Search Results

Search found 16050 results on 642 pages for 'linq to objects'.

Page 1/642 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Understanding LINQ to SQL (11) Performance

    - by Dixin
    [LINQ via C# series] LINQ to SQL has a lot of great features like strong typing query compilation deferred execution declarative paradigm etc., which are very productive. Of course, these cannot be free, and one price is the performance. O/R mapping overhead Because LINQ to SQL is based on O/R mapping, one obvious overhead is, data changing usually requires data retrieving:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { Product product = database.Products.Single(item => item.ProductID == id); // SELECT... product.UnitPrice = unitPrice; // UPDATE... database.SubmitChanges(); } } Before updating an entity, that entity has to be retrieved by an extra SELECT query. This is slower than direct data update via ADO.NET:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (SqlConnection connection = new SqlConnection( "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=True")) using (SqlCommand command = new SqlCommand( @"UPDATE [dbo].[Products] SET [UnitPrice] = @UnitPrice WHERE [ProductID] = @ProductID", connection)) { command.Parameters.Add("@ProductID", SqlDbType.Int).Value = id; command.Parameters.Add("@UnitPrice", SqlDbType.Money).Value = unitPrice; connection.Open(); command.Transaction = connection.BeginTransaction(); command.ExecuteNonQuery(); // UPDATE... command.Transaction.Commit(); } } The above imperative code specifies the “how to do” details with better performance. For the same reason, some articles from Internet insist that, when updating data via LINQ to SQL, the above declarative code should be replaced by:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.ExecuteCommand( "UPDATE [dbo].[Products] SET [UnitPrice] = {0} WHERE [ProductID] = {1}", id, unitPrice); } } Or just create a stored procedure:CREATE PROCEDURE [dbo].[UpdateProductUnitPrice] ( @ProductID INT, @UnitPrice MONEY ) AS BEGIN BEGIN TRANSACTION UPDATE [dbo].[Products] SET [UnitPrice] = @UnitPrice WHERE [ProductID] = @ProductID COMMIT TRANSACTION END and map it as a method of NorthwindDataContext (explained in this post):private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.UpdateProductUnitPrice(id, unitPrice); } } As a normal trade off for O/R mapping, a decision has to be made between performance overhead and programming productivity according to the case. In a developer’s perspective, if O/R mapping is chosen, I consistently choose the declarative LINQ code, unless this kind of overhead is unacceptable. Data retrieving overhead After talking about the O/R mapping specific issue. Now look into the LINQ to SQL specific issues, for example, performance in the data retrieving process. The previous post has explained that the SQL translating and executing is complex. Actually, the LINQ to SQL pipeline is similar to the compiler pipeline. It consists of about 15 steps to translate an C# expression tree to SQL statement, which can be categorized as: Convert: Invoke SqlProvider.BuildQuery() to convert the tree of Expression nodes into a tree of SqlNode nodes; Bind: Used visitor pattern to figure out the meanings of names according to the mapping info, like a property for a column, etc.; Flatten: Figure out the hierarchy of the query; Rewrite: for SQL Server 2000, if needed Reduce: Remove the unnecessary information from the tree. Parameterize Format: Generate the SQL statement string; Parameterize: Figure out the