Search Results

Search found 2402 results on 97 pages for 'metadata discovery'.

Page 1/97 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Service Discovery in WCF 4.0 – Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Defining Discovery: Core Concepts

    - by Joe Lamantia
    Discovery tools have had a referencable working definition since at least 2001, when Ben Shneiderman published 'Inventing Discovery Tools: Combining Information Visualization with Data Mining'.  Dr. Shneiderman suggested the combination of the two distinct fields of data mining and information visualization could manifest as new category of tools for discovery, an understanding that remains essentially unaltered over ten years later.  An industry analyst report titled Visual Discovery Tools: Market Segmentation and Product Positioning from March of this year, for example, reads, "Visual discovery tools are designed for visual data exploration, analysis and lightweight data mining." Tools should follow from the activities people undertake (a foundational tenet of activity centered design), however, and Dr. Shneiderman does not in fact describe or define discovery activity or capability. As I read it, discovery is assumed to be the implied sum of the separate fields of visualization and data mining as they were then understood.  As a working definition that catalyzes a field of product prototyping, it's adequate in the short term.  In the long term, it makes the boundaries of discovery both derived and temporary, and leaves a substantial gap in the landscape of core concepts around discovery, making consensus on the nature of most aspects of discovery difficult or impossible to reach.  I think this definitional gap is a major reason that discovery is still an ambiguous product landscape. To help close that gap, I'm suggesting a few definitions of four core aspects of discovery.  These come out of our sustained research into discovery needs and practices, and have the goal of clarifying the relationship between discvoery and other analytical categories.  They are suggested, but should be internally coherent and consistent.   Discovery activity is: "Purposeful sense making activity that intends to arrive at new insights and understanding through exploration and analysis (and for these we have specific defintions as well) of all types and sources of data." Discovery capability is: "The ability of people and organizations to purposefully realize valuable insights that address the full spectrum of business questions and problems by engaging effectively with all types and sources of data." Discovery tools: "Enhance individual and organizational ability to realize novel insights by augmenting and accelerating human sense making to allow engagement with all types of data at all useful scales." Discovery environments: "Enable organizations to undertake effective discovery efforts for all business purposes and perspectives, in an empirical and cooperative fashion." Note: applicability to a world of Big data is assumed - thus the refs to all scales / types / sources - rather than stated explicitly.  I like that Big Data doesn't have to be written into this core set of definitions, b/c I think it's a transitional label - the new version of Web 2.0 - and goes away over time. References and Resources: Inventing Discovery Tools Visual Discovery Tools: Market Segmentation and Product Positioning Logic versus usage: the case for activity-centered design A Taxonomy of Enterprise Search and Discovery

    Read the article

  • Storing SCA Metadata in the Oracle Metadata Services Repository by Nicolás Fonnegra Martinez and Markus Lohn

    - by JuergenKress
    The advantages of using the Oracle Metadata Services Repository as a central storage for the metadata. SCA has been available since the release of the Oracle SOA Suite 11g. This technology combines and orchestrates several SOA components inside an SCA composite, making design, development, deployment, and maintenance easier. SCA development is metadata-driven, meaning that metadata artifacts, such as Web Services Description Language (WSDL), XML Schema Definition (XSD), XML, others, define the composite's behavior. With the increased number of composites and the dependencies among them, it became necessary to manage all the metadata in an adequate way. This article will address the advantages of using the Oracle Metadata Services (MDS) repository as a central storage for the metadata. The MDS repository is a central part of the Oracle Fusion Middleware landscape, managing the metadata for several technologies, such as Oracle Application Development Framework (Oracle ADF), Oracle WebCenter, and the Oracle SOA Suite. This article is divided into three parts. The first part provides an overview of SCA and MDS. The second part describes some MDS tasks that help in the management of the SCA metadata files inside the repository. The third part shows how to develop SCA composites in combination with an MDS repository. Read the full article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: SCA Metadata. Metadata Services Repository,Nicolás Fonnegra Martinez,Markus Lohn,SOA Community,Oracle SOA,Oracle BPM,BPM,Community,OPN,Jürgen Kress

    Read the article

  • OWB 11gR2 - Find and Search Metadata in Designer

    - by David Allan
    Here are some tools and techniques for finding objects, specifically in the design repository. There are ways of navigating and collating objects that are useful for day to day development and build-time usage - this includes features out of the box and utilities constructed on top. There are a variety of techniques to navigate and find objects in the repository, the first 3 are out of the box, the 4th is an expert utility. Navigating by the tree, grouping by project and module - ok if you are aware of the exact module/folder that objects reside in. The structure panel is a useful way of finding parts of an object, especially when large rather than using the canvas. In large scale projects it helps to have accelerators (either find or collections below). Advanced find to search by name - 11gR2 included a find capability specifically for large scale projects. There were improvements in both the tree search and the object editors (including highlighting in mapping for example). So you can now do regular expression based search and quickly navigate to objects within a repository. Collections - logically organize your objects into virtual folders by shortcutting the actual objects. This is useful for a range of things since all the OWB services operate on collections too (export/import, validation, deployment). See the post here for new collection functionality in 11gR2. Reports for searching by type, updated on, updated by etc. Useful for activities such as periodic incremental actions (deploy all mappings changed in the past week). The report style view is useful since I can quickly see who changed what and when. You can see all the audit details for objects within each objects property inspector, but its useful to just get all objects changed today or example, all objects changed since my last build etc. This utility combines both UI extensions via experts and the public views on the repository. In the figure to the right you see the contextual option 'Object Search' which invokes the utility, you can see I have quite a number of modules within my project. Figure out all the potential objects which have been changed is not simple. The utility is an expert which provides this kind of search capability. The utility provides a report of the objects in the design repository which satisfy some filter criteria. The type of criteria includes; objects updated in the last n days optionally filter the objects updated by user filter the user by project and by type (table/mappings etc.) The search dialog appears with these options, you can multi-select the object types, so for example you can select TABLE and MAPPING. Its also possible to search across projects if need be. If you have multiple users using the repository you can define the OWB user name in the 'Updated by' property to restrict the report to just that user also. Finally there is a search name that will be used for some of the options such as building a collection - this name is used for the collection to be built. In the example I have done, I've just searched my project for all process flows and mappings that users have updated in the last 7 days. The results of the query are returned in a table containing the object names, types, full path and audit details. The columns are sort-able, you can sort the results by name, type, path etc. One of the cool things here, is that you can then perform operations on these objects - such as edit them, export single selection or entire results to MDL, create a collection from the results (now you have a saved set of references in the repository, you could do deploy/export etc.), create a deployment script from the results...or even add in your own ideas! You see from this that you can do bulk operations on sets of objects based on search results. So for example selecting the 'Build Collection' option creates a collection with all of the objects from my search, you can subsequently deploy/generate/maintain this collection of objects. Under the hood of the expert if just basic OMB commands from the product and the use of the public views on the design repository. You can see how easy it is to build up macro-like capabilities that will help you do day-to-day as well as build like tasks on sets of objects.

    Read the article

  • Extensible Metadata in Oracle IRM 11g

    - by martin.abrahams
    Another significant change in Oracle IRM 11g is that we now use XML to create the tamperproof header for each sealed document. This article explains what this means, and what benefit it offers. So, every sealed file has a metadata header that contains information about the document - its classification, its format, the user who sealed it, the name and URL of the IRM Server, and much more. The IRM Desktop and other IRM applications use this information to formulate the request for rights, as well as to enhance the user experience by exposing some of the metadata in the user interface. For example, in Windows explorer you can see some metadata exposed as properties of a sealed file and in the mouse-over tooltip. The following image shows 10g and 11g metadata side by side. As you can see, the 11g metadata is written as XML as opposed to the simple delimited text format used in 10g. So why does this matter? The key benefit of using XML is that it creates the opportunity for sealing applications to use custom metadata. This in turn creates the opportunity for custom classification models to be defined and enforced. Out of the box, the solution uses the context classification model, in which two particular pieces of metadata form the basis of rights evaluation - the context name and the document's item code. But a custom sealing application could use some other model entirely, enabling rights decisions to be evaluated on some other basis. The integration with Oracle Beehive is a great example of this. When a user adds a document to a Beehive workspace, that document can be automatically sealed with metadata that represents the Beehive security model rather than the context model. As a consequence, IRM can enforce the Beehive security model precisely and all rights configuration can actually be managed through the Beehive UI rather than the IRM UI. In this scenario, IRM simply supports the Beehive application, seamlessly extending Beehive security to all copies of workspace documents without any additional administration. Finally, I mentioned that the metadata header is tamperproof. This is obviously to stop a rogue user modifying the metadata with a view to gaining unauthorised access - reclassifying a board document to a less sensitive classifcation, for example. To prevent this, the header is digitally signed and can only be manipulated by a suitably authorised sealing application.

    Read the article

  • Video Of Discovery Shuttle Launch Recorded From An Airplane

    - by Gopinath
    Last week Thursday evening Space Shuttle Discovery started it’s journey to space station and the launch was recorded from an airplane.  Software developer Neil Monday shot this video aboard his flight from Orland and posted it to YouTube. Check out this embedded video. This article titled,Video Of Discovery Shuttle Launch Recorded From An Airplane, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • Cannot turn on "Network Discovery and File Sharing" when Windows Firewall is enabled

    - by Cheeso
    I have a problem similar to this one. Windows Firewall prevents File and Printer sharing from working and Why does File and Printer Sharing keep turning off in Windows 7? I cannot turn on Network Discovery. This is Windows 7 Home Premium, x64. It's a Dell XPS 1340 and Windows came installed from the OEM. This used to work. Now it doesn't. I don't know what has changed. In windows Explorer, the UI looks like this: When I click the yellow panel that says "Click to change...", the panel disappears, then immediately reappears, with exactly the same text. If I go through the control panel "Network and Sharing Center" thing, the UI looks like this: If I tick the box to "turn on network discovery", the "Save Changes" button becomes enabled. If I then click that button, the dialog box just closes, with no message or confirmation. Re-opening the same dialog box shows that Network Discovery has not been turned on. If I turn off Windows Firewall, I can then turn on Network Discovery via either method. The machine is connected to a wireless home network, via a router. The network is marked as "Home Network" in the Network and Sharing Center, which I think corresponds to the "Private" profile in Windows Firewall Advanced Settings app. (Confirm?) The PC is not part of a domain, and has never been part of a domain. The machine is not bridging any networks. There is a regular 100baseT connector but I have the network adapter for that disabled in Windows. Something else that seems odd. Within Windows Firewall Advanced Settings, there are no predefined rules available. If I click the "New Rule...." Action on the action pane, the "Predefined" option is greyed out. like this: In order to attempt to allow the network discovery protocols through on the private network, I hand-coded a bunch of rules, intending to allow the necessary UPnP and WDP protocols supporting network discovery. I copied them from a working Windows 7 Ultimate PC, running on the same network. This did not work. Even with the hand-coded rules, I still cannot turn on Network Discovery. I looked on the interwebs, and the only solution that appears to work is a re-install of Windows. Seriously? If I try netsh advfirewall firewall set rule group="Network Discovery" new enable=Yes ...it says "No rules match the specified criteria" EDIT: by the way, these services are running. DNS Client Function Discovery Resource Publication SSDP Discovery UPnP Device Host in any case, since it works with no firewall, I would assume all necessary services are present and running. The issue is a firewall thing, but I don't know how to diagnose further, or fix it. Q1: Is there a way to definitively insure the correct holes are punched through the Windows Firewall to allow Network Discovery to function? Q2: Should I expect the "predefined" firewall rules to be greyed out? Q3: Why did this change?

    Read the article

  • How to edit pdf metadata from command line?

    - by bdr529
    I need a command line tool for editing metadata of pdf-files. I'm using a Aiptek MyNote Premium tablet for writing my notes and minutes on this device, import them later and convert them to pdf automatically with a simple script using inkscape and ghostscript. Is there any command line tool to add some categories to the pdf's metadata, so i can find the pdf later (e.g. with gnome-do) by categories? Update: I tried the solution with pdftk and it works, but it seems that gnome-do doesn't take care of pdf-metadata. Is there a way to get gnome-do to do that?

    Read the article

  • How to edit pdf metadata from command line?

    - by bdr529
    I need a command line tool for editing metadata of pdf-files. I'm using a Aiptek MyNote Premium tablet for writing my notes and minutes on this device, import them later and convert them to pdf automatically with a simple script using inkscape and ghostscript. Is there any command line tool to add some categories to the pdf's metadata, so i can find the pdf later (e.g. with gnome-do) by categories?

    Read the article

  • Creating metadata value relationships

    - by kyle.hatlestad
    I was recently asked an question about an interesting use case. They wanted content to be submitted into UCM with a particular ID in a custom metadata field. But they wanted that ID to be translated during submission into an employee name in another metadata field upon submission. My initial thought was that this could be done with a dependent choice list (DCL). One option list field driving the choices in another. But this didn't work in this case for a couple of reasons. First, the number of IDs could potentially be very large. So making that into a drop-down list would not be practical. The preference would be for that field to simply be a text field to type in the ID. Secondly, data could be submitted through different methods other then the web-based check-in form. And without an interface to select the DCL choices, the system needed a way to determine and populate the name field. So instead I went the approach of having the value of the ID field drive the value of the Name field using the derived field approach in my rule. In looking at it though, it was easy to simply copy the value of the ID field into the Name field...but to have it look up and translate the value proved to be the tricky part. So here is the approach I took... First I created my two metadata fields as standard text fields in the Configuration Manager applet. Next I create a table that stores the relationship between the IDs and Names. I then create a View into that table and set the column to the EmployeeID. I now create a new Application Field and set it as an option list using the View I created in the previous step. The reason I create it as an Application field is because I don't need to display the field or store a value in it. I simply need to make use of the option list in the next step... Finally, I create a Rule in which I select the Employee Name field and turn on the 'Is derived field' checkbox. I edit the derived value and add a new condition. Because the option list is a Application field and not an Information field, I can't use the Compute button. Instead, I insert this line directly in the Value field: @getFieldViewValue("EmployeeMapping",#active.xEmployeeID, "EmployeeName") The "EmployeeMapping" parameter designates that the value should be pulled from the EmployeeMapping Application field that I had created in the previous step. The #active.xEmployeeID field is the ID value that should be pulled from what the user entered. "EmployeeName" is the column name in the table which has the value which corresponds to the ID. The extracted name then becomes the value within our Employee Name field. That's it. You can then add additional Rules to make the Name field read-only/hidden on the check-in page and such.

    Read the article

  • Oracle Magazine - Deriving and Sharing Business Intelligence Metadata

    - by David Allan
    There is a new Oracle Magazine article titled 'Deriving and Sharing Business Intelligence Metadata' from Oracle ACE director Mark Rittman in the July/August 2010 issue that illustrates the business definitions derived and shared across OWB 11gR2 and OBIEE: http://www.oracle.com/technology/oramag/oracle/10-jul/o40bi.html Thanks to Mark for the time producing this. As for OWB would be have been useful to have had the reverse engineering capabilities from OBIEE, interesting to have had code template based support for deployment of such business definitions and powerful to use these objects (logical folders etc.) in the mapping itself.

    Read the article

  • Enabled Network Discovery on Server, and now VNC and Squeezebox clients don't work

    - by Mike Hanson
    I've recently setup a Windows Server 2008. It's running an email server, Squeezebox server, MS SQL Server, etc. I'm doing remote maintenance with UltraVNC. I had everything working fine. Then the server needed to access a network share on another machine, and I was prompted to turn on network discovery, which I did. I chose the Home rather than Public option. Since doing that, some things have stopped working, while others are still fine. Shared folders and the the Email services (ports 25 and 110) are still accessible. VNC (port 5900) and Squeezeboxes (port 9000) no longer work. Here's what I've tried to try to solve the problem: Checked the network discovery settings, to see if anything looked strange. Checked the firewall settings, and those ports appear to be open. Also in the firewall settings, the entries for Private domain Network Discovery were all on, but the Domain/Public ones were off. I tried turning those on. In the services, turned on Function Discovery Resource Publication and SSDP Discovery. Any other suggestions?

    Read the article

  • How do I query the gvfs metadata for a specific attribute?

    - by Mathieu Comandon
    A nice feature in evince is that when you close the program and later reopen the same pdf, it automatically jumps to the page you were reading. The problem I have is that I often read ebooks on several computers and I have to find were I was on the last computer I was reading the pdf. I think syncing these bookmarks in UbuntuOne would be a killer feature for people like me who read pdfs on different computers. By investigating a bit, I found where evince was storing this data, it's in the gvfs metadata and it can be accessed for a particular document by typing gvfs-ls -a "metadata::evince::page" myEbook.pdf Rather that querying a particular file, I'd like to query the whole metadata file (located in ~/.local/share/gvfs-metadata/home for the home directory) for any file where this particular attribute is set to some value. The biggest issue is that gvfs metadata and stored in binary files and we all know it's not easy to get something out of a binary file. So, do you know any way to query the gvfs metadata for some attribute?

    Read the article

  • SQL Server v.Next (Denali) : Metadata enhancements

    - by AaronBertrand
    In my previous job, we had several cases where schema changes or incorrect developer assumptions in the middle tier or application logic would lead to type mismatches. We would have a stored procedure that returns a BIT column, but then change the procedure to have something like CASE WHEN <condition> THEN 1 ELSE 0 END. In this case SQL Server would return an INT as a catch-all, and if .NET was expecting a boolean, BOOM. Wouldn't it be nice if the application could check the result set of the...(read more)

    Read the article

  • F# Powerpack's Metadata doesn't recognize FSharp.Core as an F# library

    - by Nathan Sanders
    Here's my test code to isolate the problem: open Microsoft.FSharp.Metadata [<EntryPoint>] let main args = let core = FSharpAssembly.FromFile @"C:\Program Files\FSharp-2.0.0.0\\bin\FSharp.Core.dll" let core2 = FSharpAssembly.FSharpLibrary let core3 = System.AppDomain.CurrentDomain.GetAssemblies() |> Seq.find (fun a -> a.FullName.Contains "Core") |> FSharpAssembly.FromAssembly core.Entities |> Seq.iter (printfn "%A") 0 All three lets should give me the same FSharpAssembly. Instead, all 3 throw an exception that FSharp.Core is not an F# assembly (details below, re-formatted for readability). Two more clues: Using the core3 method, I get the same error for the test F# assembly itself I don't get the error at FSI after doing #r "@C:\Program Files...\FSharp.Powerpack.Metadata.dll". Any ideas? I'm using Visual Studio 2008, F# 2.0 and F# Powerpack 2.0.0.0 (May 20, 2010) release on an oldish XP VM, I think it's updated to SP3 though. (I got the error this morning with Powerpack 1.9.9.9, so I upgraded to 2.0.0.0. I thought that if 1.9.9.9 doesn't recognise F#'s 2.0.0.0's assemblies, then maybe bugfixes in Powerpack 2.0.0.0 would help.) Unhandled Exception: System.TypeInitializationException: The type initializer for 'Microsoft.FSharp.Metadata.AssemblyLoader' threw an exception. ---> System.TypeInitializationException: The type initializer for '<StartupCode$FSharp-PowerPack-Metadata>.$Metadata' threw an exception. ---> System.ArgumentException: could not produce an FSharpAssembly object for the assembly 'FSharp.Core' because this is not an F# assembly Parameter name: name at Microsoft.FSharp.Metadata.AssemblyLoader.Add(String name,Assembly assembly) at <StartupCode$FSharp-PowerPack-Metadata>.$Metadata..cctor() --- End of inner exception stack trace --- at Microsoft.FSharp.Metadata.AssemblyLoader..cctor() --- End of inner exception stack trace --- at Microsoft.FSharp.Metadata.AssemblyLoader.Get(Assembly assembly) at Microsoft.FSharp.Metadata.FSharpAssembly.FromAssembly(Assembly assembly) at Program.main(String[] args) in C:\Documents an...\FSMetadataTest\Program.fs:line 11 Press any key to continue . . .

    Read the article

  • JpegBitmapEncoder.Save() throws exception when writing image with metadata to MemoryStream

    - by Dmitry
    I am trying to set up metadata on JPG image what does not have it. You can't use in-place writer (InPlaceBitmapMetadataWriter) in this case, cuz there is no place for metadata in image. If I use FileStream as output - everything works fine. But if I try to use MemoryStream as output - JpegBitmapEncoder.Save() throws an exception (Exception from HRESULT: 0xC0000005). After some investigation I also found out what encoder can save image to memory stream if I supply null instead of metadata. I've made a very simplified and short example what reproduces the problem: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.IO; using System.Drawing; using System.Drawing.Imaging; using System.Windows.Media.Imaging; namespace JpegSaveTest { class Program { public static JpegBitmapEncoder SetUpMetadataOnStream(Stream src, string title) { uint padding = 2048; BitmapDecoder original; BitmapFrame framecopy, newframe; BitmapMetadata metadata; JpegBitmapEncoder output = new JpegBitmapEncoder(); src.Seek(0, SeekOrigin.Begin); original = JpegBitmapDecoder.Create(src, BitmapCreateOptions.PreservePixelFormat, BitmapCacheOption.OnLoad); if (original.Frames[0] != null) { framecopy = (BitmapFrame)original.Frames[0].Clone(); if (original.Frames[0].Metadata != null) metadata = original.Frames[0].Metadata.Clone() as BitmapMetadata; else metadata = new BitmapMetadata("jpeg"); metadata.SetQuery("/app1/ifd/PaddingSchema:Padding", padding); metadata.SetQuery("/app1/ifd/exif/PaddingSchema:Padding", padding); metadata.SetQuery("/xmp/PaddingSchema:Padding", padding); metadata.SetQuery("System.Title", title); newframe = BitmapFrame.Create(framecopy, framecopy.Thumbnail, metadata, original.Frames[0].ColorContexts); output.Frames.Add(newframe); } else { Exception ex = new Exception("Image contains no frames."); throw ex; } return output; } public static MemoryStream SetTagsInMemory(string sfname, string title) { Stream src, dst; JpegBitmapEncoder output; src = File.Open(sfname, FileMode.Open, FileAccess.Read, FileShare.Read); output = SetUpMetadataOnStream(src, title); dst = new MemoryStream(); output.Save(dst); src.Close(); return (MemoryStream)dst; } static void Main(string[] args) { string filename = "Z:\\dotnet\\gnom4.jpg"; MemoryStream s; s = SetTagsInMemory(filename, "test title"); } } } It is simple console application. To run it, replace filename variable content with path to any .jpg file without metadata (or use mine). Ofc I can just save image to temporary file first, close it, then open and copy to MemoryStream, but its too dirty and slow workaround. Any ideas about getting this working are welcome :)

    Read the article

  • Consumer Oriented Search In Oracle Endeca Information Discovery – Part 1

    - by Bob Zurek
    Information Discovery, a core capability of Oracle Endeca Information Discovery, enables business users to rapidly search, discover and navigate through a wide variety of big data including structured, unstructured and semi-structured data. One of the key capabilities, among many, that differentiate our solution from others in the Information Discovery market is our deep support for search across this growing amount of varied big data. Our method and approach is very different than classic simple keyword search that is found in may information discovery solutions. In this first part of a series on the topic of search, I will walk you through many of the key capabilities that go beyond the simple search box that you might experience in products where search was clearly an afterthought or attempt to catch up to our core capabilities in this area. Lets explore. The core data management solution of Oracle Endeca Information Discovery is the Endeca Server, a hybrid search-analytical database that his highly scalable and column-oriented in nature. We will talk in more technical detail about the capabilities of the Endeca Server in future blog posts as this post is intended to give you a feel for the deep search capabilities that are an integral part of the Endeca Server. The Endeca Server provides best-of-breed search features aw well as a new class of features that are the first to be designed around the requirement to bridge structured, semi-structured and unstructured big data. Some of the key features of search include type a heads, automatic alphanumeric spell corrections, positional search, Booleans, wildcarding, natural language, and category search and query classification dialogs. This is just a subset of the advanced search capabilities found in Oracle Endeca Information Discovery. Search is an important feature that makes it possible for business users to explore on the diverse data sets the Endeca Server can hold at any one time. The search capabilities in the Endeca server differ from other Information Discovery products with simple “search boxes” in the following ways: The Endeca Server Supports Exploratory Search.  Enterprise data frequently requires the user to explore content through an ad hoc dialog, with guidance that helps them succeed. This has implications for how to design search features. Traditional search doesn’t assume a dialog, and so it uses relevance ranking to get its best guess to the top of the results list. It calculates many relevance factors for each query, like word frequency, distance, and meaning, and then reduces those many factors to a single score based on a proprietary “black box” formula. But how can a business users, searching, act on the information that the document is say only 38.1% relevant? In contrast, exploratory search gives users the opportunity to clarify what is relevant to them through refinements and summaries. This approach has received consumer endorsement through popular ecommerce sites where guided navigation across a broad range of products has helped consumers better discover choices that meet their, sometimes undetermined requirements. This same model exists in Oracle Endeca Information Discovery. In fact, the Endeca Server powers many of the most popular e-commerce sites in the world. The Endeca Server Supports Cascading Relevance. Traditional approaches of search reduce many relevance weights to a single score. This means that if a result with a good title match gets a similar score to one with an exact phrase match, they’ll appear next to each other in a list. But a user can’t deduce from their score why each got it’s ranking, even though that information could be valuable. Oracle Endeca Information Discovery takes a different approach. The Endeca Server stratifies results by a primary relevance strategy, and then breaks ties within a strata by ordering them with a secondary strategy, and so on. Application managers get the explicit means to compose these strategies based on their knowledge of their own domain. This approach gives both business users and managers a deterministic way to set and understand relevance. Now that you have an understanding of two of the core search capabilities in Oracle Endeca Information Discovery, our next blog post on this topic will discuss more advanced features including set search, second-order relevance as well as an understanding of faceted search mechanisms that include queries and filters.  

    Read the article

  • New Version 3.1 Endeca Information Discovery Now Available

    - by Mike.Hallett(at)Oracle-BI&EPM
    Normal 0 false false false EN-GB X-NONE X-NONE MicrosoftInternetExplorer4 Business User Self-Service Data Mash-up Analysis and Discovery integrated with OBI11g and Hadoop Oracle Endeca Information Discovery 3.1 (OEID) is a major release that incorporates significant new self-service discovery capabilities for business users, including agile data mashup, extended support for unstructured analytics, and an even tighter integration with Oracle BI.  · Self-Service Data Mashup and Discovery Dashboards: business users can combine information from multiple sources, including their own up-loaded spreadsheets, to conduct analysis on the complete set.  Creating discovery dashboards has been made even easier by intuitive drag-and drop layouts and wizard-based configuration.  Business users can now build new discovery applications in minutes, without depending on IT. · Enhanced Integration with Oracle BI: OEID 3.1 enhances its’ native integration with Oracle Business Intelligence Foundation. Business users can now incorporate information from trusted BI warehouses, leveraging dimensions and attributes defined in Oracle’s Common Enterprise Information Model, but evolve them based on the varying day-to-day demands and requirements that they personally manage. · Deep Unstructured Analysis: business users can gain new insights from a wide variety of enterprise and public sources, helping companies to build an actionable Big Data strategy.  With OEID’s long-standing differentiation in correlating unstructured information with structured data, business users can now perform their own text mining to identify hidden concepts, without having to request support from IT. They can augment these insights with best in class keyword search and pattern matching, all in the context of rich, interactive visualizations and analytic summaries. · Enterprise-Class Self-Service Discovery:  OEID 3.1 enables IT to provide a powerful self-service platform to the business as part of a broader Business Analytics strategy, preserving the value of existing investments in data quality, governance, and security.  Business users can take advantage of IT-curated information to drive discovery across high volumes and varieties of data, and share insights with colleagues at a moment’s notice. · Harvest Content from the Web with the Endeca Web Acquisition Toolkit:  Oracle now provides best-of-breed data access to website content through the Oracle Endeca Web Acquisition Toolkit.  This provides an agile, graphical interface for developers to rapidly access and integrate any information exposed through a web front-end.  Organizations can now cost-effectively include content from consumer sites, industry forums, government or supplier portals, cloud applications, and myriad other web sources as part of their overall strategy for data discovery and unstructured analytics. For more information: OEID 3.1 OTN Software and Documentation Download And Endeca available for download on Software Delivery Cloud (eDelivery) New OEID 3.1 Videos on YouTube Oracle.com Endeca Site /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}

    Read the article

  • New MOS Community: Oracle Endeca Information Discovery

    - by inowodwo
    Effective November 22, the Oracle Endeca Community has been split into separate communities representing individual Oracle Endeca products. The Oracle Endeca Information Discovery Community will fall under the Business Intelligence (BI) category, and can be found here: https://communities.oracle.com/portal/server.pt/community/oracle_endeca_information_discovery/551. This community will focus on the Oracle Endeca Information Discovery (OEID) product, formerly known as Endeca Latitude and Endeca Discovery Framework. The previous Oracle Endeca Community has been renamed to Oracle Endeca Guided Search Community and will focus on discussions around the Oracle Endeca Guided Search product, formerly known as Endeca Infront and Endeca IAP. The Guided Search Community will continue to be located under the Oracle Commerce Category. Forum threads in the previous Oracle Endeca Community related to Oracle Endeca Information Discovery product have been moved to the new Oracle Endeca Information Discovery Community. We look forward to your continued involvement.

    Read the article

  • Logical Domain Modeling Made Simple

    - by Knut Vatsendvik
    How can logical domain modeling be made simple and collaborative? Many non-technical end-users, managers and business domain experts find it difficult to understand the visual models offered by many UML tools. This creates trouble in capturing and verifying the information that goes into a logical domain model. The tools are also too advanced and complex for a non-technical user to learn and use. We have therefore, in our current project, ended up with using Confluence as tool for designing the logical domain model with the help of a few very useful plugins. Big thanks to Ole Nymoen and Per Spilling for their expertise in this field that made this posting possible. Confluence Plugins Here is a list of Confluence plugins used in this solution. Install these before trying out the macros used below. Plugin Description Copy Space Allows a space administrator to copy a space, including the pages within the space Metadata Supports adding metadata to Wiki pages Label Manages labeling of pages Linking Contains macros for linking to templates, the dashboard and other Table Enhances the table capability in Confluence Creating a Confluence Space First we need to create a new confluence space for the domain model. Click the link Create a Space located below the list of spaces on the Dashboard. Please contact your Confluence administrator is you do not have permissions to do this.   For illustrative purpose all attributes and entities in this posting are based on my imaginary project manager domain model. When a logical domain model is good enough for being implemented, do a copy of the Confluence Space (see Copy Space plugin). In this way you create a stable version of the logical domain model while further design can continue with the new copied space. Typical will the implementation phase result in a database design and/or a XSD schema design. Add Space Templates Go to the Home page of your Confluence Space. Navigate to the Browse drop-down menu and click on Advanced. Then click the Templates option in the left navigation panel. Click Add New Space Template to add the following three templates. Name: attribute {metadata-list} || Name | | || Type | | || Format | | || Description | | {metadata-list} {add-label:attribute} Name: primary-type {metadata-list} || Name | || || Type | || || Format | || || Description | || {metadata-list} {add-label:primary-type} Name: complex-type {metadata-list} || Name | || || Description |  || {metadata-list} h3. Attributes || Name || Type || Format || Description || | [name] | {metadata-from:name|Type} | {metadata-from:name|Format} | {metadata-from:name|Description} | {add-label:complex-type,entity} The metadata-list macro (see Metadata plugin) will save a list of metadata values to the page. The add-label macro (see Label plugin) will automatically label the page. Primary Types Page Our first page to add will act as container for our primary types. Switch to Wiki markup when adding the following content to the page. | (+) {add-page:template=primary-type|parent=@self}Add new primary type{add-page} | {metadata-report:Name,Type,Format,Description|sort=Name|root=@self|pages=@descendents} Once the page is created, click the Add new primary type (create-page macro) to start creating a new pages. Here is an example of input to the LocalDate page. Embrace the LocalDate with square brackets [] to make the page linkable. Again switch to Wiki markup before editing. {metadata-list} || Name | [LocalDate] || || Type | Date || || Format | YYYY-MM-DD || || Description | Date in local time zone. YYYY = year, MM = month and DD = day || {metadata-list} {add-label:primary-type} The metadata-report macro will show a tabular report of all child pages.   Attributes Page The next page will act as container for all of our attributes. | (+) {add-page:template=attribute|parent=@self|title=attribute}Add new attribute{add-page} | {metadata-report:Name,Type,Format,Description|sort=Name|pages=@descendants} Here is an example of input to the startDate page. {metadata-list} || Name | [startDate] || || Type | [LocalDate] || || Format | {metadata-from:LocalDate|Format} || || Description | The projects start date || {metadata-list} {add-label:attribute} Using the metadata-from macro we fetch the text from the previously created LocalDate page. Complex Types Page The last page in this example shows how attributes can be combined together to form more complex types.   h3. Intro Overview of complex types in the domain model. | (+) {add-page:template=complex-type|parent=@self}Add a new complex type{add-page}\\ | {metadata-report:Name,Description|sort=Name|root=@self|pages=@descendents} Here is an example of input to the ProjectType page. {metadata-list} || Name | [ProjectType] || || Description | Represents a project || {metadata-list} h3. Attributes || Name || Type || Format || Description || | [projectId] | {metadata-from:projectId|Type} | {metadata-from:projectId|Format} | {metadata-from:projectId|Description} | | [name] | {metadata-from:name|Type} | {metadata-from:name|Format} | {metadata-from:name|Description} | | [description] | {metadata-from:description|Type} | {metadata-from:description|Format} | {metadata-from:description|Description} | | [startDate] | {metadata-from:startDate|Type} | {metadata-from:startDate|Format} | {metadata-from:startDate|Description} | {add-label:complex-type,entity} Gives us this Conclusion Using a web-based corporate Wiki like Confluence to create a logical domain model increases the collaboration between people with different roles in the enterprise. It’s my believe that this helps the domain model to be more accurate, and better documented. In our real project we have more pages than illustrated here to complete the documentation. We do also still use UML tools to create different types of diagrams that Confluence do not support. As a last tip, an ImageMap plugin can make those diagrams clickable when used in pages. Enjoy!

    Read the article

  • Software to view metadata of an ISO file?

    - by netvope
    I have been searching for the list of metadata field of an ISO file on Google but couldn't find anything. That made me think that there isn't any metadata in an ISO file, just the files content and their properties. However, today I find in ImgBurn that there is a field called Imp ID, which typically contains the software used to create the ISO file. I'm not sure if it is specific to the UDF and/or CDFS filesystem. What are the other possible metadata fields in an ISO file? What software may I use to see them?

    Read the article

  • Oracle Endeca Information Discovery 3.1 is Now Available

    - by p.anda
    Oracle Endeca Information Discovery (OEID) 3.1 is a major release that incorporates significant new self-service discovery capabilities for business users. These include agile data mashup, extended support for unstructured analytics, and an even tighter integration with Oracle BI This release is available for download from: Oracle Delivery Cloud Oracle Technology Network Some of the what's new highlights ... Self-service data mashup... enables access to a wider variety of personal and trusted enterprise data sources. Blend multiple data sets in a single app. Agile discovery dashboards... allows users to easily create, configure, and securely share discovery dashboards with intelligent defaults, intuitive wizards and drag-and-drop configuration. Deeper unstructured analysis ... enables users to enrich text using term extraction and whitelist tagging while the data is live. Enhanced integration with OBI... provides easier wizards for data selection and enables OBI Server as a self-service data source. Enterprise-class data discovery... offers faster performance, a trusted data connection library, improved auditing and increased data connectivity for Hadoop, web content and Oracle Data Integrator. Find out more ... visit the OEID Overview page to download the What's New and related Data Sheet PDF documents. Have questions or want to share details for Oracle Endeca Information Discovery?  The MOS Communities is a great first stop to visit and you can stop-by at MOS OEID Community.

    Read the article

  • Consumer Oriented Search In Oracle Endeca Information Discovery - Part 2

    - by Bob Zurek
    As discussed in my last blog posting on this topic, Information Discovery, a core capability of the Oracle Endeca Information Discovery solution enables businesses to search, discover and navigate through a wide variety of big data including structured, unstructured and semi-structured data. With search as a core advanced capabilities of our product it is important to understand some of the key differences and capabilities in the underlying data store of Oracle Endeca Information Discovery and that is our Endeca Server. In the last post on this subject, we talked about Exploratory Search capabilities along with support for cascading relevance. Additional search capabilities in the Endeca Server, which differentiate from simple keyword based "search boxes" in other Information Discovery products also include: The Endeca Server Supports Set Search.  The Endeca Server is organized around set retrieval, which means that it looks at groups of results (all the documents that match a search), as well as the relationship of each individual result to the set. Other approaches only compute the relevance of a document by comparing the document to the search query – not by comparing the document to all the others. For example, a search for “U.S.” in another approach might match to the title of a document and get a high ranking. But what if it were a collection of government documents in which “U.S.” appeared in many titles, making that clue less meaningful? A set analysis would reveal this and be used to adjust relevance accordingly. The Endeca Server Supports Second-Order Relvance. Unlike simple search interfaces in traditional BI tools, which provide limited relevance ranking, such as a list of results based on key word matching, Endeca enables users to determine the most salient terms to divide up the result. Determining this second-order relevance is the key to providing effective guidance. Support for Queries and Filters. Search is the most common query type, but hardly complete, and users need to express a wide range of queries. Oracle Endeca Information Discovery also includes navigation, interactive visualizations, analytics, range filters, geospatial filters, and other query types that are more commonly associated with BI tools. Unlike other approaches, these queries operate across structured, semi-structured and unstructured content stored in the Endeca Server. Furthermore, this set is easily extensible because the core engine allows for pluggable features to be added. Like a search engine, queries are answered with a results list, ranked to put the most likely matches first. Unlike “black box” relevance solutions, which generalize one strategy for everyone, we believe that optimal relevance strategies vary across domains. Therefore, it provides line-of-business owners with a set of relevance modules that let them tune the best results based on their content. The Endeca Server query result sets are summarized, which gives users guidance on how to refine and explore further. Summaries include Guided Navigation® (a form of faceted search), maps, charts, graphs, tag clouds, concept clusters, and clarification dialogs. Users don’t explicitly ask for these summaries; Oracle Endeca Information Discovery analytic applications provide the right ones, based on configurable controls and rules. For example, the analytic application might guide a procurement agent filtering for in-stock parts by visualizing the results on a map and calculating their average fulfillment time. Furthermore, the user can interact with summaries and filters without resorting to writing complex SQL queries. The user can simply just click to add filters. Within Oracle Endeca Information Discovery, all parts of the summaries are clickable and searchable. We are living in a search driven society where business users really seem to enjoy entering information into a search box. We do this everyday as consumers and therefore, we have gotten used to looking for that box. However, the key to getting the right results is to guide that user in a way that provides additional Discovery, beyond what they may have anticipated. This is why these important and advanced features of search inside the Endeca Server have been so important. They have helped to guide our great customers to success. 

    Read the article

  • SNMP based network discovery (switches), device (ports on switches) power management

    - by SaM
    In a enterprise network, what would be the right way to generate a list of switches (SNMP managed) Is it reasonable to ask the organization to supply a list such as this: Switch name IP Address of switch Location SNMP community strings Or are there standard ways to run discovery scans - UDP broadcasts? After having generated a repository such as the above; given a single switch, how to query it for the list of all devices attached to it? Finally, how to selectively power down/power up ports? (remotely - using SNMP) Platform is going to be .NET based (C#) and the library being used is SharpSNMP

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >