily leave SQL Monitor. What I want to do is connect up to the server, validate that the Warehouse database is using the F:\ drive (which I'll put money down it is) and then start seeing what's up with these queries. Part 1 of the Series Part 2 of the Series

    Read the article

  • Tuning Red Gate: #4 of Some

    - by Grant Fritchey
    First time connecting to these servers directly (keys to the kingdom, bwa-ha-ha-ha. oh, excuse me), so I'm going to take a look at the server properties, just to see if there are any issues there. Max memory is set, cool, first possible silly mistake clear. In fact, these look to be nicely set up. Oh, I'd like to see the ANSI Standards set by default, but it's not a big deal. The default location for database data is the F:\ drive, where I saw all the activity last time. Cool, the people maintaining the servers in our company listen, parallelism threshold is set to 35 and optimize for ad hoc is enabled. No shocks, no surprises. The basic setup is appropriate. On to the problem database. Nothing wrong in the properties. The database is in SIMPLE recovery, but I think it's a reporting system, so no worries there. Again, I'd prefer to see the ANSI settings for connections, but that's the worst thing I can see. Time to look at the queries, tables, indexes and statistics because all the information I've collected over the last several days suggests that we're not looking at a systemic problem (except possibly not enough memory), but at the traditional tuning issues. I just want to note that, I started looking at the system, not the queries. So should you when tuning your environment. I know, from the data collected through SQL Monitor, what my top poor performing queries are, and the most frequently called, etc. I'm starting with the most frequently called. I'm going to get the execution plan for this thing out of the cache (although, with the cache dumping constantly, I might not get it). And it's not there. Called 1.3 million times over the last 3 days, but it's not in cache. Wow. OK. I'll see what's in cache for this database: SELECT  deqs.creation_time,         deqs.execution_count,         deqs.max_logical_reads,         deqs.max_elapsed_time,         deqs.total_logical_reads,         deqs.total_elapsed_time,         deqp.query_plan,         SUBSTRING(dest.text, (deqs.statement_start_offset / 2) + 1,                   (deqs.statement_end_offset - deqs.statement_start_offset) / 2                   + 1) AS QueryStatement FROM    sys.dm_exec_query_stats AS deqs         CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest         CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp WHERE   dest.dbid = DB_ID('Warehouse') AND deqs.statement_end_offset > 0 AND deqs.statement_start_offset > 0 ORDER BY deqs.max_logical_reads DESC ; And looking at the most expensive operation, we have our first bad boy: Multiple table scans against very large sets of data and a sort operation. a sort operation? It's an insert. Oh, I see, the table is a heap, so it's doing an insert, then sorting the data and then inserting into the primary key. First question, why isn't this a clustered index? Let's look at some more of the queries. The next one is deceiving. Here's the query plan: You're thinking to yourself, what's the big deal? Well, what if I told you that this thing had 8036318 reads? I know, you're looking at skinny little pipes. Know why? Table variable. Estimated number of rows = 1. Actual number of rows. well, I'm betting several more than one considering it's read 8 MILLION pages off the disk in a single execution. We have a serious and real tuning candidate. Oh, and I missed this, it's loading the table variable from a user defined function. Let me check, let me check. YES! A multi-statement table valued user defined function. And another tuning opportunity. This one's a beauty, seriously. Did I also mention that they're doing a hash against all the columns in the physical table. I'm sure that won't lead to scans of a 500,000 row table, no, not at all. OK. I lied. Of course it is. At least it's on the top part of the Loop which means the scan is only executed once. I just did a cursory check on the next several poor performers. all calling the UDF. I think I found a big tuning opportunity. At this point, I'm typing up internal emails for the company. Someone just had their baby called ugly. In addition to a series of suggested changes that we need to implement, I'm also apologizing for being such an unkind monster as to question whether that third eye & those flippers belong on such an otherwise lovely child.

    Read the article

  • Reg Gets a Job at Red Gate (and what happens behind the scenes)

    - by red(at)work
    Mr Reg Gater works at one of Cambridge’s many high-tech companies. He doesn’t love his job, but he puts up with it because... well, it could be worse. Every day he drives to work around the Red Gate roundabout, wondering what his boss is going to blame him for today, and wondering if there could be a better job out there for him. By late morning he already feels like handing his notice in. He got the hacky look from his boss for being 5 minutes late, and then they ran out of tea. Again. He goes to the local sandwich shop for lunch, and picks up a Red Gate job menu and a Book of Red Gate while he’s waiting for his order. That night, he goes along to Cambridge Geek Nights and sees some very enthusiastic Red Gaters talking about the work they do; it sounds interesting and, of all things, fun. He takes a quick look at the job vacancies on the Red Gate website, and an hour later realises he’s still there – looking at videos, photos and people profiles. He especially likes the Red Gate’s Got Talent page, and is very impressed with Simon Johnson’s marathon time. He thinks that he’d quite like to work with such awesome people. It just so happens that Red Gate recently decided that they wanted to hire another hot shot team member. Behind the scenes, the wheels were set in motion: the recruitment team met with the hiring manager to understand exactly what they’re looking for, and to decide what interview tests to do, who will do the interviews, and to kick-start any interview training those people might need. Next up, a job description and job advert were written, and the job was put on the market. Reg applies, and his CV lands in the Recruitment team’s inbox and they open it up with eager anticipation that Reg could be the next awesome new starter. He looks good, and in a jiffy they’ve arranged an interview. Reg arrives for his interview, and is greeted by a smiley receptionist. She offers him a selection of drinks and he feels instantly relaxed. A couple of interviews and an assessment later, he gets a job offer. We make his day and he makes ours by accepting, and becoming one of the 60 new starters so far this year. Behind the scenes, things start moving all over again. The HR team arranges for a “Welcome” goodie box to be whisked out to him, prepares his contract, sends an email to Information Services (Or IS for short - we’ll come back to them), keeps in touch with Reg to make sure he knows what to expect on his first day, and of course asks him to fill in the all-important wiki questionnaire so his new colleagues can start to get to know him before he even joins. Meanwhile, the IS team see an email in SupportWorks from HR. They see that Reg will be starting in the sales team in a few days’ time, and they know exactly what to do. They pull out a new machine, and within minutes have used their automated deployment software to install every piece of software that a new recruit could ever need. They also check with Reg’s new manager to see if he has any special requirements that they could help with. Reg starts and is amazed to find a fully configured machine sitting on his desk, complete with stationery and all the other tools he’ll need to do his job. He feels even more cared for after he gets a workstation assessment, and realises he’d be comfier with an ergonomic keyboard and a footstool. They arrive minutes later, just like that. His manager starts him off on his induction and sales training. Along with job-specific training, he’ll also have a buddy to help him find his feet, and loads of pre-arranged demos and introductions. Reg settles in nicely, and is great at his job. He enjoys the canteen, and regularly eats one of the 40,000 meals provided each year. He gets used to the selection of teas that are available, develops a taste for champagne launch parties, and has his fair share of the 25,000 cups of coffee downed at Red Gate towers each year. He goes along to some Feel Good Fund events, and donates a little something to charity in exchange for a turn on the chocolate fountain. He’s looking a little scruffy, so he decides to get his hair cut in between meetings, just in time for the Red Gate birthday company photo. Reg starts a new project: identifying existing customers to up-sell to new bundles. He talks with the web team to generate lists of qualifying customers who haven’t recently been sent marketing emails, and sends emails out, using a new in-house developed tool to schedule follow-up calls in CRM for the same group. The customer responds, saying they’d like to upgrade but are having a licensing problem – Reg sends the issue to Support, and it gets routed to the web team. The team identifies a workaround, and the bug gets scheduled into the next maintenance release in a fortnight’s time (hey; they got lucky). With all the new stuff Reg is working on, he realises that he’d be way more efficient if he had a third monitor. He speaks to IS and they get him one - no argument. He also needs a test machine and then some extra memory. Done. He then thinks he needs an iPad, and goes to ask for one. He gets told to stop pushing his luck. Some time later, Reg’s wife has a baby, so Reg gets 2 weeks of paid paternity leave and a bunch of flowers sent to his house. He signs up to the childcare scheme so that he doesn’t have to pay National Insurance on the first £243 of his childcare. The accounts team makes it all happen seamlessly, as they did with his Give As You Earn payments, which come out of his wages and go straight to his favorite charity. Reg’s sales career is going well. He’s grateful for the help that he gets from the product support team. How do they answer all those 900-ish support calls so effortlessly each month? He’s impressed with the patches that are sent out to customers who find “interesting behavior” in their tools, and to the customers who just must have that new feature. A little later in his career at Red Gate, Reg decides that he’d like to learn about management. He goes on some management training specially customised for Red Gate, joins the Management Book Club, and gets together with other new managers to brainstorm how to get the most out of one to one meetings with his team. Reg decides to go for a game of Foosball to celebrate his good fortune with his team, and has to wait for Finance to finish. While he’s waiting, he reflects on the wonderful time he’s had at Red Gate. He can’t put his finger on what it is exactly, but he knows he’s on to a good thing. All of the stuff that happened to Reg didn’t just happen magically. We’ve got teams of people working relentlessly behind the scenes to make sure that everyone here is comfortable, safe, well fed and caffeinated to the max.

    Read the article

  • The Red Gate and .NET Reflector Debacle

    - by Rick Strahl
    About a month ago Red Gate – the company who owns the NET Reflector tool most .NET devs use at one point or another – decided to change their business model for Reflector and take the product from free to a fully paid for license model. As a bit of history: .NET Reflector was originally created by Lutz Roeder as a free community tool to inspect .NET assemblies. Using Reflector you can examine the types in an assembly, drill into type signatures and quickly disassemble code to see how a particular method works.  In case you’ve been living under a rock and you’ve never looked at Reflector, here’s what it looks like drilled into an assembly from disk with some disassembled source code showing: Note that you get tons of information about each element in the tree, and almost all related types and members are clickable both in the list and source view so it’s extremely easy to navigate and follow the code flow even in this static assembly only view. For many year’s Lutz kept the the tool up to date and added more features gradually improving an already amazing tool and making it better. Then about two and a half years ago Red Gate bought the tool from Lutz. A lot of ruckus and noise ensued in the community back then about what would happen with the tool and… for the most part very little did. Other than the incessant update notices with prominent Red Gate promo on them life with Reflector went on. The product didn’t die and and it didn’t go commercial or to a charge model. When .NET 4.0 came out it still continued to work mostly because the .NET feature set doesn’t drastically change how types behave.  Then a month back Red Gate started making noise about a new Version Version 7 which would be commercial. No more free version - and a shit storm broke out in the community. Now normally I’m not one to be critical of companies trying to make money from a product, much less for a product that’s as incredibly useful as Reflector. There isn’t day in .NET development that goes by for me where I don’t fire up Reflector. Whether it’s for examining the innards of the .NET Framework, checking out third party code, or verifying some of my own code and resources. Even more so recently I’ve been doing a lot of Interop work with a non-.NET application that needs to access .NET components and Reflector has been immensely valuable to me (and my clients) if figuring out exact type signatures required to calling .NET components in assemblies. In short Reflector is an invaluable tool to me. Ok, so what’s the problem? Why all the fuss? Certainly the $39 Red Gate is trying to charge isn’t going to kill any developer. If there’s any tool in .NET that’s worth $39 it’s Reflector, right? Right, but that’s not the problem here. The problem is how Red Gate went about moving the product to commercial which borders on the downright bizarre. It’s almost as if somebody in management wrote a slogan: “How can we piss off the .NET community in the most painful way we can?” And that it seems Red Gate has a utterly succeeded. People are rabid, and for once I think that this outrage isn’t exactly misplaced. Take a look at the message thread that Red Gate dedicated from a link off the download page. Not only is Version 7 going to be a paid commercial tool, but the older versions of Reflector won’t be available any longer. Not only that but older versions that are already in use also will continually try to update themselves to the new paid version – which when installed will then expire unless registered properly. There have also been reports of Version 6 installs shutting themselves down and failing to work if the update is refused (I haven’t seen that myself so not sure if that’s true). In other words Red Gate is trying to make damn sure they’re getting your money if you attempt to use Reflector. There’s a lot of temptation there. Think about the millions of .NET developers out there and all of them possibly upgrading – that’s a nice chunk of change that Red Gate’s sitting on. Even with all the community backlash these guys are probably making some bank right now just because people need to get life to move on. Red Gate also put up a Feedback link on the download page – which not surprisingly is chock full with hate mail condemning the move. Oddly there’s not a single response to any of those messages by the Red Gate folks except when it concerns license questions for the full version. It puzzles me what that link serves for other yet than another complete example of failure to understand how to handle customer relations. There’s no doubt that that all of this has caused some serious outrage in the community. The sad part though is that this could have been handled so much less arrogantly and without pissing off the entire community and causing so much ill-will. People are pissed off and I have no doubt that this negative publicity will show up in the sales numbers for their other products. I certainly hope so. Stupidity ought to be painful! Why do Companies do boneheaded stuff like this? Red Gate’s original decision to buy Reflector was hotly debated but at that the time most of what would happen was mostly speculation. But I thought it was a smart move for any company that is in need of spreading its marketing message and corporate image as a vendor in the .NET space. Where else do you get to flash your corporate logo to hordes of .NET developers on a regular basis?  Exploiting that marketing with some goodwill of providing a free tool breeds positive feedback that hopefully has a good effect on the company’s visibility and the products it sells. Instead Red Gate seems to have taken exactly the opposite tack of corporate bullying to try to make a quick buck – and in the process ruined any community goodwill that might have come from providing a service community for free while still getting valuable marketing. What’s so puzzling about this boneheaded escapade is that the company doesn’t need to resort to underhanded tactics like what they are trying with Reflector 7. The tools the company makes are very good. I personally use SQL Compare, Sql Data Compare and ANTS Profiler on a regular basis and all of these tools are essential in my toolbox. They certainly work much better than the tools that are in the box with Visual Studio. Chances are that if Reflector 7 added useful features I would have been more than happy to shell out my $39 to upgrade when the time is right. It’s Expensive to give away stuff for Free At the same time, this episode shows some of the big problems that come with ‘free’ tools. A lot of organizations are realizing that giving stuff away for free is actually quite expensive and the pay back is often very intangible if any at all. Those that rely on donations or other voluntary compensation find that they amount contributed is absolutely miniscule as to not matter at all. Yet at the same time I bet most of those clamouring the loudest on that Red Gate Reflector feedback page that Reflector won’t be free anymore probably have NEVER made a donation to any open source project or free tool ever. The expectation of Free these days is just too great – which is a shame I think. There’s a lot to be said for paid software and having somebody to hold to responsible to because you gave them some money. There’s an incentive –> payback –> responsibility model that seems to be missing from free software (not all of it, but a lot of it). While there certainly are plenty of bad apples in paid software as well, money tends to be a good motivator for people to continue working and improving products. Reasons for giving away stuff are many but often it’s a naïve desire to share things when things are simple. At first it might be no problem to volunteer time and effort but as products mature the fun goes out of it, and as the reality of product maintenance kicks in developers want to get something back for the time and effort they’re putting in doing non-glamorous work. It’s then when products die or languish and this is painful for all to watch. For Red Gate however, I think there was always a pretty good payback from the Reflector acquisition in terms of marketing: Visibility and possible positioning of their products although they seemed to have mostly ignored that option. On the other hand they started this off pretty badly even 2 and a half years back when they aquired Reflector from Lutz with the same arrogant attitude that is evident in the latest episode. You really gotta wonder what folks are thinking in management – the sad part is from advance emails that were circulating, they were fully aware of the shit storm they were inciting with this and I suspect they are banking on the sheer numbers of .NET developers to still make them a tidy chunk of change from upgrades… Alternatives are coming For me personally the single license isn’t a problem, but I actually have a tool that I sell (an interop Web Service proxy generation tool) to customers and one of the things I recommend to use with has been Reflector to view assembly information and to find which Interop classes to instantiate from the non-.NET environment. It’s been nice to use Reflector for this with its small footprint and zero-configuration installation. But now with V7 becoming a paid tool that option is not going to be available anymore. Luckily it looks like the .NET community is jumping to it and trying to fill the void. Amidst the Red Gate outrage a new library called ILSpy has sprung up and providing at least some of the core functionality of Reflector with an open source library. It looks promising going forward and I suspect there will be a lot more support and interest to support this project now that Reflector has gone over to the ‘dark side’…© Rick Strahl, West Wind Technologies, 2005-2011

    Read the article

  • Friend of Red Gate

    - by Nick Harrison
    Friend of Red Gate I recently joined the friend of Red Gate program.   I am very honored to be included in this group.    This program is a big part of Red Gates community outreach.   If you are not familiar with Red Gate, I urge you to check them out.    They have some wonderful tools for the SQL Server community and the DotNet community.    They are also building up some tools for Exchange and Oracle. I was invited to join this program primarliy because of my work with Simple Talk and promoting one of their newest products, Reflector. Reflector is a wonderful tool.   I doubt that anyone who has ever used it would argue that point. Red Gate did a wonderful job taking over the support of Reflector.   I know many people had their doubts.    The initial release under Red Gate should set those fears to rest.   I was very impressed with how their developers interacted with their users during the preview phase! Red Gate is also a good partner for the community.    They activly support the community, sponsoring Code Camps, sponsoring User Groups, supporting the Forums, etc. And their tools are pretty amazing as well.

    Read the article

  • Red Gate and the Community

    - by RedAndTheCommunity
    I was lucky enough to join the Communities team in April 2011, having worked in the equally awesome (but more number-crunchy), Finance team at Red Gate for about four years before that. Being totally passionate about Red Gate, and easily excitable, it seems like the perfect place to be. Not only do I get to talk to people who love Red Gate every day, I get to think up new ways to make them love us even more. Red Gate sponsored 178 SQL Server and .NET events and user group meetings in 2011. They ranged from SQL Saturdays and Code Camps to 10 person user group meetings, from California to Krakow. We've given away cash, software, Kindles, and of course swag. The Marketing Cupboard is like a wonderland of Red Gate goodies; it is guarded day and night to make sure the greedy Red Gaters don't pilfer the treasure inside. There are Red Gate yo-yos, books, pens, ice scrapers and, over the Holidays, there were some special bears. We had to double the patrols guarding the cupboard to protect them. You can see why: Over the Holidays, we gave funding and special Holiday swag (including the adorable bears), to 10 lucky user groups, who held Christmas parties - doing everything from theatre trips to going to shooting ranges. What next? So, what about this year? In 2012 our main aim is to be out there meeting more of you. So get ready to see an army of geeks in red t-shirts at your next event! We also want to do more fun things like our Christmas party giveaway. What cool ideas do you have for sponsorship in 2012? An Easter Egg hunt with SQL server clues? A coding competition? A duelling contest with a license of SQL Toolbelt for the winner? Let me know.

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • Inside the Concurrent Collections: ConcurrentDictionary

    - by Simon Cooper
    Using locks to implement a thread-safe collection is rather like using a sledgehammer - unsubtle, easy to understand, and tends to make any other tool redundant. Unlike the previous two collections I looked at, ConcurrentStack and ConcurrentQueue, ConcurrentDictionary uses locks quite heavily. However, it is careful to wield locks only where necessary to ensure that concurrency is maximised. This will, by necessity, be a higher-level look than my other posts in this series, as there is quite a lot of code and logic in ConcurrentDictionary. Therefore, I do recommend that you have ConcurrentDictionary open in a decompiler to have a look at all the details that I skip over. The problem with locks There's several things to bear in mind when using locks, as encapsulated by the lock keyword in C# and the System.Threading.Monitor class in .NET (if you're unsure as to what lock does in C#, I briefly covered it in my first post in the series): Locks block threads The most obvious problem is that threads waiting on a lock can't do any work at all. No preparatory work, no 'optimistic' work like in ConcurrentQueue and ConcurrentStack, nothing. It sits there, waiting to be unblocked. This is bad if you're trying to maximise concurrency. Locks are slow Whereas most of the methods on the Interlocked class can be compiled down to a single CPU instruction, ensuring atomicity at the hardware level, taking out a lock requires some heavy lifting by the CLR and the operating system. There's quite a bit of work required to take out a lock, block other threads, and wake them up again. If locks are used heavily, this impacts performance. Deadlocks When using locks there's always the possibility of a deadlock - two threads, each holding a lock, each trying to aquire the other's lock. Fortunately, this can be avoided with careful programming and structured lock-taking, as we'll see. So, it's important to minimise where locks are used to maximise the concurrency and performance of the collection. Implementation As you might expect, ConcurrentDictionary is similar in basic implementation to the non-concurrent Dictionary, which I studied in a previous post. I'll be using some concepts introduced there, so I recommend you have a quick read of it. So, if you were implementing a thread-safe dictionary, what would you do? The naive implementation is to simply have a single lock around all methods accessing the dictionary. This would work, but doesn't allow much concurrency. Fortunately, the bucketing used by Dictionary allows a simple but effective improvement to this - one lock per bucket. This allows different threads modifying different buckets to do so in parallel. Any thread making changes to the contents of a bucket takes the lock for that bucket, ensuring those changes are thread-safe. The method that maps each bucket to a lock is the GetBucketAndLockNo method: private void GetBucketAndLockNo( int hashcode, out int bucketNo, out int lockNo, int bucketCount) { // the bucket number is the hashcode (without the initial sign bit) // modulo the number of buckets bucketNo = (hashcode & 0x7fffffff) % bucketCount; // and the lock number is the bucket number modulo the number of locks lockNo = bucketNo % m_locks.Length; } However, this does require some changes to how the buckets are implemented. The 'implicit' linked list within a single backing array used by the non-concurrent Dictionary adds a dependency between separate buckets, as every bucket uses the same backing array. Instead, ConcurrentDictionary uses a strict linked list on each bucket: This ensures that each bucket is entirely separate from all other buckets; adding or removing an item from a bucket is independent to any changes to other buckets. Modifying the dictionary All the operations on the dictionary follow the same basic pattern: void AlterBucket(TKey key, ...) { int bucketNo, lockNo; 1: GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, m_buckets.Length); 2: lock (m_locks[lockNo]) { 3: Node headNode = m_buckets[bucketNo]; 4: Mutate the node linked list as appropriate } } For example, when adding another entry to the dictionary, you would iterate through the linked list to check whether the key exists already, and add the new entry as the head node. When removing items, you would find the entry to remove (if it exists), and remove the node from the linked list. Adding, updating, and removing items all follow this pattern. Performance issues There is a problem we have to address at this point. If the number of buckets in the dictionary is fixed in the constructor, then the performance will degrade from O(1) to O(n) when a large number of items are added to the dictionary. As more and more items get added to the linked lists in each bucket, the lookup operations will spend most of their time traversing a linear linked list. To fix this, the buckets array has to be resized once the number of items in each bucket has gone over a certain limit. (In ConcurrentDictionary this limit is when the size of the largest bucket is greater than the number of buckets for each lock. This check is done at the end of the TryAddInternal method.) Resizing the bucket array and re-hashing everything affects every bucket in the collection. Therefore, this operation needs to take out every lock in the collection. Taking out mutiple locks at once inevitably summons the spectre of the deadlock; two threads each hold a lock, and each trying to acquire the other lock. How can we eliminate this? Simple - ensure that threads never try to 'swap' locks in this fashion. When taking out multiple locks, always take them out in the same order, and always take out all the locks you need before starting to release them. In ConcurrentDictionary, this is controlled by the AcquireLocks, AcquireAllLocks and ReleaseLocks methods. Locks are always taken out and released in the order they are in the m_locks array, and locks are all released right at the end of the method in a finally block. At this point, it's worth pointing out that the locks array is never re-assigned, even when the buckets array is increased in size. The number of locks is fixed in the constructor by the concurrencyLevel parameter. This simplifies programming the locks; you don't have to check if the locks array has changed or been re-assigned before taking out a lock object. And you can be sure that when a thread takes out a lock, another thread isn't going to re-assign the lock array. This would create a new series of lock objects, thus allowing another thread to ignore the existing locks (and any threads controlling them), breaking thread-safety. Consequences of growing the array Just because we're using locks doesn't mean that race conditions aren't a problem. We can see this by looking at the GrowTable method. The operation of this method can be boiled down to: private void GrowTable(Node[] buckets) { try { 1: Acquire first lock in the locks array // this causes any other thread trying to take out // all the locks to block because the first lock in the array // is always the one taken out first // check if another thread has already resized the buckets array // while we were waiting to acquire the first lock 2: if (buckets != m_buckets) return; 3: Calculate the new size of the backing array 4: Node[] array = new array[size]; 5: Acquire all the remaining locks 6: Re-hash the contents of the existing buckets into array 7: m_buckets = array; } finally { 8: Release all locks } } As you can see, there's already a check for a race condition at step 2, for the case when the GrowTable method is called twice in quick succession on two separate threads. One will successfully resize the buckets array (blocking the second in the meantime), when the second thread is unblocked it'll see that the array has already been resized & exit without doing anything. There is another case we need to consider; looking back at the AlterBucket method above, consider the following situation: Thread 1 calls AlterBucket; step 1 is executed to get the bucket and lock numbers. Thread 2 calls GrowTable and executes steps 1-5; thread 1 is blocked when it tries to take out the lock in step 2. Thread 2 re-hashes everything, re-assigns the buckets array, and releases all the locks (steps 6-8). Thread 1 is unblocked and continues executing, but the calculated bucket and lock numbers are no longer valid. Between calculating the correct bucket and lock number and taking out the lock, another thread has changed where everything is. Not exactly thread-safe. Well, a similar problem was solved in ConcurrentStack and ConcurrentQueue by storing a local copy of the state, doing the necessary calculations, then checking if that state is still valid. We can use a similar idea here: void AlterBucket(TKey key, ...) { while (true) { Node[] buckets = m_buckets; int bucketNo, lockNo; GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, buckets.Length); lock (m_locks[lockNo]) { // if the state has changed, go back to the start if (buckets != m_buckets) continue; Node headNode = m_buckets[bucketNo]; Mutate the node linked list as appropriate } break; } } TryGetValue and GetEnumerator And so, finally, we get onto TryGetValue and GetEnumerator. I've left these to the end because, well, they don't actually use any locks. How can this be? Whenever you change a bucket, you need to take out the corresponding lock, yes? Indeed you do. However, it is important to note that TryGetValue and GetEnumerator don't actually change anything. Just as immutable objects are, by definition, thread-safe, read-only operations don't need to take out a lock because they don't change anything. All lockless methods can happily iterate through the buckets and linked lists without worrying about locking anything. However, this does put restrictions on how the other methods operate. Because there could be another thread in the middle of reading the dictionary at any time (even if a lock is taken out), the dictionary has to be in a valid state at all times. Every change to state has to be made visible to other threads in a single atomic operation (all relevant variables are marked volatile to help with this). This restriction ensures that whatever the reading threads are doing, they never read the dictionary in an invalid state (eg items that should be in the collection temporarily removed from the linked list, or reading a node that has had it's key & value removed before the node itself has been removed from the linked list). Fortunately, all the operations needed to change the dictionary can be done in that way. Bucket resizes are made visible when the new array is assigned back to the m_buckets variable. Any additions or modifications to a node are done by creating a new node, then splicing it into the existing list using a single variable assignment. Node removals are simply done by re-assigning the node's m_next pointer. Because the dictionary can be changed by another thread during execution of the lockless methods, the GetEnumerator method is liable to return dirty reads - changes made to the dictionary after GetEnumerator was called, but before the enumeration got to that point in the dictionary. It's worth listing at this point which methods are lockless, and which take out all the locks in the dictionary to ensure they get a consistent view of the dictionary: Lockless: TryGetValue GetEnumerator The indexer getter ContainsKey Takes out every lock (lockfull?): Count IsEmpty Keys Values CopyTo ToArray Concurrent principles That covers the overall implementation of ConcurrentDictionary. I haven't even begun to scratch the surface of this sophisticated collection. That I leave to you. However, we've looked at enough to be able to extract some useful principles for concurrent programming: Partitioning When using locks, the work is partitioned into independant chunks, each with its own lock. Each partition can then be modified concurrently to other partitions. Ordered lock-taking When a method does need to control the entire collection, locks are taken and released in a fixed order to prevent deadlocks. Lockless reads Read operations that don't care about dirty reads don't take out any lock; the rest of the collection is implemented so that any reading thread always has a consistent view of the collection. That leads us to the final collection in this little series - ConcurrentBag. Lacking a non-concurrent analogy, it is quite different to any other collection in the class libraries. Prepare your thinking hats!

    Read the article

  • I'm Seeing Red

    - by Grant Fritchey
    Hello World! My move into the world of Red Gate is more and more complete with my shiny, new, red, blog. The goal of this blog is not to compete with, or replace, my blog over at ScaryDBA. Instead, this blog is where I can share things I find about Red Gate products and services. I can talk about the things that we're doing at Red Gate. I can talk about the things I'm doing at Red Gate. In short, this is my Red Gate blog. I'm still the Scary DBA, but over here, I'm painted bright red (and no, I was promised that no pictures were taken of that process). So look for tips and suggestions about Red Gate products, methods to help you do your job better using one of our tools, and anything else I can think of or comment on that supports you and our excellent software.

    Read the article

  • Red Gate does Byte Night 2012

    - by red(at)work
    On the 5th of October 2012, a team of nine plucky Red Gaters braved the howling wind and the driving rain to sleep outside. No tents or mattresses were allowed – all we took for protection were sleeping bags, groundsheets, plastic sacks and Colin’s enormous fishing umbrella (a godsend in umbrella-y disguise). Why would we do such a thing? For Byte Night, an annual tech sector sleepout in support of Action for Children, who tackle the causes as well as the consequences of youth homelessness. Byte Night encourages technology professionals to do for one night a year what thousands of young people have to do every night – sleep rough.  We signed up for Byte Night in the warm, heady midst of the British summer, thinking it couldn’t possibly be all that bad. Even on the night itself – before the rain began to fall, sat in the comfort and warmth of a company canteen, drinking wine and eating chill and preparing to win the pub quiz – we were excited and optimistic about the night that lay ahead of us. All of that changed as soon as we stepped out into one of the worst rainstorms of the year. Brian, the team’s birthday boy, describes it best: Picture the scene: it’s 3 am on a Friday. I’m lying outside, fully clothed in a sleeping bag, wearing a raincoat, trussed up inside a large plastic pocket, on a ground sheet beneath a giant umbrella, wedged so tightly between two of my colleagues that I can’t move my arms. I’m wide awake, staring up at the grey sky beyond the edge of the umbrella; a limp, flickering white glow hints at a moon somewhere behind the drifting clouds. I haven’t slept since we first moved outside at 11 pm. Outside. Did I mention we were outside? I’m hung over. I need the loo. But there is no way on earth that I’m getting out of this sleeping bag. It’s cold. It’s raining. Not just raining, but chucking it down. It’s been doing this non-stop since 10pm. The rain sounds like a hyperactive drummer on the fishing umbrella, and the noise is loud and relentless. Puddles of water are forming all over the groundsheet, and, despite being ensconced inside the plastic pouch, I am wet. The fishing umbrella is protecting me from the worst of the driving rain, but not all of me is under it, and five hours of rain is no match for it. Everything is wet. My left side has become horribly damp. My trainers, which I placed next to my sleeping bag, are now completely soaked through. Mmm. That’ll be fun in the morning. My head is next to Colin’s head on one side, and a multi-pack of McCoy’s cheddar and onion crisps on the other. Don’t ask about the tub of hummus. That’s somewhere down by my ankles, abandoned to the night. Jess, who is lying next to me, rolls over onto her side. A mini waterfall cascades from her rain-pouch onto my face. Bah. I continue to stare into the heavens, willing the dawn to hurry up. Something lands on my face. It’s a mosquito. Great. Midnight, when this still seemed like fun – when we opened some champagne and my colleagues presented me with a caterpillar birthday cake, when everyone was drunk and jolly and full of stoic resolve – feels like a long time ago. Did I mention that today is my birthday? The remains of the caterpillar cake endure the same fate as the hummus, left out in the rain like a metaphor for sadness. It’s getting colder. I can see my breath. Silence has descended on the group, apart from the rustle of plastic. And the rain, obviously. Someone snores, and I envy whoever it is the sweet escape of sleep. I try to wriggle a bit further down inside my sleeping bag, but it doesn’t want to be wriggled into. Only 3 hours till dawn. 180 minutes. I begin to count them off, one at a time.  All nine of us got to go home in the morning, but thousands of children across the UK don’t have that luxury. If you’d like to sponsor the Red Gate Byte Night team, our JustGiving page can be found here.   Chris, before the outside bit actually happened. More photos from Byte Night Cambridge 2012 can be found here.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >