Search Results

Search found 3 results on 1 pages for 'narfanator'.

Page 1/1 | 1 

  • Array Multiplication and Division

    - by Narfanator
    I came across a question that (eventually) landed me wondering about array arithmetic. I'm thinking specifically in Ruby, but I think the concepts are language independent. So, addition and subtraction are defined, in Ruby, as such: [1,6,8,3,6] + [5,6,7] == [1,6,8,3,6,5,6,7] # All the elements of the first, then all the elements of the second [1,6,8,3,6] - [5,6,7] == [1,8,3] # From the first, remove anything found in the second and array * scalar is defined: [1,2,3] * 2 == [1,2,3,1,2,3] But What, conceptually, should the following be? None of these are (as far as I can find) defined: Array x Array: [1,2,3] * [1,2,3] #=> ? Array / Scalar: [1,2,3,4,5] / 2 #=> ? Array / Scalar: [1,2,3,4,5] % 2 #=> ? Array / Array: [1,2,3,4,5] / [1,2] #=> ? Array / Array: [1,2,3,4,5] % [1,2] #=> ? I've found some mathematical descriptions of these operations for set theory, but I couldn't really follow them, and sets don't have duplicates (arrays do). Edit: Note, I do not mean vector (matrix) arithmetic, which is completely defined. Edit2: If this is the wrong stack exchange, tell me which is the right one and I'll move it. Edit 3: Add mod operators to the list. Edit 4: I figure array / scalar is derivable from array * scalar: a * b = c => a = b / c [1,2,3] * 3 = [1,2,3]+[1,2,3]+[1,2,3] = [1,2,3,1,2,3,1,2,3] => [1,2,3] = [1,2,3,1,2,3,1,2,3] / 3 Which, given that programmer's division ignore the remained and has modulus: [1,2,3,4,5] / 2 = [[1,2], [3,4]] [1,2,3,4,5] % 2 = [5] Except that these are pretty clearly non-reversible operations (not that modulus ever is), which is non-ideal. Edit: I asked a question over on Math that led me to Multisets. I think maybe extensible arrays are "multisets", but I'm not sure yet.

    Read the article

  • Unique ID Defined by Most-Derived Class accessible through Base Class

    - by Narfanator
    Okay, so, the idea is that I have a map of "components", which inherit from componentBase, and are keyed on an ID unique to the most-derived*. Only, I can't think of a good way to get this to work. I tried it with the constructor, but that doesn't work (Maybe I did it wrong). The problem with any virtual, etc, inheritance tricks are that the user has to impliment them at the bottom, which can be forgotten and makes it less... clean. *Right phrase? If - is inheritance; foo is most-derived: foo-foo1-foo2-componentBase Here's some code showing the problem, and why CRTP can't cut it: (No, it's not legit code, but I'm trying to get my thoughts down) #include<map> class componentBase { public: virtual static char idFunction() = 0; }; template <class T> class component : public virtual componentBase { public: static char idFunction(){ return reinterpret_cast<char>(&idFunction); } }; class intermediateDerivations1 : public virtual component<intermediateDerivations1> { }; class intermediateDerivations2 : public virtual component<intermediateDerivations2> { }; class derived1 : public intermediateDerivations1 { }; class derived2 : public intermediateDerivations1 { }; //How the unique ID gets used (more or less) std::map<char, componentBase*> TheMap; template<class T> void addToMap(componentBase * c) { TheMap[T::idFunction()] = c; } template<class T> T * getFromMap() { return TheMap[T::idFunction()]; } int main() { //In each case, the key needs to be different. //For these, the CRTP should do it: getFromMap<intermediateDerivations1>(); getFromMap<intermediateDerivations2>(); //But not for these. getFromMap<derived1>(); getFromMap<derived2>(); return 0; } More or less, I need something that is always there, no matter what the user does, and has a sortable value that's unique to the most-derived class. Also, I realize this isn't the best-asked question, I'm actually having some unexpected difficultly wrapping my head around it in words, so ask questions if/when you need clarification.

    Read the article

  • Remove never-run call to templated function, get allocation error on run-time

    - by Narfanator
    First off, I'm a bit at a loss as to how to ask this question. So I'm going to try throwing lots of information at the problem. Ok, so, I went to completely redesign my test project for my experimental core library thingy. I use a lot of template shenanigans in the library. When I removed the "user" code, the tests gave me a memory allocation error. After quite a bit of experimenting, I narrowed it down to this bit of code (out of a couple hundred lines): void VOODOO(components::switchBoard &board){ board.addComponent<using_allegro::keyInputs<'w'> >(); } Fundementally, what's weirding me out is that it appears that the act of compiling this function (and the template function it then uses, and the template functions those then use...), makes this bug not appear. This code is not being run. Similar code (the same, but for different key vals) occurs elsewhere, but is within Boost TDD code. I realize I certainly haven't given enough information for you to solve it for me; I tried, but it more-or-less spirals into most of the code base. I think I'm most looking for "here's what the problem could be", "here's where to look", etc. There's something that's happening during compile because of this line, but I don't know enough about that step to begin looking. Sooo, how can a (presumably) compilied, but never actually run, bit of templated code, when removed, cause another part of code to fail? Error: Unhandled exceptionat 0x6fe731ea (msvcr90d.dll) in Switchboard.exe: 0xC0000005: Access violation reading location 0xcdcdcdc1. Callstack: operator delete(void * pUser Data) allocator< class name related to key inputs callbacks ::deallocate vector< same class ::_Insert_n(...) vector< " " ::insert(...) vector<" "::push_back(...) It looks like maybe the vector isn't valid, because _MyFirst and similar data members are showing values of 0xcdcdcdcd in the debugger. But the vector is a member variable...

    Read the article

1