Search Results

Search found 3 results on 1 pages for 'monomer'.

Page 1/1 | 1 

  • Is this question too hard for a seasoned C++ architect?

    - by Monomer
    Background Information We're looking to hire a seasoned C++ architect (10+years dev, of which at least 6years must be C++ ) for a high frequency trading platform. Job advert says STL, Boost proficiency is a must with preferences to modern uses of C++. The company I work for is a Fortune 500 IB (aka finance industry), it requires passes in all the standard SHL tests (numeric, vocab, spatial etc) before interviews can commence. Everyone on the team was given the task of coming up with one question to ask the candidates during a written/typed test, please note this is the second test provided to the candidates, the first being Advanced IKM C++ test, done in the offices supervised and without internet access. People passing that do the second test. After roughly 70 candidates, my question has been determined to be statistically the worst performing - aka least number of people attempted it, furthermore even less people were able to give meaningful answers. Please note, the second test is not timed, the candidate can literally take as long as they like (we've had one person take roughly 10.5hrs) My question to SO is this, after SHL and IKM adv c++ tests, backed up with at least 6+ years C++ development experience, is it still ok not to be able to even comment about let alone come up with some loose strategy for solving the following question. The Question There is a class C with methods foo, boo, boo_and_foo and foo_and_boo. Each method takes i,j,k and l clock cycles respectively, where i < j, k < i+j and l < i+j. class C { public: int foo() {...} int boo() {...} int boo_and_foo() {...} int foo_and_boo() {...} }; In code one might write: C c; . . int i = c.foo() + c.boo(); But it would be better to have: int i = c.foo_and_boo(); What changes or techniques could one make to the definition of C, that would allow similar syntax of the original usage, but instead have the compiler generate the latter. Note that foo and boo are not commutative. Possible Solution We were basically looking for an expression templates based approach, and were willing to give marks to anyone who had even hinted or used the phrase or related terminology. We got only two people that used the wording, but weren't able to properly describe how they accomplish the task in detail. We use such techniques all over the place, due to the use of various mathematical operators for matrix and vector based calculations, for example to decide when to use IPP or hand woven implementations at compile time for a particular architecture and many other things. The particular area of software development requires microsecond response times. I believe could/should be able to teach a junior such techniques, but given the assumed caliber of candidates I expected a little more. Is this really a difficult question? Should it be removed? Or are we just not seeing the right candidates?

    Read the article

  • Efficient mass string search problem.

    - by Monomer
    The Problem: A large static list of strings is provided. A pattern string comprised of data and wildcard elements (* and ?). The idea is to return all the strings that match the pattern - simple enough. Current Solution: I'm currently using a linear approach of scanning the large list and globbing each entry against the pattern. My Question: Are there any suitable data structures that I can store the large list into such that the search's complexity is less than O(n)? Perhaps something akin to a suffix-trie? I've also considered using bi- and tri-grams in a hashtable, but the logic required in evaluating a match based on a merge of the list of words returned and the pattern is a nightmare, and I'm not convinced its the correct approach.

    Read the article

  • GCC problem with raw double type comparisons

    - by Monomer
    I have the following bit of code, however when compiling it with GCC 4.4 with various optimization flags I get some unexpected results when its run. #include <iostream> int main() { const unsigned int cnt = 10; double lst[cnt] = { 0.0 }; const double v[4] = { 131.313, 737.373, 979.797, 731.137 }; for(unsigned int i = 0; i < cnt; ++i) { lst[i] = v[i % 4] * i; } for(unsigned int i = 0; i < cnt; ++i) { double d = v[i % 4] * i; if(lst[i] != d) { std::cout << "error @ : " << i << std::endl; return 1; } } return 0; } when compiled with: "g++ -pedantic -Wall -Werror -O1 -o test test.cpp" I get the following output: "error @ : 3" when compiled with: "g++ -pedantic -Wall -Werror -O2 -o test test.cpp" I get the following output: "error @ : 3" when compiled with: "g++ -pedantic -Wall -Werror -O3 -o test test.cpp" I get no errors when compiled with: "g++ -pedantic -Wall -Werror -o test test.cpp" I get no errors I do not believe this to be an issue related to rounding, or epsilon difference in the comparison. I've tried this with Intel v10 and MSVC 9.0 and they all seem to work as expected. I believe this should be nothing more than a bitwise compare. If I replace the if-statement with the following: if (static_cast<long long int>(lst[i]) != static_cast<long long int>(d)), and add "-Wno-long-long" I get no errors in any of the optimization modes when run. If I add std::cout << d << std::endl; before the "return 1", I get no errors in any of the optimization modes when run. Is this a bug in my code, or is there something wrong with GCC and the way it handles the double type?

    Read the article

1