Search Results

Search found 3 results on 1 pages for 'lynxos'.

Page 1/1 | 1 

  • How do I synchronize access to shared memory in LynxOS/POSIX?

    - by GrahamS
    I am implementing two processes on a LynxOS SE (POSIX conformant) system that will communicate via shared memory. One process will act as a "producer" and the other a "consumer". In a multi-threaded system my approach to this would be to use a mutex and condvar (condition variable) pair, with the consumer waiting on the condvar (with pthread_cond_wait) and the producer signalling it (with pthread_cond_signal) when the shared memory is updated. How do I achieve this in a multi-process, rather than multi-threaded, architecture? Is there a LynxOS/POSIX way to create a condvar/mutex pair that can be used between processes? Or is some other synchronization mechanism more appropriate in this scenario?

    Read the article

  • Condition Variable in Shared Memory - is this code POSIX-conformant?

    - by GrahamS
    We've been trying to use a mutex and condition variable to synchronise access to named shared memory on a LynuxWorks LynxOS-SE system (POSIX-conformant). One shared memory block is called "/sync" and contains the mutex and condition variable, the other is "/data" and contains the actual data we are syncing access to. We're seeing failures from pthread_cond_signal() if both processes don't perform the mmap() calls in exactly the same order, or if one process mmaps in some other piece of shared memory before it mmaps the sync memory. This example code is about as short as I can make it: #include <sys/types.h> #include <sys/stat.h> #include <sys/mman.h> #include <sys/file.h> #include <stdlib.h> #include <pthread.h> #include <errno.h> #include <iostream> #include <string> using namespace std; static const string shm_name_sync("/sync"); static const string shm_name_data("/data"); struct shared_memory_sync { pthread_mutex_t mutex; pthread_cond_t condition; }; struct shared_memory_data { int a; int b; }; //Create 2 shared memory objects // - sync contains 2 shared synchronisation objects (mutex and condition) // - data not important void create() { // Create and map 'sync' shared memory int fd_sync = shm_open(shm_name_sync.c_str(), O_CREAT|O_RDWR, S_IRUSR|S_IWUSR); ftruncate(fd_sync, sizeof(shared_memory_sync)); void* addr_sync = mmap(0, sizeof(shared_memory_sync), PROT_READ|PROT_WRITE, MAP_SHARED, fd_sync, 0); shared_memory_sync* p_sync = static_cast<shared_memory_sync*> (addr_sync); // init the cond and mutex pthread_condattr_t cond_attr; pthread_condattr_init(&cond_attr); pthread_condattr_setpshared(&cond_attr, PTHREAD_PROCESS_SHARED); pthread_cond_init(&(p_sync->condition), &cond_attr); pthread_condattr_destroy(&cond_attr); pthread_mutexattr_t m_attr; pthread_mutexattr_init(&m_attr); pthread_mutexattr_setpshared(&m_attr, PTHREAD_PROCESS_SHARED); pthread_mutex_init(&(p_sync->mutex), &m_attr); pthread_mutexattr_destroy(&m_attr); // Create the 'data' shared memory int fd_data = shm_open(shm_name_data.c_str(), O_CREAT|O_RDWR, S_IRUSR|S_IWUSR); ftruncate(fd_data, sizeof(shared_memory_data)); void* addr_data = mmap(0, sizeof(shared_memory_data), PROT_READ|PROT_WRITE, MAP_SHARED, fd_data, 0); shared_memory_data* p_data = static_cast<shared_memory_data*> (addr_data); // Run the second process while it sleeps here. sleep(10); int res = pthread_cond_signal(&(p_sync->condition)); assert(res==0); // <--- !!!THIS ASSERT WILL FAIL ON LYNXOS!!! munmap(addr_sync, sizeof(shared_memory_sync)); shm_unlink(shm_name_sync.c_str()); munmap(addr_data, sizeof(shared_memory_data)); shm_unlink(shm_name_data.c_str()); } //Open the same 2 shared memory objects but in reverse order // - data // - sync void open() { sleep(2); int fd_data = shm_open(shm_name_data.c_str(), O_RDWR, S_IRUSR|S_IWUSR); void* addr_data = mmap(0, sizeof(shared_memory_data), PROT_READ|PROT_WRITE, MAP_SHARED, fd_data, 0); shared_memory_data* p_data = static_cast<shared_memory_data*> (addr_data); int fd_sync = shm_open(shm_name_sync.c_str(), O_RDWR, S_IRUSR|S_IWUSR); void* addr_sync = mmap(0, sizeof(shared_memory_sync), PROT_READ|PROT_WRITE, MAP_SHARED, fd_sync, 0); shared_memory_sync* p_sync = static_cast<shared_memory_sync*> (addr_sync); // Wait on the condvar pthread_mutex_lock(&(p_sync->mutex)); pthread_cond_wait(&(p_sync->condition), &(p_sync->mutex)); pthread_mutex_unlock(&(p_sync->mutex)); munmap(addr_sync, sizeof(shared_memory_sync)); munmap(addr_data, sizeof(shared_memory_data)); } int main(int argc, char** argv) { if(argc>1) { open(); } else { create(); } return (0); } Run this program with no args, then another copy with args, and the first one will fail at the assert checking the pthread_cond_signal(). But change the open() function to mmap() the "/sync" memory first and it will all work fine. This seems like a major bug in LynxOS but LynuxWorks claim that using mutex and condition variable in this way is not covered by the POSIX standard, so they are not interested. Can anyone determine if this code does violate POSIX? Or does anyone have any convincing documentation that it is POSIX compliant?

    Read the article

  • Cross compiling unit tests with CppUnit or similar

    - by Mark
    Has anyone used a package like CppUnit to cross-compile C++ unit tests to run on an embedded platform? I'm using G++ on a Linux box to compile executables that must be run on a LynxOS board. I can't seem to get any of the common unit test packages to configure and build something that will create unit tests. I see a lot of unit test packages, CppUnit, UnitTest++, GTest, CppUTest, etc., but very little about using these packages in a cross-compiler scenario. The ones with a "configure" script imply that this is possible, but I can't seem to get them to configure and build.

    Read the article

1