Search Results

Search found 1 results on 1 pages for 'l33tnerd'.

Page 1/1 | 1 

  • Neural Network Always Produces Same/Similar Outputs for Any Input

    - by l33tnerd
    I have a problem where I am trying to create a neural network for Tic-Tac-Toe. However, for some reason, training the neural network causes it to produce nearly the same output for any given input. I did take a look at Artificial neural networks benchmark, but my network implementation is built for neurons with the same activation function for each neuron, i.e. no constant neurons. To make sure the problem wasn't just due to my choice of training set (1218 board states and moves generated by a genetic algorithm), I tried to train the network to reproduce XOR. The logistic activation function was used. Instead of using the derivative, I multiplied the error by output*(1-output) as some sources suggested that this was equivalent to using the derivative. I can put the Haskell source on HPaste, but it's a little embarrassing to look at. The network has 3 layers: the first layer has 2 inputs and 4 outputs, the second has 4 inputs and 1 output, and the third has 1 output. Increasing to 4 neurons in the second layer didn't help, and neither did increasing to 8 outputs in the first layer. I then calculated errors, network output, bias updates, and the weight updates by hand based on http://hebb.mit.edu/courses/9.641/2002/lectures/lecture04.pdf to make sure there wasn't an error in those parts of the code (there wasn't, but I will probably do it again just to make sure). Because I am using batch training, I did not multiply by x in equation (4) there. I am adding the weight change, though http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-2.html suggests to subtract it instead. The problem persisted, even in this simplified network. For example, these are the results after 500 epochs of batch training and of incremental training. Input |Target|Output (Batch) |Output(Incremental) [1.0,1.0]|[0.0] |[0.5003781562785173]|[0.5009731800870864] [1.0,0.0]|[1.0] |[0.5003740346965251]|[0.5006347214672715] [0.0,1.0]|[1.0] |[0.5003734471544522]|[0.500589332376345] [0.0,0.0]|[0.0] |[0.5003674110937019]|[0.500095157458231] Subtracting instead of adding produces the same problem, except everything is 0.99 something instead of 0.50 something. 5000 epochs produces the same result, except the batch-trained network returns exactly 0.5 for each case. (Heck, even 10,000 epochs didn't work for batch training.) Is there anything in general that could produce this behavior? Also, I looked at the intermediate errors for incremental training, and the although the inputs of the hidden/input layers varied, the error for the output neuron was always +/-0.12. For batch training, the errors were increasing, but extremely slowly and the errors were all extremely small (x10^-7). Different initial random weights and biases made no difference, either. Note that this is a school project, so hints/guides would be more helpful. Although reinventing the wheel and making my own network (in a language I don't know well!) was a horrible idea, I felt it would be more appropriate for a school project (so I know what's going on...in theory, at least. There doesn't seem to be a computer science teacher at my school). EDIT: Two layers, an input layer of 2 inputs to 8 outputs, and an output layer of 8 inputs to 1 output, produces much the same results: 0.5+/-0.2 (or so) for each training case. I'm also playing around with pyBrain, seeing if any network structure there will work. Edit 2: I am using a learning rate of 0.1. Sorry for forgetting about that. Edit 3: Pybrain's "trainUntilConvergence" doesn't get me a fully trained network, either, but 20000 epochs does, with 16 neurons in the hidden layer. 10000 epochs and 4 neurons, not so much, but close. So, in Haskell, with the input layer having 2 inputs & 2 outputs, hidden layer with 2 inputs and 8 outputs, and output layer with 8 inputs and 1 output...I get the same problem with 10000 epochs. And with 20000 epochs. Edit 4: I ran the network by hand again based on the MIT PDF above, and the values match, so the code should be correct unless I am misunderstanding those equations. Some of my source code is at http://hpaste.org/42453/neural_network__not_working; I'm working on cleaning my code somewhat and putting it in a Github (rather than a private Bitbucket) repository. All of the relevant source code is now at https://github.com/l33tnerd/hsann.

    Read the article

1