parameters, for example, a reference to a local variable should be a parameter in SQL; Materialize: Executes the reader and convert the result back into typed objects. So for each data retrieving, even for data retrieving which looks simple: private static Product[] RetrieveProducts(int productId) { using (NorthwindDataContext database = new NorthwindDataContext()) { return database.Products.Where(product => product.ProductID == productId) .ToArray(); } } LINQ to SQL goes through above steps to translate and execute the query. Fortunately, there is a built-in way to cache the translated query. Compiled query When such a LINQ to SQL query is executed repeatedly, The CompiledQuery can be used to translate query for one time, and execute for multiple times:internal static class CompiledQueries { private static readonly Func<NorthwindDataContext, int, Product[]> _retrieveProducts = CompiledQuery.Compile((NorthwindDataContext database, int productId) => database.Products.Where(product => product.ProductID == productId).ToArray()); internal static Product[] RetrieveProducts( this NorthwindDataContext database, int productId) { return _retrieveProducts(database, productId); } } The new version of RetrieveProducts() gets better performance, because only when _retrieveProducts is first time invoked, it internally invokes SqlProvider.Compile() to translate the query expression. And it also uses lock to make sure translating once in multi-threading scenarios. Static SQL / stored procedures without translating Another way to avoid the translating overhead is to use static SQL or stored procedures, just as the above examples. Because this is a functional programming series, this article not dive into. For the details, Scott Guthrie already has some excellent articles: LINQ to SQL (Part 6: Retrieving Data Using Stored Procedures) LINQ to SQL (Part 7: Updating our Database using Stored Procedures) LINQ to SQL (Part 8: Executing Custom SQL Expressions) Data changing overhead By looking into the data updating process, it also needs a lot of work: Begins transaction Processes the changes (ChangeProcessor) Walks through the objects to identify the changes Determines the order of the changes Executes the changings LINQ queries may be needed to execute the changings, like the first example in this article, an object needs to be retrieved before changed, then the above whole process of data retrieving will be went through If there is user customization, it will be executed, for example, a table’s INSERT / UPDATE / DELETE can be customized in the O/R designer It is important to keep these overhead in mind. Bulk deleting / updating Another thing to be aware is the bulk deleting:private static void DeleteProducts(int categoryId) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.Products.DeleteAllOnSubmit( database.Products.Where(product => product.CategoryID == categoryId)); database.SubmitChanges(); } } The expected SQL should be like:BEGIN TRANSACTION exec sp_executesql N'DELETE FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=9 COMMIT TRANSACTION Hoverer, as fore mentioned, the actual SQL is to retrieving the entities, and then delete them one by one:-- Retrieves the entities to be deleted: exec sp_executesql N'SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel], [t0].[Discontinued] FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=9 -- Deletes the retrieved entities one by one: BEGIN TRANSACTION exec sp_executesql N'DELETE FROM [dbo].[Products] WHERE ([ProductID] = @p0) AND ([ProductName] = @p1) AND ([SupplierID] IS NULL) AND ([CategoryID] = @p2) AND ([QuantityPerUnit] IS NULL) AND ([UnitPrice] = @p3) AND ([UnitsInStock] = @p4) AND ([UnitsOnOrder] = @p5) AND ([ReorderLevel] = @p6) AND (NOT ([Discontinued] = 1))',N'@p0 int,@p1 nvarchar(4000),@p2 int,@p3 money,@p4 smallint,@p5 smallint,@p6 smallint',@p0=78,@p1=N'Optimus Prime',@p2=9,@p3=$0.0000,@p4=0,@p5=0,@p6=0 exec sp_executesql N'DELETE FROM [dbo].[Products] WHERE ([ProductID] = @p0) AND ([ProductName] = @p1) AND ([SupplierID] IS NULL) AND ([CategoryID] = @p2) AND ([QuantityPerUnit] IS NULL) AND ([UnitPrice] = @p3) AND ([UnitsInStock] = @p4) AND ([UnitsOnOrder] = @p5) AND ([ReorderLevel] = @p6) AND (NOT ([Discontinued] = 1))',N'@p0 int,@p1 nvarchar(4000),@p2 int,@p3 money,@p4 smallint,@p5 smallint,@p6 smallint',@p0=79,@p1=N'Bumble Bee',@p2=9,@p3=$0.0000,@p4=0,@p5=0,@p6=0 -- ... COMMIT TRANSACTION And the same to the bulk updating. This is really not effective and need to be aware. Here is already some solutions from the Internet, like this one. The idea is wrap the above SELECT statement into a INNER JOIN:exec sp_executesql N'DELETE [dbo].[Products] FROM [dbo].[Products] AS [j0] INNER JOIN ( SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel], [t0].[Discontinued] FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0) AS [j1] ON ([j0].[ProductID] = [j1].[[Products])', -- The Primary Key N'@p0 int',@p0=9 Query plan overhead The last thing is about the SQL Server query plan. Before .NET 4.0, LINQ to SQL has an issue (not sure if it is a bug). LINQ to SQL internally uses ADO.NET, but it does not set the SqlParameter.Size for a variable-length argument, like argument of NVARCHAR type, etc. So for two queries with the same SQL but different argument length:using (NorthwindDataContext database = new NorthwindDataContext()) { database.Products.Where(product => product.ProductName == "A") .Select(product => product.ProductID).ToArray(); // The same SQL and argument type, different argument length. database.Products.Where(product => product.ProductName == "AA") .Select(product => product.ProductID).ToArray(); } Pay attention to the argument length in the translated SQL:exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(1)',@p0=N'A' exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(2)',@p0=N'AA' Here is the overhead: The first query’s query plan cache is not reused by the second one:SELECT sys.syscacheobjects.cacheobjtype, sys.dm_exec_cached_plans.usecounts, sys.syscacheobjects.[sql] FROM sys.syscacheobjects INNER JOIN sys.dm_exec_cached_plans ON sys.syscacheobjects.bucketid = sys.dm_exec_cached_plans.bucketid; They actually use different query plans. Again, pay attention to the argument length in the [sql] column (@p0 nvarchar(2) / @p0 nvarchar(1)). Fortunately, in .NET 4.0 this is fixed:internal static class SqlTypeSystem { private abstract class ProviderBase : TypeSystemProvider { protected int? GetLargestDeclarableSize(SqlType declaredType) { SqlDbType sqlDbType = declaredType.SqlDbType; if (sqlDbType <= SqlDbType.Image) { switch (sqlDbType) { case SqlDbType.Binary: case SqlDbType.Image: return 8000; } return null; } if (sqlDbType == SqlDbType.NVarChar) { return 4000; // Max length for NVARCHAR. } if (sqlDbType != SqlDbType.VarChar) { return null; } return 8000; } } } In this above example, the translated SQL becomes:exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(4000)',@p0=N'A' exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(4000)',@p0=N'AA' So that they reuses the same query plan cache: Now the [usecounts] column is 2.

    Read the article

  • An abundance of LINQ queries and expressions using both the query and method syntax.

    - by nikolaosk
    In this post I will be writing LINQ queries against an array of strings, an array of integers.Moreover I will be using LINQ to query an SQL Server database. I can use LINQ against arrays since the array of strings/integers implement the IENumerable interface. I thought it would be a good idea to use both the method syntax and the query syntax. There are other places on the net where you can find examples of LINQ queries but I decided to create a big post using as many LINQ examples as possible. We...(read more)

    Read the article

  • What is Linq?

    - by Aamir Hasan
    The way data can be retrieved in .NET. LINQ provides a uniform way to retrieve data from any object that implements the IEnumerable<T> interface. With LINQ, arrays, collections, relational data, and XML are all potential data sources. Why LINQ?With LINQ, you can use the same syntax to retrieve data from any data source:var query = from e in employeeswhere e.id == 1select e.nameThe middle level represents the three main parts of the LINQ project: LINQ to Objects is an API that provides methods that represent a set of standard query operators (SQOs) to retrieve data from any object whose class implements the IEnumerable<T> interface. These queries are performed against in-memory data.LINQ to ADO.NET augments SQOs to work against relational data. It is composed of three parts.LINQ to SQL (formerly DLinq) is use to query relational databases such as Microsoft SQL Server. LINQ to DataSet supports queries by using ADO.NET data sets and data tables. LINQ to Entities is a Microsoft ORM solution, allowing developers to use Entities (an ADO.NET 3.0 feature) to declaratively specify the structure of business objects and use LINQ to query them. LINQ to XML (formerly XLinq) not only augments SQOs but also includes a host of XML-specific features for XML document creation and queries. What You Need to Use LINQLINQ is a combination of extensions to .NET languages and class libraries that support them. To use it, you’ll need the following: Obviously LINQ, which is available from the new Microsoft .NET Framework 3.5 that you can download at http://go.microsoft.com/?linkid=7755937.You can speed up your application development time with LINQ using Visual Studio 2008, which offers visual tools such as LINQ to SQL designer and the Intellisense  support with LINQ’s syntax.Optionally, you can download the Visual C# 2008 Expression Edition tool at www.microsoft.com/vstudio/express/download. It is the free edition of Visual Studio 2008 and offers a lot of LINQ support such as Intellisense and LINQ to SQL designer. To use LINQ to ADO.NET, you need SQL

    Read the article

  • Exception with Linq2SQL Query

    - by Hadi Eskandari
    I am running a query using Linq2SQL that comes down to following query: DateTime? expiration = GetExpirationDate(); IQueryable<Persons> persons = GetPersons(); IQueryable<Items> subquery = from i in db.Items where i.ExpirationDate >= expiration select i; return persons.Where(p = p.Items != null && p.Items.Any(item => subquery.Contains(item))); When I evaluate the result of the function, I get a NullReferenceException and here's the stack trace. Any idea what I'm doing wrong?! Basically I want to select all the persons and filter them by item expiration date. at System.Data.Linq.SqlClient.SqlFactory.Member(SqlExpression expr, MemberInfo member) at System.Data.Linq.SqlClient.QueryConverter.VisitMemberAccess(MemberExpression ma) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitBinary(BinaryExpression b) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitBinary(BinaryExpression b) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitWhere(Expression sequence, LambdaExpression predicate) at System.Data.Linq.SqlClient.QueryConverter.VisitSequenceOperatorCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitMethodCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitContains(Expression sequence, Expression value) at System.Data.Linq.SqlClient.QueryConverter.VisitSequenceOperatorCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitMethodCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitQuantifier(SqlSelect select, LambdaExpression lambda, Boolean isAny) at System.Data.Linq.SqlClient.QueryConverter.VisitSequenceOperatorCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitMethodCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitBinary(BinaryExpression b) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitWhere(Expression sequence, LambdaExpression predicate) at System.Data.Linq.SqlClient.QueryConverter.VisitSequenceOperatorCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitMethodCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.ConvertOuter(Expression node) at System.Data.Linq.SqlClient.SqlProvider.BuildQuery(Expression query, SqlNodeAnnotations annotations) at System.Data.Linq.SqlClient.SqlProvider.System.Data.Linq.Provider.IProvider.Execute(Expression query) at System.Data.Linq.DataQuery`1.System.Collections.Generic.IEnumerable.GetEnumerator() at System.Linq.SystemCore_EnumerableDebugView`1.get_Items()

    Read the article

  • How to create a dynamic Linq Join extension method

    - by Royd Brayshay
    There was a library of dynamic Linq extensions methods released as a sample with VS2008. I'd like to extend it with a Join method. The code below fails with a parameter miss match exception at run time. Can anyone find the problem? public static IQueryable Join(this IQueryable outer, IEnumerable inner, string outerSelector, string innerSelector, string resultsSelector, params object[] values) { if (inner == null) throw new ArgumentNullException("inner"); if (outerSelector == null) throw new ArgumentNullException("outerSelector"); if (innerSelector == null) throw new ArgumentNullException("innerSelector"); if (resultsSelector == null) throw new ArgumentNullException("resultsSelctor"); LambdaExpression outerSelectorLambda = DynamicExpression.ParseLambda(outer.ElementType, null, outerSelector, values); LambdaExpression innerSelectorLambda = DynamicExpression.ParseLambda(inner.AsQueryable().ElementType, null, innerSelector, values); ParameterExpression[] parameters = new ParameterExpression[] { Expression.Parameter(outer.ElementType, "outer"), Expression.Parameter(inner.AsQueryable().ElementType, "inner") }; LambdaExpression resultsSelectorLambda = DynamicExpression.ParseLambda(parameters, null, resultsSelector, values); return outer.Provider.CreateQuery( Expression.Call( typeof(Queryable), "Join", new Type[] { outer.ElementType, inner.AsQueryable().ElementType, outerSelectorLambda.Body.Type, innerSelectorLambda.Body.Type, resultsSelectorLambda.Body.Type }, outer.Expression, inner.AsQueryable().Expression, Expression.Quote(outerSelectorLambda), Expression.Quote(innerSelectorLambda), Expression.Quote(resultsSelectorLambda))); } I've now fixed it myself, here's the answer. Please vote it up or add a better one.

    Read the article

  • Is LINQ to SQL deprecated?

    - by Mayo
    Back in late 2008 there was alot of debate about the future of LINQ to SQL. Many suggested that Microsoft's investments in the Entity Framework in .NET 4.0 were a sign that LINQ to SQL had no future. I figured I'd wait before making my own decision since folks were not in agreement. Fast-forward 18 months and I've got vendors providing solutions that rely on LINQ to SQL and I have personally given it a try and really enjoyed working with it. I figured it was here to stay. But I'm reading a new book (C# 4.0 How-To by Ben Watson) and in chapter 21 (LINQ), he suggests that it "has been more or less deprecated by Microsoft" and suggests using LINQ to Entity Framework. My question to you is whether or not LINQ to SQL is officially deprecated and/or if authoritative entities (Microsoft, Scott Gu, etc.) officially suggest using LINQ to Entities instead of LINQ to SQL.

    Read the article

  • Short-circuit evaluation and LINQ-to-NHibernate

    - by afsharm
    It seems that LINQ-to-NHibernate and LINQ-to-SQL does not support short-circuit evaluation in where clause of query. Am I right? Is there any workaround? May it be added to next versions of LINQ-to-NHibernate and LINQ-to-SQL? for more information plz see followings: http://stackoverflow.com/questions/772261/the-or-operator-in-linq-with-c http://stackoverflow.com/questions/2306302/why-ordinary-laws-in-evaluting-boolean-expression-does-not-fit-into-linq

    Read the article

  • Linq Tutorial

    - by SAMIR BHOGAYTA
    Microsoft LINQ Tutorials http://www.deitel.com/ResourceCenters/Programming/MicrosoftLINQ/Tutorials/tabid/2673/Default.aspx Introducing C# 3 – Part 4 LINQ http://www.programmersheaven.com/2/CSharp3-4 101 LINQ Samples http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx What is LinQ http://www.dotnetspider.com/forum/173039-what-linq-net.aspx Beginners Guides http://www.progtalk.com/viewarticle.aspx?articleid=68 http://www.programmersheaven.com/2/CSharp3-4 http://dotnetslackers.com/articles/csharp/introducinglinq1.aspx Using Linq http://weblogs.asp.net/scottgu/archive/2006/05/14/446412.aspx Step By Step Articles http://www.codeproject.com/KB/linq/linqtutorial.aspx http://www.codeproject.com/KB/linq/linqtutorial2.aspx http://www.codeproject.com/KB/linq/linqtutorial3.aspx

    Read the article

  • Linq To SQL: Behaviour for table field which is NotNull and having Default value or binding

    - by kaushalparik27
    I found this something interesting while wandering over community which I would like to share. The post is whole about: DBML is not considering the table field's "Default value or Binding" setting which is a NotNull. I mean the field which can not be null but having default value set needs to be set IsDbGenerated = true in DBML file explicitly.Consider this situation: There is a simple tblEmployee table with below structure: The fields are simple. EmployeeID is a Primary Key with Identity Specification = True with Identity Seed = 1 to autogenerate numeric value for this field. EmployeeName and their EmailAddress to store in rest of 2 fields. And the last one is "DateAdded" with DateTime datatype which doesn't allow NULL but having Default Value/Binding with "GetDate()". That means if we don't pass any value to this field then SQL will insert current date in "DateAdded" field.So, I start with a new website, add a DBML file and dropped the said table to generate LINQ To SQL context class. Finally, I write a simple code snippet to insert data into the tblEmployee table; BUT, I am not passing any value to "DateAdded" field. Because I am considering SQL Server's "Default Value or Binding (GetDate())" setting to this field and understand that SQL will insert current date to this field.        using (TestDatabaseDataContext context = new TestDatabaseDataContext())        {            tblEmployee tblEmpObjet = new tblEmployee();            tblEmpObjet.EmployeeName = "KaushaL";            tblEmpObjet.EmployeeEmailAddress = "[email protected]";            context.tblEmployees.InsertOnSubmit(tblEmpObjet);            context.SubmitChanges();        }Here comes the twist when application give me below error:  This is something not expecting! From the error it clearly depicts that LINQ is passing NULL value to "DateAdded" Field while according to my understanding it should respect Sql Server's "Default value or Binding" setting for this field. A bit googling and I found very interesting related to this problem.When we set Primary Key to any field with "Identity Specification" Property set to true; DBML set one important property "IsDbGenerated=true" for this field. BUT, when we set "Default Value or Biding" property for some field; we need to explicitly tell the DBML/LINQ to let it know that this field is having default binding at DB side that needs to be respected if I don't pass any value. So, the solution is: You need to explicitly set "IsDbGenerated=true" for such field to tell the LINQ that the field is having default value or binding at Sql Server side so, please don't worry if i don't pass any value for it.You can select the field and set this property from property window in DBML Designer file or write the property in DBML.Designer.cs file directly. I have attached a working example with required table script with this post here. I hope this would be helpful for someone hunting for the same. Happy Discovery!

    Read the article

  • My "Ah-Ha!" Moment With LINQ

    - by CompiledMonkey
    I'm currently working on a set of web services that will be consumed by iPhone and Android devices. Given how often the web services will be called in a relatively short period of time, the data access for the web services has proven to be a very important aspect of the project. In choosing the technology stack for implementation, I opted for LINQ to SQL as it was something I had dabbled with in the past and wanted to learn more about in a real environment. The query optimization happening behind...(read more)

    Read the article

  • Simple way to return anonymous types (to make MVC using LINQ possible)

    - by BlueRaja The Green Unicorn
    I'd like to implement MVC while using LINQ (specifically, LINQ-to-entities). The way I would do this is have the Controller generate (or call something which generates) the result-set using LINQ, then return that to the View to display the data. The problem is, if I do: return (from o in myTable select o); All the columns are read from the database, even the ones (potentially dozens) I don't want. And - more importantly - I can't do something like this: return (from o in myTable select new { o.column }); because there is no way to make anonymous types type-safe! I know for sure there is no nice, clean way of doing this in 3.5 (this is not clean...), but what about 4.0? Is there anything planned, or even proposed? Without something like duck-typing-for-LINQ, or type-safe anonymous return values (it seems to me the compiler should certainly be capable of that), it appears to be nearly impossible to cleanly separate the Controller from the View.

    Read the article

  • Using LINQ to fetch result from nested SQL queries

    - by Shantanu Gupta
    This is my first question and first day in Linq so bit difficult day for me to understand. I want to fetch some records from database i.e. select * from tblDepartment where department_id in ( select department_id from tblMap where Guest_Id = @GuestId ) I have taken two DataTable. i.e. tblDepartment, tblMap Now I want to fetch this result and want to store it in third DataTable. How can I do this. I have been able to construct this query up till now after googling. var query = from myrow in _dtDepartment.AsEnumerable() where myrow.Field<int>("Department_Id") == _departmentId select myrow; Please provide me some link for learning Linq mainly for DataTables and DataSets. EDIT: I have got a very similar example here but i m still not able to understand how it is working. Please put some torch on it.

    Read the article

  • LINQ to Entities pulling back entire table

    - by Focus
    In my application I'm pulling back a user's "feed". This contains all of that user's activities, events, friend requests from other users, etc. When I pull back the feed I'm calling various functions to filter the request along the way. var userFeed = GetFeed(db); // Query to pull back all data userFeed = FilterByUser(userFeed, user, db); // Filter for the user userFeed = SortFeed(userFeed, page, sortBy, typeName); // Sort it The data that is returned is exactly what I need, however when I look at a SQL Profile Trace I can see that the query that is getting this data does not filter it at the database level and instead is selecting ALL data in the table(s). This query does not execute until I iterate through the results on my view. All of these functions return an IEnumerable object. I was under the impression that LINQ would take all of my filters and form one query to pull back the data I want instead of pulling back all the data and then filtering it on the server. What am I doing wrong or what don't I understand about the way LINQ evaluates queries?

    Read the article

  • How can I do this with LINQ?

    - by Liam
    All I'm after doing is this: SELECT CallTypeID, Count(CallTypeID) as NumberOfCalls FROM [Helpdesk_HR].[dbo].[CallHeader] WHERE CallHeader.DateOpened <= GETDATE()-7 GROUP BY CallTypeID in LINQ. But I can't work out a way of doing it and getting it to work. I would use Linqer, but my company won't pay for it at present. Any help is greatly appreciated as I'm sure the answer is obvious. It's just been one of those days today.

    Read the article

  • LINQ Query Help!

    - by rk1962
    Can someone hep me converting the following SQL query into LINQ? select convert(varchar(10),date,110) as 'Date', max(users) as 'Maximum Number of Users', max(transactions) as 'Maximum Number of Transactions' from stats where datepart(Year, Date) = '2010' group by convert(varchar(10),date,110) order by convert(varchar(10),date,110) Thank you in advance!

    Read the article

  • Method 'SingleOrDefault' not supported by Linq to Entities

    - by user300992
    I read other posts on similar problem on using SingleOfDefault on Linq-To-Entity, some suggested using "First()" and some others suggested using "Extension" method to implement the Single(). This code throws exception: Movie movie = (from a in movies where a.MovieID == '12345' select a).SingleOrDefault(); If I convert the object query to a List using .ToList(), "SingleOrDefault()" actually works perfectly without throwing any error. My question is: Is it not good to convert to List? Is it going to be performance issue for more complicated queries? What does it get translated in SQL? Movie movie = (from a in movies.ToList() where a.MovieID == '12345' select a).SingleOrDefault();

    Read the article

  • Use Any() and Count() in Dynamic Linq

    - by ArpanDesai
    I am trying to write dynamic Linq Library query to fetch record on condition, Customers who has order count is greater than 3 and ShipVia field equal 2. Below is my syntax what i have tried. object[] objArr = new object[10]; objArr[0] = 1; IQueryable<Customer> test = db.Customers.Where("Orders.Count(ShipVia=2)", objArr); and IQueryable<Customer> test = db.Customers.Where("Orders.Any(ShipVia=2).Count()", objArr); But both are not working. In second query Any returns true so it won't work with Count. Suggest me a way to implement this.

    Read the article

  • return from a linq where statement

    - by Vaccano
    I have the following link function MyLinqToSQLTable.Where(x => x.objectID == paramObjectID).ToList(); I most of the time you can change a linq call to be several lines by adding curly brackets around the method body. Like this: MyLinqToSQLTable.Where(x => { x.objectID == paramObjectID; }).ToList(); Problem is the implied return that was there when I just did a Boolean compare is now not done. Return (x.objectID == paramObjectID); is not accepted either. How do do this? can I do this? NOTE: I know that I can add another where clause if needed. But I would still like to know the answer to this.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Parse XML tree with no id using LINQ to XML

    - by Danny
    Requirement I want to read a XML tree, fill my objects with encountered attributes and after every run a method (insert it into my db). The amount of parents is not specified, also the order is not specified, it could be, address-death-death-address-address for example Input file Overview: <Root> <Element> <Element2> <Parent> <Child> <Grandchild> <Grandchild> </Child> </Parent> </Element2> </Element1> </Root> Full example: <?xml version="1.0" encoding="utf-8" ?> <Root> <Element1> <Element2> <Parent> <Child> <Grandchild> <number>01</number> <name>Person</name> <Rows> <Row> <number>0110</number> <name>ID</name> <value>123456789</value> </Row> </Rows> </Grandchild> <Grandchild> <number>08</number> <name>Address</name> <Rows> <Row> <number>1110</number> <name>street</name> <value>first aveneu</value> </Row> <Row> <number>1120</number> <name>streetnumber</name> <value>345</value> </Row> <Row> <number>1130</number> <name>zip</name> <value>2938PS</value> </Row> <Row> <number>1160</number> <name>country</name> <value>Germany</value> </Row> </Rows> </Grandchild> </Child> </Parent> <Parent> <Child> <Grandchild> <number>01</number> <name>Person</name> <Rows> <Row> <number>0110</number> <name>ID</name> <value>987654321</value> </Row> </Rows> </Grandchild> <Grandchild> <number>06</number> <name>Death</name> <Rows> <Row> <number>0810</number> <name>date</name> <value>2012-01-03</value> </Row> <Row> <number>0820</number> <name>placeOfDeath</name> <value>attic</value> </Row> <Row> <number>0830</number> <name>funeral</name> <value>burrial</value> </Row> </Rows> </Grandchild> </Child> </Parent> </Element2> </Element1> </Root> Desired result After encounter of parent determine type of grandchild (number 6 is death number 8 is address) Every parent has ALWAYS grandchild number 1 'Person', the second grandchild is either death or address. reading first parent Person person = new Person(); person.ID = value; <--- filled with 123456789 person.street = value; <--- filled with first aveneu person.streetnumber = value; <--- filled with 345 person.zip = value; <--- filled with 2938PS person.country = value; <--- filled with germany person.DoMethod(); // inserts the value in db Continue reading next parent. Person person = new Person(); person.ID = value; <--- filled with 987654321 person.date = value; <--- filled with 2012-01-03 person.placeOfDeath = value; <--- filled with attic person.funeral = value; <--- filled with burrial person.DoMethod(); // insert the values in db Continue reading till no parents found EDIT: how do I target the name element of the second grandchild for every child? Like address or death Code/Credit I got no further then this, with help of Daniel Hilgarth: Linq to XML (C#) parse XML tree with no attributes/id to object The XML tree has changed, and I am really stuck.. in the meantime I try to post new working code...

    Read the article

  • Why I am getting Null from this statement. Query Syntax in C#

    - by Shantanu Gupta
    This is not working. Returns Null to dept_list. var dept_list = ((from map in DtMapGuestDepartment.AsEnumerable() where map.Field<Nullable<long>>("Guest_Id") == 174 select map.Field<Nullable<long>>("Department_id")).Distinct())as IEnumerable<DataRow>; DataTable dt = dept_list.CopyToDataTable(); //dept_list comes null here This works as desired. var dept_list = from map in DtMapGuestDepartment.AsEnumerable() where map.Field<Nullable<long>>("Guest_Id") == 174 select map; DataTable dt = dept_list.CopyToDataTable(); //when used like this runs correct. What mistake is being done by me here. ?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >