Search Results

Search found 22405 results on 897 pages for 'message threading'.

Page 1/897 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Eclipse juno can not open with error " An error has occurred. See the log file",ubuntu 12.04

    - by ana
    I'm trying to lunch eclipse for first time ,I've download the package and installed it manually.here is the log file : !SESSION 2012-10-10 16:06:11.460 ----------------------------------------------- eclipse.buildId=M20120914-1800 java.fullversion=GNU libgcj 4.6.3 BootLoader constants: OS=linux, ARCH=x86_64, WS=gtk, NL=en_US Command-line arguments: -os linux -ws gtk -arch x86_64 !ENTRY org.eclipse.osgi 4 0 2012-10-10 16:06:19.756 !MESSAGE Could not start bundle: org.eclipse.equinox.console !STACK 0 org.osgi.framework.BundleException: Could not start bundle: org.eclipse.equinox.console at org.eclipse.osgi.framework.internal.core.ConsoleManager.checkForConsoleBundle(ConsoleManager.java:217) at org.eclipse.core.runtime.adaptor.EclipseStarter.startup(EclipseStarter.java:297) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:176) at java.lang.reflect.Method.invoke(libgcj.so.12) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:629) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:584) at org.eclipse.equinox.launcher.Main.run(Main.java:1438) at org.eclipse.equinox.launcher.Main.main(Main.java:1414) Caused by: org.osgi.framework.BundleException: Exception in org.eclipse.equinox.console.command.adapter.Activator.start() of bundle org.eclipse.equinox.console. at org.eclipse.osgi.framework.internal.core.BundleContextImpl.startActivator(BundleContextImpl.java:734) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.start(BundleContextImpl.java:683) at org.eclipse.osgi.framework.internal.core.BundleHost.startWorker(BundleHost.java:381) at org.eclipse.osgi.framework.internal.core.AbstractBundle.start(AbstractBundle.java:300) at org.eclipse.osgi.framework.internal.core.ConsoleManager.checkForConsoleBundle(ConsoleManager.java:215) ...7 more Caused by: org.osgi.framework.BundleException: Exception in org.apache.felix.gogo.command.Activator.start() of bundle org.apache.felix.gogo.command. at org.eclipse.osgi.framework.internal.core.BundleContextImpl.startActivator(BundleContextImpl.java:734) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.start(BundleContextImpl.java:683) at org.eclipse.osgi.framework.internal.core.BundleHost.startWorker(BundleHost.java:381) at org.eclipse.osgi.framework.internal.core.AbstractBundle.start(AbstractBundle.java:300) at org.eclipse.equinox.console.command.adapter.Activator.startBundle(Activator.java:248) at org.eclipse.equinox.console.command.adapter.Activator.start(Activator.java:239) at org.eclipse.osgi.framework.internal.core.BundleContextImpl$1.run(BundleContextImpl.java:711) at java.security.AccessController.doPrivileged(libgcj.so.12) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.startActivator(BundleContextImpl.java:702) ...11 more Caused by: java.lang.NoClassDefFoundError: org.apache.felix.gogo.command.OBR at java.lang.Class.initializeClass(libgcj.so.12) at org.apache.felix.gogo.command.Activator.start(Activator.java:54) at org.eclipse.osgi.framework.internal.core.BundleContextImpl$1.run(BundleContextImpl.java:711) at java.security.AccessController.doPrivileged(libgcj.so.12) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.startActivator(BundleContextImpl.java:702) ...19 more Caused by: java.lang.ClassNotFoundException: org.apache.felix.bundlerepository.Repository at org.eclipse.osgi.internal.loader.BundleLoader.findClassInternal(BundleLoader.java:501) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:421) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:412) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.loadClass(DefaultClassLoader.java:107) at java.lang.ClassLoader.loadClass(libgcj.so.12) at java.lang.Class.initializeClass(libgcj.so.12) ...23 more Root exception: java.lang.NoClassDefFoundError: org.apache.felix.gogo.command.OBR at java.lang.Class.initializeClass(libgcj.so.12) at !ENTRY org.eclipse.osgi 2 0 2012-10-10 16:06:30.433 !MESSAGE The following is a complete list of bundles which are not resolved, see the prior log entry for the root cause if it exists: !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.433 !MESSAGE Bundle com.sun.el_2.2.0.v201108011116 [4] was not resolved. !SUBENTRY 2 com.sun.el 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.el_2.2.0. !SUBENTRY 2 com.sun.el 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet.http_2.5.0. !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.434 !MESSAGE Bundle javax.el_2.2.0.v201108011116 [6] was not resolved. !SUBENTRY 2 javax.el 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet_2.5.0. !SUBENTRY 2 javax.el 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet.http_2.5.0. !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.434 !MESSAGE Bundle javax.servlet_3.0.0.v201112011016 [8] was not resolved. !SUBENTRY 2 javax.servlet 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(&(osgi.ee=JavaSE)(version=1.6))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.434 !MESSAGE Bundle javax.servlet.jsp_2.2.0.v201112011158 [9] was not resolved. !SUBENTRY 2 javax.servlet.jsp 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.el_2.2.0. !SUBENTRY 2 javax.servlet.jsp 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet_2.6.0. !SUBENTRY 2 javax.servlet.jsp 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet.http_2.6.0. !SUBENTRY 2 javax.servlet.jsp 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(&(osgi.ee=JavaSE)(version=1.6))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.434 !MESSAGE Bundle org.apache.jasper.glassfish_2.2.2.v201205150955 [21] was not resolved. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.el_2.2.0. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet_2.6.0. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet.descriptor_2.6.0. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet.http_2.6.0. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet.jsp_2.2.0. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet.jsp.el_2.2.0. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet.jsp.tagext_2.2.0. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing optionally imported package javax.tools_0.0.0. !SUBENTRY 2 org.apache.jasper.glassfish 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(&(osgi.ee=JavaSE)(version=1.6))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.434 !MESSAGE Bundle org.eclipse.equinox.http.jetty_3.0.0.v20120522-1841 [91] was not resolved. !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.434 !MESSAGE Missing imported package javax.servlet_[2.6.0,4.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package javax.servlet.http_[2.6.0,4.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.equinox.http.servlet_1.0.0. !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.http_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.io.bio_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.io.nio_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.server_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.server.bio_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.server.handler_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.server.nio_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.server.session_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.server.ssl_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.servlet_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.util_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.util.component_[8.0.0,9.0.0). !SUBENTRY 2 org.eclipse.equinox.http.jetty 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package org.eclipse.jetty.util.log_[8.0.0,9.0.0). !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.435 !MESSAGE Bundle org.eclipse.equinox.http.registry_1.1.200.v20120522-2049 [92] was not resolved. !SUBENTRY 2 org.eclipse.equinox.http.registry 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package javax.servlet_2.3.0. !SUBENTRY 2 org.eclipse.equinox.http.registry 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package javax.servlet.http_2.3.0. !SUBENTRY 2 org.eclipse.equinox.http.registry 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(|(&(osgi.ee=CDC/Foundation)(version=1.0))(&(osgi.ee=JavaSE)(version=1.3)))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.435 !MESSAGE Bundle org.eclipse.equinox.http.servlet_1.1.300.v20120522-1841 [93] was not resolved. !SUBENTRY 2 org.eclipse.equinox.http.servlet 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package javax.servlet_[2.3.0,3.1.0). !SUBENTRY 2 org.eclipse.equinox.http.servlet 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing optionally imported package javax.servlet.annotation_2.6.0. !SUBENTRY 2 org.eclipse.equinox.http.servlet 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing optionally imported package javax.servlet.descriptor_2.6.0. !SUBENTRY 2 org.eclipse.equinox.http.servlet 2 0 2012-10-10 16:06:30.435 !MESSAGE Missing imported package javax.servlet.http_[2.3.0,3.1.0). !SUBENTRY 2 org.eclipse.equinox.http.servlet 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(|(&(osgi.ee=CDC/Foundation)(version=1.0))(&(osgi.ee=JavaSE)(version=1.3)))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.436 !MESSAGE Bundle org.eclipse.equinox.jsp.jasper_1.0.400.v20120522-2049 [94] was not resolved. !SUBENTRY 2 org.eclipse.equinox.jsp.jasper 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package javax.servlet_[2.4.0,3.1.0). !SUBENTRY 2 org.eclipse.equinox.jsp.jasper 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing optionally imported package javax.servlet.annotation_2.6.0. !SUBENTRY 2 org.eclipse.equinox.jsp.jasper 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing optionally imported package javax.servlet.descriptor_2.6.0. !SUBENTRY 2 org.eclipse.equinox.jsp.jasper 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package javax.servlet.http_[2.4.0,3.1.0). !SUBENTRY 2 org.eclipse.equinox.jsp.jasper 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package javax.servlet.jsp_[2.0.0,2.3.0). !SUBENTRY 2 org.eclipse.equinox.jsp.jasper 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package org.apache.jasper.servlet_[0.0.0,6.0.0). !SUBENTRY 2 org.eclipse.equinox.jsp.jasper 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(|(&(osgi.ee=CDC/Foundation)(version=1.0))(&(osgi.ee=JavaSE)(version=1.3)))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.436 !MESSAGE Bundle org.eclipse.equinox.jsp.jasper.registry_1.0.300.v20120522-2049 [95] was not resolved. !SUBENTRY 2 org.eclipse.equinox.jsp.jasper.registry 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package org.eclipse.equinox.jsp.jasper_0.0.0. !SUBENTRY 2 org.eclipse.equinox.jsp.jasper.registry 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package javax.servlet_2.4.0. !SUBENTRY 2 org.eclipse.equinox.jsp.jasper.registry 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package javax.servlet.http_2.4.0. !SUBENTRY 2 org.eclipse.equinox.jsp.jasper.registry 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(|(&(osgi.ee=CDC/Foundation)(version=1.0))(&(osgi.ee=JavaSE)(version=1.3)))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.436 !MESSAGE Bundle org.eclipse.help.webapp_3.6.101.v20120717-130216 [135] was not resolved. !SUBENTRY 2 org.eclipse.help.webapp 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing required bundle org.eclipse.equinox.jsp.jasper.registry_1.0.100. !SUBENTRY 2 org.eclipse.help.webapp 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing required bundle org.eclipse.equinox.http.registry_1.0.200. !SUBENTRY 2 org.eclipse.help.webapp 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package javax.servlet_2.4.0. !SUBENTRY 2 org.eclipse.help.webapp 2 0 2012-10-10 16:06:30.436 !MESSAGE Missing imported package javax.servlet.http_2.4.0. !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.437 !MESSAGE Bundle org.eclipse.jdt.apt.pluggable.core_1.0.400.v20120522-1651 [139] was not resolved. !SUBENTRY 2 org.eclipse.jdt.apt.pluggable.core 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing imported package org.eclipse.jdt.internal.compiler.tool_0.0.0. !SUBENTRY 2 org.eclipse.jdt.apt.pluggable.core 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing imported package org.eclipse.jdt.internal.compiler.apt.dispatch_0.0.0. !SUBENTRY 2 org.eclipse.jdt.apt.pluggable.core 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing imported package org.eclipse.jdt.internal.compiler.apt.model_0.0.0. !SUBENTRY 2 org.eclipse.jdt.apt.pluggable.core 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing imported package org.eclipse.jdt.internal.compiler.apt.util_0.0.0. !SUBENTRY 2 org.eclipse.jdt.apt.pluggable.core 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(&(osgi.ee=JavaSE)(version=1.6))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.437 !MESSAGE Bundle org.eclipse.jdt.compiler.apt_1.0.500.v20120522-1651 [141] was not resolved. !SUBENTRY 2 org.eclipse.jdt.compiler.apt 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing optionally imported package org.eclipse.jdt.internal.compiler.tool_0.0.0. !SUBENTRY 2 org.eclipse.jdt.compiler.apt 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(&(osgi.ee=JavaSE)(version=1.6))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.437 !MESSAGE Bundle org.eclipse.jdt.compiler.tool_1.0.101.v20120522-1651 [142] was not resolved. !SUBENTRY 2 org.eclipse.jdt.compiler.tool 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing required capability Require-Capability: osgi.ee; filter="(&(osgi.ee=JavaSE)(version=1.6))". !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.437 !MESSAGE Bundle org.eclipse.jetty.continuation_8.1.3.v20120522 [155] was not resolved. !SUBENTRY 2 org.eclipse.jetty.continuation 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing imported package javax.servlet_2.6.0. !SUBENTRY 2 org.eclipse.jetty.continuation 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing optionally imported package org.mortbay.log_[6.1.0,7.0.0). !SUBENTRY 2 org.eclipse.jetty.continuation 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing optionally imported package org.mortbay.util.ajax_[6.1.0,7.0.0). !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.437 !MESSAGE Bundle org.eclipse.jetty.http_8.1.3.v20120522 [156] was not resolved. !SUBENTRY 2 org.eclipse.jetty.http 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing imported package javax.servlet_2.6.0. !SUBENTRY 2 org.eclipse.jetty.http 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing imported package javax.servlet.http_2.6.0. !SUBENTRY 2 org.eclipse.jetty.http 2 0 2012-10-10 16:06:30.437 !MESSAGE Missing imported package org.eclipse.jetty.io_[8.1.0,9.0.0). org.eclipse.jetty.util.resource_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.http 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package org.eclipse.jetty.util.ssl_[8.1.0,9.0.0). !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.438 !MESSAGE Bundle org.eclipse.jetty.io_8.1.3.v20120522 [157] was not resolved. !SUBENTRY 2 org.eclipse.jetty.io 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package org.eclipse.jetty.util_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.io 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package org.eclipse.jetty.util.component_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.io 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package org.eclipse.jetty.util.log_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.io 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package org.eclipse.jetty.util.thread_[8.1.0,9.0.0). !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.438 !MESSAGE Bundle org.eclipse.jetty.security_8.1.3.v20120522 [158] was not resolved. !SUBENTRY 2 org.eclipse.jetty.security 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package javax.servlet_2.6.0. !SUBENTRY 2 org.eclipse.jetty.security 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package javax.servlet.http_2.6.0. !SUBENTRY 2 org.eclipse.jetty.security 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package org.eclipse.jetty.http_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.security 2 0 2012-10-10 16:06:30.438 !MESSAGE Missing imported package org.eclipse.jetty.server_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.security 2 0 2012-10-10 16:06:30.438 org.eclipse.jetty.jmx_8.0.0. !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.439 !MESSAGE Missing imported package org.eclipse.jetty.security_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing imported package org.eclipse.jetty.server_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing imported package org.eclipse.jetty.server.handler_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing imported package org.eclipse.jetty.server.nio_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing imported package org.eclipse.jetty.server.session_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing imported package org.eclipse.jetty.server.ssl_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing optionally imported package org.eclipse.jetty.util_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing optionally imported package org.eclipse.jetty.util.component_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing optionally imported package org.eclipse.jetty.util.log_[8.1.0,9.0.0). !SUBENTRY 2 org.eclipse.jetty.servlet 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing optionally imported package org.eclipse.jetty.util.resource_[8.1.0,9.0.0). !SUBENTRY 1 org.eclipse.osgi 2 0 2012-10-10 16:06:30.440 !MESSAGE Bundle org.eclipse.jetty.util_8.1.3.v20120522 [161] was not resolved. !SUBENTRY 2 org.eclipse.jetty.util 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing imported package javax.servlet_2.6.0. !SUBENTRY 2 org.eclipse.jetty.util 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing imported package javax.servlet.http_2.6.0. !SUBENTRY 2 org.eclipse.jetty.util 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing optionally imported package org.slf4j_[1.5.0,2.0.0). !SUBENTRY 2 org.eclipse.jetty.util 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing optionally imported package org.slf4j.helpers_[1.6.0,2.0.0). !SUBENTRY 2 org.eclipse.jetty.util 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing optionally imported package org.slf4j.impl_[1.5.0,2.0.0). !SUBENTRY 2 org.eclipse.jetty.util 2 0 2012-10-10 16:06:30.440 !MESSAGE Missing optionally imported package org.slf4j.spi_[1.6.0,2.0.0). !ENTRY org.eclipse.osgi 4 0 2012-10-10 16:06:30.441 !MESSAGE Application error !STACK 1 java.lang.ArrayIndexOutOfBoundsException: 0 at org.eclipse.e4.core.internal.di.ConstructorRequestor.calcDependentObjects(ConstructorRequestor.java:79) at org.eclipse.e4.core.internal.di.Requestor.getDependentObjects(Requestor.java:143) at org.eclipse.e4.core.internal.di.InjectorImpl.resolveArgs(InjectorImpl.java:408) at org.eclipse.e4.core.internal.di.InjectorImpl.internalMake(InjectorImpl.java:312) at org.eclipse.e4.core.internal.di.InjectorImpl.make(InjectorImpl.java:240) at org.eclipse.e4.core.contexts.ContextInjectionFactory.make(ContextInjectionFactory.java:161) at org.eclipse.e4.ui.internal.workbench.swt.E4Application.createDefaultHeadlessContext(E4Application.java:420) at org.eclipse.e4.ui.internal.workbench.swt.E4Application.createDefaultContext(E4Application.java:434) at org.eclipse.e4.ui.internal.workbench.swt.E4Application.createE4Workbench(E4Application.java:182) at org.eclipse.ui.internal.Workbench$5.run(Workbench.java:557) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:543) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:124) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:353) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:180) at java.lang.reflect.Method.invoke(libgcj.so.12) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:629) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:584) at org.eclipse.equinox.launcher.Main.run(Main.java:1438) at org.eclipse.equinox.launcher.Main.main(Main.java:1414) would you please help me with this?

    Read the article

  • Hyper-Threading comments

    - by jchang
    There seems to be significant confusion about Hyper-Threading. Part of the problem is that vendors like to tout every new feature as the greatest invention since the six-pack, and its follow-on the 12-pack. I used to think the 4-pack was a travesty, but now that I am older and can nolonger finish a 12-pack with each meal, suddenly the 4-pack is not such a travesty. But I digress. I do appluad innovation, and I do accept that the first generation is almost never perfect, thats why its the bleeding...(read more)

    Read the article

  • How would you practice concurrency and multi-threading?

    - by Xavier Nodet
    I've been reading about concurrency, multi-threading, and how "the free lunch is over". But I've not yet had the possibility to use MT in my job. I'm thus looking for suggestions about what I could do to get some practice of CPU heavy MT through exercises or participation in some open-source projects. Thanks. Edit: I'm more interested in open-source projects that use MT for CPU-bound tasks, or simply algorithms that are interesting to implement using MT, rather than books or papers about the tools like threads, mutexes and locks...

    Read the article

  • Clicking Pidgin message in Ubuntu 13.10 indicator menu doesn't focus on message

    - by Ooberdan
    When I get a message on Pidgin, if I click the notification in the indicator panel, it doesn't bring the message into focus. It highlights that the message has been opened in the Unity dock, but I have to click the dock icon or alt-tab to the window to read the message. Does anyone know a fix so I can view the messages from the indicator notification? (Note: this actually works in 12.04, so I'm assuming it's a bug in the later version). Any help greatly appreciated :)

    Read the article

  • Threading 101: What is a Dispatcher?

    - by Water Cooler v2
    Once upon a time, I remembered this stuff by heart. Over time, my understanding has diluted and I mean to refresh it. As I recall, any so called single threaded application has two threads: a) the primary thread that has a pointer to the main or DllMain entry points; and b) For applications that have some UI, a UI thread, a.k.a the secondary thread, on which the WndProc runs, i.e. the thread that executes the WndProc that recieves messages that Windows posts to it. In short, the thread that executes the Windows message loop. For UI apps, the primary thread is in a blocking state waiting for messages from Windows. When it recieves them, it queues them up and dispatches them to the message loop (WndProc) and the UI thread gets kick started. As per my understanding, the primary thread, which is in a blocking state, is this: C++ while(getmessage(/* args &msg, etc. */)) { translatemessage(&msg, 0, 0); dispatchmessage(&msg, 0, 0); } C# or VB.NET WinForms apps: Application.Run( new System.Windows.Forms() ); Is this what they call the Dispatcher? My questions are: a) Is my above understanding correct? b) What in the name of hell is the Dispatcher? c) Point me to a resource where I can get a better understanding of threads from a Windows/Win32 perspective and then tie it up with high level languages like C#. Petzold is sparing in his discussion on the subject in his epic work. Although I believe I have it somewhat right, a confirmation will be relieving.

    Read the article

  • How to Add a Note to an Email Message in Outlook 2013

    - by Lori Kaufman
    There may be times when you want to add a note to an email message you received. Maybe you need to remember something about the sender or the contents of the email. There are several ways to add a note to an email message. NOTE: You can also create a new task containing an email message you received. This is useful if you need to do something related to the email. The new task will contain all the contents (except attachments) from the email. One method of adding a note to an email message is to flag the message. To do this, right-click on the flag icon in the flag column for the message to which you want to add a note. Select Custom from the popup menu. On the Custom dialog box, you can select a ready-made note from the Flag to drop-down list. You can also type a custom note in the Flag to edit box. Select a Start date and a Due date and setup a reminder, if desired. Click OK. The flag displays above the body of the email message when you double-click on the message to open it in the Message window. You can also put the cursor in the subject line of the message and add text to it, as shown below. When you close the message window, a confirmation dialog box displays asking if you want to save your changes. To save the note you added to the subject line, click Yes. Your note displays as part of the subject line on the message in your list of email messages. You can also add a note to the body of an email message. To do this, you must enable editing of the message. Double-click the message to open the Message window. Click Actions in the Move section of the Message tab and select Edit Message from the drop-down menu. Click in the body of the message and type your note. When you close the Message window, a confirmation dialog box displays asking if you want to save your changes. Click Yes to save you note in the body of the email. You can see the note you added if it is visible as part of the first line of the body displayed in the list of email messages. Use the Notes section of Outlook to create a separate note you can attach to an email message. To do this, click the … button on the Navigation Bar and select Notes from the popup menu. Click New Note on the Home tab of the Notes window (or press Ctrl + N) to create a note. Enter the text for your note in the small note window that displays and click the X button to close the note, saving it. To attach the note to the email message, make sure the Mail section of Outlook is active. Double-click on the message onto which you want to attach the note. Leaving the Message window open, go back to the main Outlook window and select Notes from the Navigation Bar, as mentioned above. Drag the note you created to the message window. The note is added to the message as an attachment. When you close the Message window, a confirmation dialog box displays asking if you want to save your changes. To save the message with your note added as an attachment, click Yes. A paperclip icon is added to the message in the list of email messages, indicating there is an attachment in the message. When you add a note to an email message as an attachment using the Notes section of Outlook, you don’t have to keep the original note. The note is now saved with the message, and can be deleted from the Notes section.     

    Read the article

  • Thread Message Loop Hangs in Delphi

    - by erikjw
    Hello all. I have a simple Delphi program that I'm working on, in which I am attempting to use threading to separate the functionality of the program from its GUI, and to keep the GUI responsive during more lengthy tasks, etc. Basically, I have a 'controller' TThread, and a 'view' TForm. The view knows the controller's handle, which it uses to send the controller messages via PostThreadMessage. I have had no problem in the past using this sort of model for forms which are not the main form, but for some reason, when I attempt to use this model for the main form, the message loop of the thread just quits. Here is my code for the threads message loop: procedure TController.Execute; var Msg : TMsg; begin while not Terminated do begin if (Integer(GetMessage(Msg, hwnd(0), 0, 0)) = -1) then begin Synchronize(Terminate); end; TranslateMessage(Msg); DispatchMessage(Msg); case Msg.message of // ...call different methods based on message end; end; To set up the controller, I do this: Controller := TController.Create(true); // Create suspended Controller.FreeOnTerminate := True; Controller.Resume; For processing the main form's messages, I have tried using both Application.Run and the following loop (immediately after Controller.Resume) while not Application.Terminated do begin Application.ProcessMessages; end; I've run stuck here - any help would be greatly appreciated.

    Read the article

  • MSMQ first Message.Body in queue is OK, all following Message.Body in queue are empty

    - by Andrew A
    I send a handful of identical (except for Id#, obviously) messages to an MSMQ queue on my local machine. The body of the messages is a serialized XElement object. When I try to process the first message in the queue, I am able to successfully de-serialize the Message.Body object and save it to file. However, when trying to process the next (or any subsequent) message, the Message.Body is absent, and an exception is thrown. I have verified the Message ID's are correct for the message attempting to be processed. The XML being serialized is properly formed. Any ideas? I am basing my code on the Microsoft MSMQ Book order sample found here: http://msdn.microsoft.com/en-us/library/ms180970%28VS.80%29.aspx // Create Envelope XML object XElement envelope = new XElement(env + "Envelope", new XAttribute(XNamespace.Xmlns + "env", env.NamespaceName) <snip> //Send envelope as message body MessageQueue myQueue = new MessageQueue(String.Format(@"FORMATNAME:DIRECT=OS:localhost\private$\mqsample")); myQueue.DefaultPropertiesToSend.Recoverable = true; // Prepare message Message myMessage = new Message(); myMessage.ResponseQueue = new MessageQueue(String.Format(System.Globalization.CultureInfo.InvariantCulture, @"FORMATNAME:DIRECT=TCP:192.168.1.217\private$\mqdemoAck")); myMessage.Body = envelope; // Send the message into the queue. myQueue.Send(myMessage,"message label"); //Retrieve messages from queue LabelIdMapping labelID = (LabelIdMapping)mqlistBox3.SelectedItem; System.Messaging.Message message = mqOrderQueue.ReceiveById(labelID.Id); The Message.Body value I see on the 1st retrieve is as expected: <?xml version="1.0" encoding="utf-8"?> <string>Some String</string> However, the 2nd and subsequent retrieve operations Message.Body is: "Cannot deserialize the message passed as an argument. Cannot recognize the serialization format." How does this work fine the first time but not after that? I have tried message.Dispose() after retrieving it but it did not help. Thank you very much for any help on this!

    Read the article

  • UI message passing programming paradigm

    - by Ronald Wildenberg
    I recently (about two months ago) read an article that explained some user interface paradigm that I can't remember the name of and I also can't find the article anymore. The paradigm allows for decoupling the user interface and backend through message passing (via some queueing implementation). So each user action results in a message being pased to the backend. The user interface is then updated to inform the user that his request is being processed. The assumption is that a user interface is stale by definition. When you read data from some store into memory, it is stale because another transaction may be updating the same data already. If you assume this, it makes no sense to try to represent the 'current' database state in the user interface (so the delay introduced by passing messages to a backend doesn't matter). If I remember correctly, the article also mentioned a read-optimized data store for rendering the user interface. The article assumed a high-traffic web application. A primary reason for using a message queue communicating with the backend is performance: returning control to the user as soon as possible. Updating backend stores is handled by another process and eventually these changes also become visible to the user. I hope I have explained accurately enough what I'm looking for. If someone can provide some pointers to what I'm looking for, thanks very much in advance.

    Read the article

  • Threading Overview

    - by ACShorten
    One of the major features of the batch framework is the ability to support multi-threading. The multi-threading support allows a site to increase throughput on an individual batch job by splitting the total workload across multiple individual threads. This means each thread has fine level control over a segment of the total data volume at any time. The idea behind the threading is based upon the notion that "many hands make light work". Each thread takes a segment of data in parallel and operates on that smaller set. The object identifier allocation algorithm built into the product randomly assigns keys to help ensure an even distribution of the numbers of records across the threads and to minimize resource and lock contention. The best way to visualize the concept of threading is to use a "pie" analogy. Imagine the total workset for a batch job is a "pie". If you split that pie into equal sized segments, each segment would represent an individual thread. The concept of threading has advantages and disadvantages: Smaller elapsed runtimes - Jobs that are multi-threaded finish earlier than jobs that are single threaded. With smaller amounts of work to do, jobs with threading will finish earlier. Note: The elapsed runtime of the threads is rarely proportional to the number of threads executed. Even though contention is minimized, some contention does exist for resources which can adversely affect runtime. Threads can be managed individually – Each thread can be started individually and can also be restarted individually in case of failure. If you need to rerun thread X then that is the only thread that needs to be resubmitted. Threading can be somewhat dynamic – The number of threads that are run on any instance can be varied as the thread number and thread limit are parameters passed to the job at runtime. They can also be configured using the configuration files outlined in this document and the relevant manuals.Note: Threading is not dynamic after the job has been submitted Failure risk due to data issues with threading is reduced – As mentioned earlier individual threads can be restarted in case of failure. This limits the risk to the total job if there is a data issue with a particular thread or a group of threads. Number of threads is not infinite – As with any resource there is a theoretical limit. While the thread limit can be up to 1000 threads, the number of threads you can physically execute will be limited by the CPU and IO resources available to the job at execution time. Theoretically with the objects identifiers evenly spread across the threads the elapsed runtime for the threads should all be the same. In other words, when executing in multiple threads theoretically all the threads should finish at the same time. Whilst this is possible, it is also possible that individual threads may take longer than other threads for the following reasons: Workloads within the threads are not always the same - Whilst each thread is operating on the roughly the same amounts of objects, the amount of processing for each object is not always the same. For example, an account may have a more complex rate which requires more processing or a meter has a complex amount of configuration to process. If a thread has a higher proportion of objects with complex processing it will take longer than a thread with simple processing. The amount of processing is dependent on the configuration of the individual data for the job. Data may be skewed – Even though the object identifier generation algorithm attempts to spread the object identifiers across threads there are some jobs that use additional factors to select records for processing. If any of those factors exhibit any data skew then certain threads may finish later. For example, if more accounts are allocated to a particular part of a schedule then threads in that schedule may finish later than other threads executed. Threading is important to the success of individual jobs. For more guidelines and techniques for optimizing threading refer to Multi-Threading Guidelines in the Batch Best Practices for Oracle Utilities Application Framework based products (Doc Id: 836362.1) whitepaper available from My Oracle Support

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Lock-free multi-threading is for real threading experts...

    - by vdhant
    I was reading through an answer that Jon Skeet gave to a question and in it he mentioned this: As far as I'm concerned, lock-free multi-threading is for real threading experts, of which I'm not one. Its not the first time that I have heard this, but I find very few people talking about how you actually do it if you are interested in learning how to write lock-free multi-threading code. So my question is besides learning all you can about threading, etc where do you start trying to learn to specifically write lock-free multi-threading code and what are some good resources. Cheers

    Read the article

  • Hyper-Threading and Dual-Core, What's the Difference?

    - by Josh Stodola
    In a conversation with the network administator, I mentioned that my machine was a dual-core. He told me it was not. I brought up the task manager, went to the perfomance tab, and showed him that there are two separate CPU usage graphs. I have a quad-core machine at home and it has four graphs. He told there were two graphs on this particular machine because of hyper-threading. I used to have a hyper-thread pentium 4 processor back in the day, but I never fully understood what it meant. So what is the difference between hyper threading and dual-core? And how do you tell which one you have?

    Read the article

  • What is the best way to diagrammatically represent a system threading architecture?

    - by thegreendroid
    I am yet to find the perfect way to diagrammatically represent the overall threading architecture for a system (using UML or otherwise). I am after a diagramming technique that would show all the threads in a given system and how they interact with each other. There are a few similar questions - Drawing Thread Interaction, UML Diagrams of Multithreaded Applications and Intuitive UML Approach to Depict Threads but they don't fully answer my question. What are some of the techniques that you've found useful to depict the overall threading architecture for a system?

    Read the article

  • WebClient error when using a thread in .NET

    - by Kiranu
    I'm having a very weird error using the WebClient class in .NET 4. The app simply downloads some files off the internet and provides output on a textbox (the GUI is WPF). The method that does this is the following: void DownloadFiles(object files) { fileL = (List<string>) files; foreach (string url in fileL) { byte[] data; using (System.Net.WebClient k = new WebClient()) { data = k.DownloadData(url); } //Bunch of irrelevant code goes here... } } (I added the using while trying to divine [yes I'm that desperate/ignorant] a solution, the problem happens even if the webclient is declared and initialized outside the foreach loop) Now the problem appears only when I'm executing this method on a thread separate from the WPF UI main thread. If it is executed on the UI thread then it works perfectly. When a new thread is created with: Thread t = new Thread(DownloadFiles); t.Start(files); The first time the code goes into the loop it will work, but when its the second pass inside the loop, I will always receive a TargetParameterCountException. I can't make any sense of this error. Any help is very much appreciated. EDIT Here are the Exception Details: Exception.Message = "Parameter count mismatch." Exception.InnerException = null Exception.Source = " mscorlib" The StackTrace follows: at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Int32 numArgs) at MS.Internal.Threading.ExceptionFilterHelper.TryCatchWhen(Object source, Delegate method, Object args, Int32 numArgs, Delegate catchHandler) at System.Windows.Threading.DispatcherOperation.InvokeImpl() at System.Windows.Threading.DispatcherOperation.InvokeInSecurityContext(Object state) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Threading.DispatcherOperation.Invoke() at System.Windows.Threading.Dispatcher.ProcessQueue() at System.Windows.Threading.Dispatcher.WndProcHook(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndWrapper.WndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndSubclass.DispatcherCallbackOperation(Object o) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Int32 numArgs) at MS.Internal.Threading.ExceptionFilterHelper.TryCatchWhen(Object source, Delegate method, Object args, Int32 numArgs, Delegate catchHandler) at System.Windows.Threading.Dispatcher.InvokeImpl(DispatcherPriority priority, TimeSpan timeout, Delegate method, Object args, Int32 numArgs) at MS.Win32.HwndSubclass.SubclassWndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam) at MS.Win32.UnsafeNativeMethods.DispatchMessage(MSG& msg) at System.Windows.Threading.Dispatcher.PushFrameImpl(DispatcherFrame frame) at System.Windows.Threading.Dispatcher.PushFrame(DispatcherFrame frame) at System.Windows.Threading.Dispatcher.Run() at System.Windows.Application.RunDispatcher(Object ignore) at System.Windows.Application.RunInternal(Window window) at System.Windows.Application.Run(Window window) at System.Windows.Application.Run() at FileDownloader.App.Main() in d:\mis documentos\visual studio 2010\Projects\OneMangaDownloader\FileDownloader\obj\x86\Debug\App.g.cs:line 0 at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart()

    Read the article

  • Message Queue: Which one is the best scenario?

    - by pandaforme
    I write a web crawler. The crawler has 2 steps: get a html page then parse the page I want to use message queue to improve performance and throughput. I think 2 scenarios: scenario 1: structure: urlProducer -> queue1 -> urlConsumer -> queue2 -> parserConsumer urlProducer: get a target url and add it to queue1 urlConsumer: according to the job info, get the html page and add it to queue2 parserConsumer: according to the job info, parse the page scenario 2: structure: urlProducer -> queue1 -> urlConsumer parserProducer-> queue2 -> parserConsumer urlProducer : get a target url and add it to queue1 urlConsumer: according to the job info, get the html page and write it to db parserProducer: get the html page from db and add it to queue2 parserConsumer: according to the job info, parse the page There are multiple producers or consumers in each structure. scenario1 likes a chaining call. It's difficult to find the point of problem, when occurring errors. scenario2 decouples queue1 and queue2. It's easy to find the point of problem, when occurring errors. I'm not sure the notion is correct. Which one is the best scenario? Or other scenarios? Thanks~

    Read the article

  • Silverlight Threading and its usage

    - by Harryboy
    Hello Experts, Scenario : I am working on LOB application, as in silverlight every call to service is Async so automatically UI is not blocked when the request is processed at server side. Silverlight also supports threading as per my understanding if you are developing LOB application threads are most useful when you need to do some IO operation but as i am not using OOB application it is not possible to access client resource and for all server request it is by default Async. In above scenario is there any usage of Threading or can anyone provide some good example where by using threading we can improve performance. I have tried to search a lot on this topic but everywhere i have identified some simple threading example from which it is very difficult to understand the real benefit. Thanks for help

    Read the article

  • Python Locking Implementation (with threading module)

    - by Matty
    This is probably a rudimentary question, but I'm new to threaded programming in Python and am not entirely sure what the correct practice is. Should I be creating a single lock object (either globally or being passed around) and using that everywhere that I need to do locking? Or, should I be creating multiple lock instances in each of the classes where I will be employing them. Take these 2 rudimentary code samples, which direction is best to go? The main difference being that a single lock instance is used in both class A and B in the second, while multiple instances are used in the first. Sample 1 class A(): def __init__(self, theList): self.theList = theList self.lock = threading.Lock() def poll(self): while True: # do some stuff that eventually needs to work with theList self.lock.acquire() try: self.theList.append(something) finally: self.lock.release() class B(threading.Thread): def __init__(self,theList): self.theList = theList self.lock = threading.Lock() self.start() def run(self): while True: # do some stuff that eventually needs to work with theList self.lock.acquire() try: self.theList.remove(something) finally: self.lock.release() if __name__ == "__main__": aList = [] for x in range(10): B(aList) A(aList).poll() Sample 2 class A(): def __init__(self, theList,lock): self.theList = theList self.lock = lock def poll(self): while True: # do some stuff that eventually needs to work with theList self.lock.acquire() try: self.theList.append(something) finally: self.lock.release() class B(threading.Thread): def __init__(self,theList,lock): self.theList = theList self.lock = lock self.start() def run(self): while True: # do some stuff that eventually needs to work with theList self.lock.acquire() try: self.theList.remove(something) finally: self.lock.release() if __name__ == "__main__": lock = threading.Lock() aList = [] for x in range(10): B(aList,lock) A(aList,lock).poll()

    Read the article

  • Threading in python: retrieve return value when using target=

    - by Philipp Keller
    I want to get the "free memory" of a bunch of servers like this: def get_mem(servername): res = os.popen('ssh %s "grep MemFree /proc/meminfo | sed \'s/[^0-9]//g\'"' % servername) return res.read().strip() since this can be threaded I want to do something like that: import threading thread1 = threading.Thread(target=get_mem, args=("server01", )) thread1.start() But now: how can I access the return value(s) of the get_mem functions? Do I really need to go the full fledged way creating a class MemThread(threading.Thread) and overwriting __init__ and __run__?

    Read the article

  • Windows Azure Service Bus Splitter and Aggregator

    - by Alan Smith
    This article will cover basic implementations of the Splitter and Aggregator patterns using the Windows Azure Service Bus. The content will be included in the next release of the “Windows Azure Service Bus Developer Guide”, along with some other patterns I am working on. I’ve taken the pattern descriptions from the book “Enterprise Integration Patterns” by Gregor Hohpe. I bought a copy of the book in 2004, and recently dusted it off when I started to look at implementing the patterns on the Windows Azure Service Bus. Gregor has also presented an session in 2011 “Enterprise Integration Patterns: Past, Present and Future” which is well worth a look. I’ll be covering more patterns in the coming weeks, I’m currently working on Wire-Tap and Scatter-Gather. There will no doubt be a section on implementing these patterns in my “SOA, Connectivity and Integration using the Windows Azure Service Bus” course. There are a number of scenarios where a message needs to be divided into a number of sub messages, and also where a number of sub messages need to be combined to form one message. The splitter and aggregator patterns provide a definition of how this can be achieved. This section will focus on the implementation of basic splitter and aggregator patens using the Windows Azure Service Bus direct programming model. In BizTalk Server receive pipelines are typically used to implement the splitter patterns, with sequential convoy orchestrations often used to aggregate messages. In the current release of the Service Bus, there is no functionality in the direct programming model that implements these patterns, so it is up to the developer to implement them in the applications that send and receive messages. Splitter A message splitter takes a message and spits the message into a number of sub messages. As there are different scenarios for how a message can be split into sub messages, message splitters are implemented using different algorithms. The Enterprise Integration Patterns book describes the splatter pattern as follows: How can we process a message if it contains multiple elements, each of which may have to be processed in a different way? Use a Splitter to break out the composite message into a series of individual messages, each containing data related to one item. The Enterprise Integration Patterns website provides a description of the Splitter pattern here. In some scenarios a batch message could be split into the sub messages that are contained in the batch. The splitting of a message could be based on the message type of sub-message, or the trading partner that the sub message is to be sent to. Aggregator An aggregator takes a stream or related messages and combines them together to form one message. The Enterprise Integration Patterns book describes the aggregator pattern as follows: How do we combine the results of individual, but related messages so that they can be processed as a whole? Use a stateful filter, an Aggregator, to collect and store individual messages until a complete set of related messages has been received. Then, the Aggregator publishes a single message distilled from the individual messages. The Enterprise Integration Patterns website provides a description of the Aggregator pattern here. A common example of the need for an aggregator is in scenarios where a stream of messages needs to be combined into a daily batch to be sent to a legacy line-of-business application. The BizTalk Server EDI functionality provides support for batching messages in this way using a sequential convoy orchestration. Scenario The scenario for this implementation of the splitter and aggregator patterns is the sending and receiving of large messages using a Service Bus queue. In the current release, the Windows Azure Service Bus currently supports a maximum message size of 256 KB, with a maximum header size of 64 KB. This leaves a safe maximum body size of 192 KB. The BrokeredMessage class will support messages larger than 256 KB; in fact the Size property is of type long, implying that very large messages may be supported at some point in the future. The 256 KB size restriction is set in the service bus components that are deployed in the Windows Azure data centers. One of the ways of working around this size restriction is to split large messages into a sequence of smaller sub messages in the sending application, send them via a queue, and then reassemble them in the receiving application. This scenario will be used to demonstrate the pattern implementations. Implementation The splitter and aggregator will be used to provide functionality to send and receive large messages over the Windows Azure Service Bus. In order to make the implementations generic and reusable they will be implemented as a class library. The splitter will be implemented in the LargeMessageSender class and the aggregator in the LargeMessageReceiver class. A class diagram showing the two classes is shown below. Implementing the Splitter The splitter will take a large brokered message, and split the messages into a sequence of smaller sub-messages that can be transmitted over the service bus messaging entities. The LargeMessageSender class provides a Send method that takes a large brokered message as a parameter. The implementation of the class is shown below; console output has been added to provide details of the splitting operation. public class LargeMessageSender {     private static int SubMessageBodySize = 192 * 1024;     private QueueClient m_QueueClient;       public LargeMessageSender(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public void Send(BrokeredMessage message)     {         // Calculate the number of sub messages required.         long messageBodySize = message.Size;         int nrSubMessages = (int)(messageBodySize / SubMessageBodySize);         if (messageBodySize % SubMessageBodySize != 0)         {             nrSubMessages++;         }           // Create a unique session Id.         string sessionId = Guid.NewGuid().ToString();         Console.WriteLine("Message session Id: " + sessionId);         Console.Write("Sending {0} sub-messages", nrSubMessages);           Stream bodyStream = message.GetBody<Stream>();         for (int streamOffest = 0; streamOffest < messageBodySize;             streamOffest += SubMessageBodySize)         {                                     // Get the stream chunk from the large message             long arraySize = (messageBodySize - streamOffest) > SubMessageBodySize                 ? SubMessageBodySize : messageBodySize - streamOffest;             byte[] subMessageBytes = new byte[arraySize];             int result = bodyStream.Read(subMessageBytes, 0, (int)arraySize);             MemoryStream subMessageStream = new MemoryStream(subMessageBytes);               // Create a new message             BrokeredMessage subMessage = new BrokeredMessage(subMessageStream, true);             subMessage.SessionId = sessionId;               // Send the message             m_QueueClient.Send(subMessage);             Console.Write(".");         }         Console.WriteLine("Done!");     }} The LargeMessageSender class is initialized with a QueueClient that is created by the sending application. When the large message is sent, the number of sub messages is calculated based on the size of the body of the large message. A unique session Id is created to allow the sub messages to be sent as a message session, this session Id will be used for correlation in the aggregator. A for loop in then used to create the sequence of sub messages by creating chunks of data from the stream of the large message. The sub messages are then sent to the queue using the QueueClient. As sessions are used to correlate the messages, the queue used for message exchange must be created with the RequiresSession property set to true. Implementing the Aggregator The aggregator will receive the sub messages in the message session that was created by the splitter, and combine them to form a single, large message. The aggregator is implemented in the LargeMessageReceiver class, with a Receive method that returns a BrokeredMessage. The implementation of the class is shown below; console output has been added to provide details of the splitting operation.   public class LargeMessageReceiver {     private QueueClient m_QueueClient;       public LargeMessageReceiver(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public BrokeredMessage Receive()     {         // Create a memory stream to store the large message body.         MemoryStream largeMessageStream = new MemoryStream();           // Accept a message session from the queue.         MessageSession session = m_QueueClient.AcceptMessageSession();         Console.WriteLine("Message session Id: " + session.SessionId);         Console.Write("Receiving sub messages");           while (true)         {             // Receive a sub message             BrokeredMessage subMessage = session.Receive(TimeSpan.FromSeconds(5));               if (subMessage != null)             {                 // Copy the sub message body to the large message stream.                 Stream subMessageStream = subMessage.GetBody<Stream>();                 subMessageStream.CopyTo(largeMessageStream);                   // Mark the message as complete.                 subMessage.Complete();                 Console.Write(".");             }             else             {                 // The last message in the sequence is our completeness criteria.                 Console.WriteLine("Done!");                 break;             }         }                     // Create an aggregated message from the large message stream.         BrokeredMessage largeMessage = new BrokeredMessage(largeMessageStream, true);         return largeMessage;     } }   The LargeMessageReceiver initialized using a QueueClient that is created by the receiving application. The receive method creates a memory stream that will be used to aggregate the large message body. The AcceptMessageSession method on the QueueClient is then called, which will wait for the first message in a message session to become available on the queue. As the AcceptMessageSession can throw a timeout exception if no message is available on the queue after 60 seconds, a real-world implementation should handle this accordingly. Once the message session as accepted, the sub messages in the session are received, and their message body streams copied to the memory stream. Once all the messages have been received, the memory stream is used to create a large message, that is then returned to the receiving application. Testing the Implementation The splitter and aggregator are tested by creating a message sender and message receiver application. The payload for the large message will be one of the webcast video files from http://www.cloudcasts.net/, the file size is 9,697 KB, well over the 256 KB threshold imposed by the Service Bus. As the splitter and aggregator are implemented in a separate class library, the code used in the sender and receiver console is fairly basic. The implementation of the main method of the sending application is shown below.   static void Main(string[] args) {     // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Open the input file.     FileStream fileStream = new FileStream(AccountDetails.TestFile, FileMode.Open);       // Create a BrokeredMessage for the file.     BrokeredMessage largeMessage = new BrokeredMessage(fileStream, true);       Console.WriteLine("Sending: " + AccountDetails.TestFile);     Console.WriteLine("Message body size: " + largeMessage.Size);     Console.WriteLine();         // Send the message with a LargeMessageSender     LargeMessageSender sender = new LargeMessageSender(queueClient);     sender.Send(largeMessage);       // Close the messaging facory.     factory.Close();  } The implementation of the main method of the receiving application is shown below. static void Main(string[] args) {       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Create a LargeMessageReceiver and receive the message.     LargeMessageReceiver receiver = new LargeMessageReceiver(queueClient);     BrokeredMessage largeMessage = receiver.Receive();       Console.WriteLine("Received message");     Console.WriteLine("Message body size: " + largeMessage.Size);       string testFile = AccountDetails.TestFile.Replace(@"\In\", @"\Out\");     Console.WriteLine("Saving file: " + testFile);       // Save the message body as a file.     Stream largeMessageStream = largeMessage.GetBody<Stream>();     largeMessageStream.Seek(0, SeekOrigin.Begin);     FileStream fileOut = new FileStream(testFile, FileMode.Create);     largeMessageStream.CopyTo(fileOut);     fileOut.Close();       Console.WriteLine("Done!"); } In order to test the application, the sending application is executed, which will use the LargeMessageSender class to split the message and place it on the queue. The output of the sender console is shown below. The console shows that the body size of the large message was 9,929,365 bytes, and the message was sent as a sequence of 51 sub messages. When the receiving application is executed the results are shown below. The console application shows that the aggregator has received the 51 messages from the message sequence that was creating in the sending application. The messages have been aggregated to form a massage with a body of 9,929,365 bytes, which is the same as the original large message. The message body is then saved as a file. Improvements to the Implementation The splitter and aggregator patterns in this implementation were created in order to show the usage of the patterns in a demo, which they do quite well. When implementing these patterns in a real-world scenario there are a number of improvements that could be made to the design. Copying Message Header Properties When sending a large message using these classes, it would be great if the message header properties in the message that was received were copied from the message that was sent. The sending application may well add information to the message context that will be required in the receiving application. When the sub messages are created in the splitter, the header properties in the first message could be set to the values in the original large message. The aggregator could then used the values from this first sub message to set the properties in the message header of the large message during the aggregation process. Using Asynchronous Methods The current implementation uses the synchronous send and receive methods of the QueueClient class. It would be much more performant to use the asynchronous methods, however doing so may well affect the sequence in which the sub messages are enqueued, which would require the implementation of a resequencer in the aggregator to restore the correct message sequence. Handling Exceptions In order to keep the code readable no exception handling was added to the implementations. In a real-world scenario exceptions should be handled accordingly.

    Read the article

  • MessageListener didnt receive full message ASMACK Android

    - by Frank Junior
    i got problem when want to receive message, right now i am able to receive message, but some attribut is missing class MyMessageListener implements MessageListener { @Override public void processMessage(Chat chat, Message message) { Util.DebugLog("message->"+message.toXmlns()); } } what i got is <message to="[email protected]" type="chat" from="[email protected]/ff3b2485"><body asdf="asdf">aaa</body></message> talk_id and chat type inside message is missing. This is want i want when receive message <message to="[email protected]" type="chat" talk_id="304" chat_type="0" from="[email protected]/ff3b2485"><body asdf="asdf">aaa</body></message>

    Read the article

  • SQL SERVER – Parsing SSIS Catalog Messages – Notes from the Field #030

    - by Pinal Dave
    [Note from Pinal]: This is a new episode of Notes from the Field series. SQL Server Integration Service (SSIS) is one of the most key essential part of the entire Business Intelligence (BI) story. It is a platform for data integration and workflow applications. The tool may also be used to automate maintenance of SQL Server databases and updates to multidimensional cube data. In this episode of the Notes from the Field series I requested SSIS Expert Andy Leonard to discuss one of the most interesting concepts of SSIS Catalog Messages. There are plenty of interesting and useful information captured in the SSIS catalog and we will learn together how to explore the same. The SSIS Catalog captures a lot of cool information by default. Here’s a query I use to parse messages from the catalog.operation_messages table in the SSISDB database, where the logged messages are stored. This query is set up to parse a default message transmitted by the Lookup Transformation. It’s one of my favorite messages in the SSIS log because it gives me excellent information when I’m tuning SSIS data flows. The message reads similar to: Data Flow Task:Information: The Lookup processed 4485 rows in the cache. The processing time was 0.015 seconds. The cache used 1376895 bytes of memory. The query: USE SSISDB GO DECLARE @MessageSourceType INT = 60 DECLARE @StartOfIDString VARCHAR(100) = 'The Lookup processed ' DECLARE @ProcessingTimeString VARCHAR(100) = 'The processing time was ' DECLARE @CacheUsedString VARCHAR(100) = 'The cache used ' DECLARE @StartOfIDSearchString VARCHAR(100) = '%' + @StartOfIDString + '%' DECLARE @ProcessingTimeSearchString VARCHAR(100) = '%' + @ProcessingTimeString + '%' DECLARE @CacheUsedSearchString VARCHAR(100) = '%' + @CacheUsedString + '%' SELECT operation_id , SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1))) AS LookupRowsCount , SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1))) AS LookupProcessingTime , CASE WHEN (CONVERT(numeric(3,3),SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1))))) = 0 THEN 0 ELSE CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))) / CONVERT(numeric(3,3),SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1)))) END AS LookupRowsPerSecond , SUBSTRING(MESSAGE, (PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1)) - (PATINDEX(@CacheUsedSearchString, MESSAGE) + LEN(@CacheUsedString) + 1))) AS LookupBytesUsed ,CASE WHEN (CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))))= 0 THEN 0 ELSE CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1)) - (PATINDEX(@CacheUsedSearchString, MESSAGE) + LEN(@CacheUsedString) + 1)))) / CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))) END AS LookupBytesPerRow FROM [catalog].[operation_messages] WHERE message_source_type = @MessageSourceType AND MESSAGE LIKE @StartOfIDSearchString GO Note that you have to set some parameter values: @MessageSourceType [int] – represents the message source type value from the following results: Value     Description 10           Entry APIs, such as T-SQL and CLR Stored procedures 20           External process used to run package (ISServerExec.exe) 30           Package-level objects 40           Control Flow tasks 50           Control Flow containers 60           Data Flow task 70           Custom execution message Note: Taken from Reza Rad’s (excellent!) helper.MessageSourceType table found here. @StartOfIDString [VarChar(100)] – use this to uniquely identify the message field value you wish to parse. In this case, the string ‘The Lookup processed ‘ identifies all the Lookup Transformation messages I desire to parse. @ProcessingTimeString [VarChar(100)] – this parameter is message-specific. I use this parameter to specifically search the message field value for the beginning of the Lookup Processing Time value. For this execution, I use the string ‘The processing time was ‘. @CacheUsedString [VarChar(100)] – this parameter is also message-specific. I use this parameter to specifically search the message field value for the beginning of the Lookup Cache  Used value. It returns the memory used, in bytes. For this execution, I use the string ‘The cache used ‘. The other parameters are built from variations of the parameters listed above. The query parses the values into text. The string values are converted to numeric values for ratio calculations; LookupRowsPerSecond and LookupBytesPerRow. Since ratios involve division, CASE statements check for denominators that equal 0. Here are the results in an SSMS grid: This is not the only way to retrieve this information. And much of the code lends itself to conversion to functions. If there is interest, I will share the functions in an upcoming post. If you want to get started with SSIS with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Backup and Restore, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SSIS

    Read the article

  • Is there a tool to do round trip software engineering between a sequence diagram and a group of objects that message back and forth?

    - by DeveloperDon
    Is there a tool to do round trip software engineering between a sequence diagram and a group of objects that message back and forth? Perhaps this seems a little exotic, but it seems like a function that includes message calls or even method invocations on other objects could be automatically converted to a sequence diagram given that it is not hard to do manually. Similarly, when a sequence diagram is modified, based on the message name and type of message, should it not be possible to add a message or method to the calling object?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >