Search Results

Search found 20219 results on 809 pages for 'network monitoring'.

Page 1/809 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • JMX Based Monitoring - Part Two - JVM Monitoring

    - by Anthony Shorten
    This the second article in the series focussing on the JMX based monitoring capabilities possible with the Oracle Utilities Application Framework. In all versions of the Oracle utilities Application Framework, it is possible to use the basic JMX based monitoring available with the Java Virtual Machine to provide basic statistics ablut the JVM. In Java 5 and above, the JVM automatically allowed local monitoring of the JVM statistics from an approporiate console. When I say local I mean the monitoring tool must be executed from the same machine (and in some cases the same user that is running the JVM) to connect to the JVM directly. If you are using jconsole, for example, then you must have access to a GUI (X-Windows or Windows) to display the jconsole output. This is the easist way of monitoring without doing too much configration but is not always practical. Java offers a remote monitorig capability to allow yo to connect to a remotely executing JVM from a console (like jconsole). To use this facility additional JVM options must be added to the command line that started the JVM. Details of the additional options for the version of the Java you are running is located at the JMX information site. Typically to remotely connect to a running JVM that JVM must be configured with the following categories of options: JMX Port - The JVM must allow connections on a listening port specified on the command line Connection security - The connection to the JVM can be secured. This is recommended as JMX is not just a monitoring protocol it is a managemet protocol. It is possible to change values in a running JVM using JMX and there are NO "Are you sure?" safeguards. For a Oracle Utilities Application Framework based application there are a few guidelines when configuring and using this JMX based remote monitoring of the JVM's: Online JVM - The JVM used to run the online system is embedded within the J2EE Web Application Server. To enable JMX monitoring on this JVM you can either change the startup script that starts the Web Application Server or check whether your J2EE Web Application natively supports JVM statistics collection. Child JVM's (COBOL only) - The Child JVM's should not be monitored using this method as they are recycled regularly by the configuration and therefore statistics collected are of little value. Batch Threadpoools - Batch already has a JMX interface (which will be covered in another article). Additional monitoring can be enabled but the base supported monitoring is sufficient for most needs. If you are an Oracle Utilities Application Framework site, then you can specify the additional options for JMX Java monitoring on the OPTS paramaters supported for each component of the architecture. Just ensure the port numbers used are unique for each JVM running on any machine.

    Read the article

  • Issues with signal handling [closed]

    - by user34790
    I am trying to actually study the signal handling behavior in multiprocess system. I have a system where there are three signal generating processes generating signals of type SIGUSR1 and SIGUSR1. I have two handler processes that handle a particular type of signal. I have another monitoring process that also receives the signals and then does its work. I have a certain issue. Whenever my signal handling processes generate a signal of a particular type, it is sent to the process group so it is received by the signal handling processes as well as the monitoring processes. Whenever the signal handlers of monitoring and signal handling processes are called, I have printed to indicate the signal handling. I was expecting a uniform series of calls for the signal handlers of the monitoring and handling processes. However, looking at the output I could see like at the beginning the monitoring and signal handling processes's signal handlers are called uniformly. However, after I could see like signal handler processes handlers being called in a burst followed by the signal handler of monitoring process being called in a burst. Here is my code and output #include <iostream> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <cstdio> #include <stdlib.h> #include <sys/ipc.h> #include <sys/shm.h> #define NUM_SENDER_PROCESSES 3 #define NUM_HANDLER_PROCESSES 4 #define NUM_SIGNAL_REPORT 10 #define MAX_SIGNAL_COUNT 100000 using namespace std; volatile int *usrsig1_handler_count; volatile int *usrsig2_handler_count; volatile int *usrsig1_sender_count; volatile int *usrsig2_sender_count; volatile int *lock_1; volatile int *lock_2; volatile int *lock_3; volatile int *lock_4; volatile int *lock_5; volatile int *lock_6; //Used only by the monitoring process volatile int monitor_count; volatile int usrsig1_monitor_count; volatile int usrsig2_monitor_count; double time_1[NUM_SIGNAL_REPORT]; double time_2[NUM_SIGNAL_REPORT]; //Used only by the main process int total_signal_count; //For shared memory int shmid; const int shareSize = sizeof(int) * (10); double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } pid_t senders[NUM_SENDER_PROCESSES]; pid_t handlers[NUM_HANDLER_PROCESSES]; pid_t reporter; void signal_catcher_1(int); void signal_catcher_2(int); void signal_catcher_int(int); void signal_catcher_monitor(int); void signal_catcher_main(int); void terminate_processes() { //Kill the child processes int status; cout << "Time up terminating the child processes" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); //Wait for the child processes to finish for(int i=0; i<NUM_SENDER_PROCESSES; i++) { waitpid(senders[i], &status, 0); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { waitpid(handlers[i], &status, 0); } waitpid(reporter, &status, 0); } int main(int argc, char *argv[]) { if(argc != 2) { cout << "Required parameters missing. " << endl; cout << "Option 1 = 1 which means run for 30 seconds" << endl; cout << "Option 2 = 2 which means run until 100000 signals" << endl; exit(0); } int option = atoi(argv[1]); pid_t pid; if(option == 2) { if(signal(SIGUSR1, signal_catcher_main) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, signal_catcher_main) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } if(signal(SIGINT, signal_catcher_int) == SIG_ERR) { perror("3"); exit(1); } /////////////////////////////////////////////////////////////////////////////////////// ////////////////////// Initializing the shared memory ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// cout << "Initializing the shared memory" << endl; if ((shmid=shmget(IPC_PRIVATE,shareSize,IPC_CREAT|0660))< 0) { perror("shmget fail"); exit(1); } usrsig1_handler_count = (int *) shmat(shmid, NULL, 0); usrsig2_handler_count = usrsig1_handler_count + 1; usrsig1_sender_count = usrsig2_handler_count + 1; usrsig2_sender_count = usrsig1_sender_count + 1; lock_1 = usrsig2_sender_count + 1; lock_2 = lock_1 + 1; lock_3 = lock_2 + 1; lock_4 = lock_3 + 1; lock_5 = lock_4 + 1; lock_6 = lock_5 + 1; //Initialize them to be zero *usrsig1_handler_count = 0; *usrsig2_handler_count = 0; *usrsig1_sender_count = 0; *usrsig2_sender_count = 0; *lock_1 = 0; *lock_2 = 0; *lock_3 = 0; *lock_4 = 0; *lock_5 = 0; *lock_6 = 0; cout << "End of initializing the shared memory" << endl; ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////// End of initializing the shared memory /////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////Registering the signal handlers/////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal handlers" << endl; for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { if((pid = fork()) == 0) { if(i%2 == 0) { struct sigaction action; action.sa_handler = signal_catcher_1; sigset_t block_mask; action.sa_flags = 0; sigaction(SIGUSR1,&action,NULL); if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1 ,SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } struct sigaction action; action.sa_handler = signal_catcher_2; action.sa_flags = 0; sigaction(SIGUSR2,&action,NULL); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { //cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } cout << "End of registering the signal handlers" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////End of registering the signal handlers ////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////Registering the monitoring process ////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the monitoring process" << endl; if((pid = fork()) == 0) { struct sigaction action; action.sa_handler = signal_catcher_monitor; sigemptyset(&action.sa_mask); sigset_t block_mask; sigemptyset(&block_mask); sigaddset(&block_mask,SIGUSR1); sigaddset(&block_mask,SIGUSR2); action.sa_flags = 0; action.sa_mask = block_mask; sigaction(SIGUSR1,&action,NULL); sigaction(SIGUSR2,&action,NULL); if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { cout << "Monitor's pid is " << pid << endl; reporter = pid; } cout << "End of registering the monitoring process" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////End of registering the monitoring process//////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Sleep to make sure that the monitor and handler processes are well initialized and ready to handle signals sleep(5); ////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////Registering the signal generators/////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal generators" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } srand(i); while(true) { int signal_id = rand()%2 + 1; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); while(__sync_lock_test_and_set(lock_4,1) != 0) { } (*usrsig1_sender_count)++; *lock_4 = 0; } else { killpg(getpgid(getpid()), SIGUSR2); while(__sync_lock_test_and_set(lock_5,1) != 0) { } (*usrsig2_sender_count)++; *lock_5=0; } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { //cout << "Registered the sender " << pid << endl; senders[i] = pid; } } //cout << "End of registering the signal generators" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////End of registering the signal generators/////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Either sleep for 30 seconds and terminate the program or if the number of signals generated reaches 10000, terminate the program if(option = 1) { sleep(90); terminate_processes(); } else { while(true) { if(total_signal_count >= MAX_SIGNAL_COUNT) { terminate_processes(); } else { sleep(0.001); } } } } void signal_catcher_1(int the_sig) { while(__sync_lock_test_and_set(lock_1,1) != 0) { } (*usrsig1_handler_count) = (*usrsig1_handler_count) + 1; cout << "Signal Handler 1 " << *usrsig1_handler_count << endl; __sync_lock_release(lock_1); } void signal_catcher_2(int the_sig) { while(__sync_lock_test_and_set(lock_2,1) != 0) { } (*usrsig2_handler_count) = (*usrsig2_handler_count) + 1; __sync_lock_release(lock_2); } void signal_catcher_main(int the_sig) { while(__sync_lock_test_and_set(lock_6,1) != 0) { } total_signal_count++; *lock_6 = 0; } void signal_catcher_int(int the_sig) { for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } void signal_catcher_monitor(int the_sig) { cout << "Monitoring process " << *usrsig1_handler_count << endl; } Here is the initial segment of output Monitoring process 0 Monitoring process 0 Monitoring process 0 Monitoring process 0 Signal Handler 1 1 Monitoring process 2 Signal Handler 1 2 Signal Handler 1 3 Signal Handler 1 4 Monitoring process 4 Monitoring process Signal Handler 1 6 Signal Handler 1 7 Monitoring process 7 Monitoring process 8 Monitoring process 8 Signal Handler 1 9 Monitoring process 9 Monitoring process 9 Monitoring process 10 Signal Handler 1 11 Monitoring process 11 Monitoring process 12 Signal Handler 1 13 Signal Handler 1 14 Signal Handler 1 15 Signal Handler 1 16 Signal Handler 1 17 Signal Handler 1 18 Monitoring process 19 Signal Handler 1 20 Monitoring process 20 Signal Handler 1 21 Monitoring process 21 Monitoring process 21 Monitoring process 22 Monitoring process 22 Monitoring process 23 Signal Handler 1 24 Signal Handler 1 25 Monitoring process 25 Signal Handler 1 27 Signal Handler 1 28 Signal Handler 1 29 Here is the segment when the signal handler processes signal handlers are called in a burst Signal Handler 1 456 Signal Handler 1 457 Signal Handler 1 458 Signal Handler 1 459 Signal Handler 1 460 Signal Handler 1 461 Signal Handler 1 462 Signal Handler 1 463 Signal Handler 1 464 Signal Handler 1 465 Signal Handler 1 466 Signal Handler 1 467 Signal Handler 1 468 Signal Handler 1 469 Signal Handler 1 470 Signal Handler 1 471 Signal Handler 1 472 Signal Handler 1 473 Signal Handler 1 474 Signal Handler 1 475 Signal Handler 1 476 Signal Handler 1 477 Signal Handler 1 478 Signal Handler 1 479 Signal Handler 1 480 Signal Handler 1 481 Signal Handler 1 482 Signal Handler 1 483 Signal Handler 1 484 Signal Handler 1 485 Signal Handler 1 486 Signal Handler 1 487 Signal Handler 1 488 Signal Handler 1 489 Signal Handler 1 490 Signal Handler 1 491 Signal Handler 1 492 Signal Handler 1 493 Signal Handler 1 494 Signal Handler 1 495 Signal Handler 1 496 Signal Handler 1 497 Signal Handler 1 498 Signal Handler 1 499 Signal Handler 1 500 Signal Handler 1 501 Signal Handler 1 502 Signal Handler 1 503 Signal Handler 1 504 Signal Handler 1 505 Signal Handler 1 506 Here is the segment when the monitoring processes signal handlers are called in a burst Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Why isn't it uniform afterwards. Why are they called in a burst?

    Read the article

  • Network traffic monitoring for unexperienced users

    - by Eduardo Casteluci
    I'm a really unexperienced Ubuntu user and I'm having a hard time monitoring my network traffic. I just need to know what websites each one of the devices connected to my network are accessing. I've tried to use ntop, but I couldn't work around it. Is that possible? I mean, is it possible to know that kind of data only by specifing a local IP address? How can I do that? It's a security issue that I'm facing and I need to work that "easy" monitoring out. Thanks

    Read the article

  • PHP Network Monitoring

    - by Vlad Patrascu
    Is there a way that I can monitor the traffic, Upload/Download (separately) using PHP? I`d like to echo out something like that: Upload: 523 GB | Download: 25 GB This should be based on the System Uptime, so if I restart the computer, the count should restart. Thanks in Advance.

    Read the article

  • JMX Based Monitoring - Part Three - Web App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I showed a technique for integrating a JMX console with Oracle WebLogic which is a standard feature of Oracle WebLogic 11g. Customers on other Web Application servers and other versions of Oracle WebLogic can refer to the documentation provided with the server to do a similar thing. In this blog entry I am going to discuss a new feature that is only present in Oracle Utilities Application Framework 4 and above that allows JMX to be used for management and monitoring the Oracle Utilities Web Applications. In this case JMX can be used to perform monitoring as well as provide the management of the cache. In Oracle Utilities Application Framework you can enable Web Application Server JMX monitoring that is unique to the framework by specifying a JMX port number in RMI Port number for JMX Web setting and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6740 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6740/oracle/ouaf/webAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.base.support.management.mbean.JVMInfo=enabled ouaf.jmx.com.splwg.base.web.mbeans.FlushBean=enabled ouaf.jmx.* files - contain the userid and password. The default setup uses the JMX default security configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see the JMX Site. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes, I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.management.connnector.url.default entry and the credentials you specified in the jmx.remote.x.* files. Remember these are encrypted by default so if you try and view the file you may be able to decipher it visually. For example: There are three Mbeans available to you: flushBean - This is a JMX replacement for the jsp versions of the flush utilities provided in previous releases of the Oracle Utilities Application Framework. You can manage the cache using the provided operations from JMX. The jsp versions of the flush utilities are still provided, for backward compatibility, but now are authorization controlled. JVMInfo - This is a JMX replacement for the jsp version of the JVMInfo screen used by support to get a handle on JVM information. This information is environmental not operational and is used for support purposes. The jsp versions of the JVMInfo utilities are still provided, for backward compatibility, but now is also authorization controlled. JVMSystem - This is an implementation of the Java system MXBeans for use in monitoring. We provide our own implementation of the base Mbeans to save on creating another JMX configuration for internal monitoring and to provide a consistent interface across platforms for the MXBeans. This Mbean is disabled by default and can be enabled using the enableJVMSystemBeans operation. This Mbean allows for the monitoring of the ClassLoading, Memory, OperatingSystem, Runtime and the Thread MX beans. Refer to the Server Administration Guides provided with your product and the Technical Best Practices Whitepaper for information about individual statistics. The Web Application Server JMX monitoring allows greater visibility for monitoring and management of the Oracle Utilities Application Framework application from jconsole or any JSR160 compliant JMX browser or JMX console.

    Read the article

  • System Monitoring service - Hosted

    - by sevitzdotcom
    I'm looking for a system monitoring service, a bit like New Relic, but for more the system itself than the ruby side of things. i.e. something like Zabbix, but hosted like New Relic. I wont something I can just drop an 'agent' on the servers, and then do all the config and monitoring and notifications on a nice slick 3rd party system. So essential Zabbix Meats New Relic meets Pingdom. Any ideas?

    Read the article

  • Network monitoring solution

    - by Hellfrost
    Hello Serverfault ! I have a big distributed system I need to monitor. Background: My system is comprised of two servers, concentrating and controlling the system. Each server is connected to a set of devices (some custom kind of RF controllers, doesnt matter to my question), each device connects to a network switch, and eventually all devices talk to the servers, the protocol between the servers and the devices is UDP, usually the packets are very small, but there are really a LOT of packets. the network is also somewhat complex, and is deployed on a large area physically. i'll have 150-300 of these devices, each generating up to 100+ packets per second, and several network switches, perhaps on 2 different subnets. Question I'm looking for some solution that will allow me to monitor all this mess, how many packets are sent, where, how do they move through the network, bandwidth utilization, throughput, stuff like that. what would you recommend to achieve this? BTW Playing nice with windows is a requirement.

    Read the article

  • Network monitoring tools with API features

    - by Kev
    We use ks-soft's Advanced Hostmonitor package to monitor around 2000 items on our network. We think it's great, the chap that supports it is fantastic, the product is fast, stable and mature but I feel as as we grow as a company it's beginning to show some friction points in the area of integration with our back office admin systems. One of the things we'd like to do is be able to add new tests to whatever monitoring tool we use via an API. For example, when orders for servers come from our retail interface, the server gets built automatically, and as part of the automated build process we'd like to automatically add new tests to the network monitoring systems. Hostmonitor has some support for this via a feature called HM Script but we're starting to encounter some speedbumps - we can't add new operators/users we can't define new "Action Profiles" - these are the actions to be taken when a test goes good or bad. What we love about hostmonitor though are the Action Profiles. For example if a Windows IIS box goes bad our action profile for a bad test does something like: Check host again (one time) Wait another 30 seconds then test again Try restart app pool on remote machine (up to two times) Send an email to ops about the restart failure Try restarting IIS on remote machine (up to four times) Page duty admin (up to 5 times - stops after duty admin ACKS alert) Page backup duty admin (5 times - stops after duty admin ACKS alert) I'm starting to look around at other network monitoring tools and I'm looking for: a comprehensive API to be able to add/remove/control tests/test "action profiles"/operators (not just plugins, we need control and admin interfaces) the ability to have quite detailed action/escalation profiles (and define these via an API) I've looked at Nagios and Icinga but Ican't seem to glean from their documentation whether we could have these features or not, or if we could, how much work would be involved to implement/customise. Can anyone provide any advice, guidance or experiences?

    Read the article

  • Service monitoring service, which I can ping instead of getting pinged

    - by Jack Juiceson
    I'm looking for a service, which can send me an alert if my program didn't ping(some http request) in X minutes. Pretty much like any service monitoring, but instead of service pinging my server I want, my program to ping the monitor service. This is because our program, can't get incoming connections, yet we need to monitor it's alive. And easiest for us will be to have a service we can ping. Thank you, - Jack

    Read the article

  • Network connection delay after installing indicator-network

    - by Adrian
    Ok, so here's the thing,I installed wingpanel in UBUNTU 10.10, i removed the gnome-panels (yes, both). In the wingpanel itself there's no NETWORK indicator, so i google it and in some forums, some guy wrote that you have to install "indicator-network". I did it, and it solved the network indicator in the wingpanel, BUT now everytime i turn on my computer, the connection takes like 2 minutes or more to connect, when before installing this thing it did it immediately. How can i solve this? any help?

    Read the article

  • nm-applet gone?

    - by welp
    nm-applet seems to have disappeared from my system. I am running 12.10. Here's what I get when I check my package manager logs: ? ~ grep network-manager /var/log/dpkg.log 2012-10-06 10:37:08 upgrade network-manager-gnome:amd64 0.9.6.2-0ubuntu5 0.9.6.2-0ubuntu6 2012-10-06 10:37:08 status half-configured network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:09 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:09 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:37:09 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 configure network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 status half-configured network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 status installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 remove network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-configured network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status config-files network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status config-files network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 install network-manager-gnome:amd64 0.9.6.2-0ubuntu6 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:06 configure network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:06 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:07 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:07 status half-configured network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:07 status installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 ? ~ Unfortunately, I cannot find network-manager-applet package at all: ? ~ apt-cache search network-manager-applet ? ~ Here are the contents of /etc/apt/sources.list: ? ~ cat /etc/apt/sources.list # deb cdrom:[Ubuntu 12.04 LTS _Precise Pangolin_ - Release amd64 (20120425)]/ dists/precise/main/binary-i386/ # deb cdrom:[Ubuntu 12.04 LTS _Precise Pangolin_ - Release amd64 (20120425)]/ dists/precise/restricted/binary-i386/ # deb cdrom:[Ubuntu 12.04 LTS _Precise Pangolin_ - Release amd64 (20120425)]/ precise main restricted # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to # newer versions of the distribution. deb http://gb.archive.ubuntu.com/ubuntu/ quantal main restricted deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal main restricted ## Major bug fix updates produced after the final release of the ## distribution. deb http://gb.archive.ubuntu.com/ubuntu/ quantal-updates main restricted deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal-updates main restricted ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team. Also, please note that software in universe WILL NOT receive any ## review or updates from the Ubuntu security team. deb http://gb.archive.ubuntu.com/ubuntu/ quantal universe deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal universe deb http://gb.archive.ubuntu.com/ubuntu/ quantal-updates universe deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal-updates universe ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team, and may not be under a free licence. Please satisfy yourself as to ## your rights to use the software. Also, please note that software in ## multiverse WILL NOT receive any review or updates from the Ubuntu ## security team. deb http://gb.archive.ubuntu.com/ubuntu/ quantal multiverse deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal multiverse deb http://gb.archive.ubuntu.com/ubuntu/ quantal-updates multiverse deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal-updates multiverse ## N.B. software from this repository may not have been tested as ## extensively as that contained in the main release, although it includes ## newer versions of some applications which may provide useful features. ## Also, please note that software in backports WILL NOT receive any review ## or updates from the Ubuntu security team. deb http://gb.archive.ubuntu.com/ubuntu/ quantal-backports main restricted universe multiverse deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal-backports main restricted universe multiverse deb http://security.ubuntu.com/ubuntu quantal-security main restricted deb-src http://security.ubuntu.com/ubuntu quantal-security main restricted deb http://security.ubuntu.com/ubuntu quantal-security universe deb-src http://security.ubuntu.com/ubuntu quantal-security universe deb http://security.ubuntu.com/ubuntu quantal-security multiverse deb-src http://security.ubuntu.com/ubuntu quantal-security multiverse ## Uncomment the following two lines to add software from Canonical's ## 'partner' repository. ## This software is not part of Ubuntu, but is offered by Canonical and the ## respective vendors as a service to Ubuntu users. # deb http://archive.canonical.com/ubuntu precise partner # deb-src http://archive.canonical.com/ubuntu precise partner ## This software is not part of Ubuntu, but is offered by third-party ## developers who want to ship their latest software. deb http://extras.ubuntu.com/ubuntu quantal main deb-src http://extras.ubuntu.com/ubuntu quantal main ? ~ Right now, I can't think of anything else. Happy to provide more info upon request.

    Read the article

  • Creating an office network and monitoring all activity without a proxy

    - by Robert
    We are setting up our office network and would like to track all the websites visited by our employees. However, we would not like to use any proxy based solutions. Our work is highly dependent on applications in which you cannot configure a proxy. Hence, the approach we would like to follow is setting up a router inside a computer (something like this : http://www.techrepublic.com/article/configure-windows-server-2003-to-act-as-a-router/5844624) This will also allow us to attach multiple ethernet cards and have redundancy in internet connectivity with complete abstraction from the user about which connection is being used. But most importantly, since all the traffic will be going through the computer (configured as a router) I assume there will be a way to run packet analysis on all the request / responses being made. For example, list all the FTP servers connected to (port 21), give a graph of all the URLs visited per day by frequency. Is there already a software which does this ? Or is it possible to build something like this ?

    Read the article

  • Neural Network settings for fast training

    - by danpalmer
    I am creating a tool for predicting the time and cost of software projects based on past data. The tool uses a neural network to do this and so far, the results are promising, but I think I can do a lot more optimisation just by changing the properties of the network. There don't seem to be any rules or even many best-practices when it comes to these settings so if anyone with experience could help me I would greatly appreciate it. The input data is made up of a series of integers that could go up as high as the user wants to go, but most will be under 100,000 I would have thought. Some will be as low as 1. They are details like number of people on a project and the cost of a project, as well as details about database entities and use cases. There are 10 inputs in total and 2 outputs (the time and cost). I am using Resilient Propagation to train the network. Currently it has: 10 input nodes, 1 hidden layer with 5 nodes and 2 output nodes. I am training to get under a 5% error rate. The algorithm must run on a webserver so I have put in a measure to stop training when it looks like it isn't going anywhere. This is set to 10,000 training iterations. Currently, when I try to train it with some data that is a bit varied, but well within the limits of what we expect users to put into it, it takes a long time to train, hitting the 10,000 iteration limit over and over again. This is the first time I have used a neural network and I don't really know what to expect. If you could give me some hints on what sort of settings I should be using for the network and for the iteration limit I would greatly appreciate it. Thank you!

    Read the article

  • Monitoring multiple sites on a single server using OpsView

    - by Kev
    We have several web servers. On each of these servers there can be ~250 web sites. I need to add a HTTP check for each site on each server. Each site has a reserved host header that we know can always be resolved in the format of: w10000.hostchecks.mycompany.com w10020.hostchecks.mycompany.com w11992.hostchecks.mycompany.com ..and so on.. What I want is for there to be a master ping check on the web server's main IP address and then separate HTTP checks for each of the sites on the server. If the master ping test fails then I want the HTTP tests to cease until the master ping check goes OK. I had a stab at this and tried do the following: Create a parent host that does a ping check on the server's main ip address (e.g. server is named WEB0001). For each of the sites that reside on WEB0001: Create a separate Host with a Primary Hostname of wXXXXX.hostchecks.mycompany.com Make WEB0001 the parent host Add a monitor (HTTP check to a special url that is mapped into each site using a virtual directory: H- $HOSTADDRESS$ -u /__hostcheck/IsAlive.aspx -w 5 -c 10 -p 80 However I find that if I down the parent server (WEB0001) the http checks seem to continue. Am I going about this completely the wrong way?

    Read the article

  • Monitoring bespoke software with Zenoss

    - by Andy S
    We've got a lot of back-end applications that we need to monitor the performance of (metrics such as orders waiting to be processed, time since last run, etc). Currently, this is done by an in-house watchdog application that fires out emails whenever a threshold is exceeded, but there's no way to acknowledge an issue and squelch these alerts. Rather than build our own complete alerting system, we'd like to tie in to the Zenoss installation we use to monitor our servers. I've found a few articles on creating events programmatically, but I'd rather Zenoss itself monitors the values that the current watchdog app is looking at (so we get the benefits of graphing and history as well). Is it possible, then, to programmatically provide a data feed (rather than an event) to Zenoss? Or is there another way to go about this?

    Read the article

  • Monitoring Dell/HP Servers Running ESXi (Free)

    - by Untalented
    What are you all doing to monitor ESXi servers that run the free edition? With the lack of SNMP support, it seems fairly limited to me. What'd I'd like to be able to do is get some type of alert when a drive or other hardware fails. I've seen a few articles on getting OpenManage installed on an ESXi box (to rebuild an array), but it seems to be quite a pain as well. Even if I get OpenManage working, I won't have alerts without SNMP. Any comments, input, or guidance would be greatly appreciated.

    Read the article

  • Looking for comprehensive computer monitoring software

    - by cornjuliox
    Summer in this country is insanely hot. So hot in fact, that I think we just lost a machine due to overheating (last recorded CPU/GPU temp was close to 100 C, now it wont start and lets out a long series of short beeps on power up), but that's not my concern here. Since heat is such a problem for me, I use several different pieces of software to monitor temperatures in my machine. I use MSI Afterburner to monitor GPU temp, control GPU fan speed and for some light overclocking, and then I use Speccy and SpeedFan to monitor the rest of the system, CPU temp and everything. The setup works fine for now, but I want to consolidate all this into one program so I'm not juggling several windows at once. Is there any program out there that will let me monitor the following from a single window: CPU Temp and Fan Speed CPU clock GPU Temp and Fan Speed GPU clock, both core and memory Additionally, mobo temp (Speccy lists both CPU and Motherboard temp, I assume that the latter is referring to North and Southbridge temperatures. I'm also looking for the ability to chart these data points on a graph over time, basically to see just how high the temperatures spike under load and for general analysis. It'd be nice if it could handle overclocking of both CPU and GPU in real time too. Any suggestions? Edit: I forgot to mention that I'm on Windows 7, 64-bit

    Read the article

  • "Hostile" network in the company - please comment on a security setup

    - by TomTom
    I have a little specific problem here that I want (need) to solve in a satisfactory way. My company has multiple (IPv4) networks that are controlled by our router sitting in the middle. Typical smaller shop setup. There is now one additional network that has an IP Range OUTSIDE of our control, connected to the internet with another router OUTSIDE of our control. Call it a project network that is part of another companies network and combined via VPN they set up. This means: They control the router that is used for this network and They can reconfigure things so that they can access the machines in this network. The network is physically split on our end through some VLAN capable switches as it covers three locations. At one end there is the router the other company controls. I Need / want to give the machines used in this network access to my company network. In fact, it may be good to make them part of my active directory domain. The people working on those machines are part of my company. BUT - I need to do so without compromising the security of my company network from outside influence. Any sort of router integration using the externally controlled router is out by this idea So, my idea is this: We accept the IPv4 address space and network topology in this network is not under our control. We seek alternatives to integrate those machines into our company network. The 2 concepts I came up with are: Use some sort of VPN - have the machines log into VPN. Thanks to them using modern windows, this could be transparent DirectAccess. This essentially treats the other IP space not different than any restaurant network a laptop of the company goes in. Alternatively - establish IPv6 routing to this ethernet segment. But - and this is a trick - block all IPv6 packets in the switch before they hit the third party controlled router, so that even IF they turn on IPv6 on that thing (not used now, but they could do it) they would get not a single packet. The switch can nicely do that by pulling all IPv6 traffic coming to that port into a separate VLAN (based on ethernet protocol type). Anyone sees a problem with using he switch to isolate the outer from IPv6? Any security hole? It is sad we have to treat this network as hostile - would be a lot easier - but the support personnel there is of "known dubious quality" and the legal side is clear - we can not fulfill our obligations when we integrate them into our company while they are under a jurisdiction we don't have a say in.

    Read the article

  • Network / Internet diagnostic tool to locate an error?

    - by Jesper
    Hi, I’m facing some difficulties with the Internet / network at my work and I have trouble locating the precise error and when and how it occurs. The problem is that the client machines in the house sporadic is disconnected to the Internet. I’m some what new so I haven’t that much inside in the network and apparently neither has my predecessor. What I am requesting and hoping you guys knows about is, if there exist some kind of network monitor tool I can install and run and it will periodically check the network, the Internet connection etc. and record to logs. Then, if there suddenly arises a problem some time of the day in some part of the network or the Internet connection, I can check it perhaps the next day. I’ve just downloaded and installed Microsoft Network Monitor 3.3 application and hopeful it can give me some answers on where the instability is located but I still would like a tool to make different checks and test in some time interval. Do anyone know about such a program or another kind of performance / diagnostic tool / method I can use? Sincere Jesper

    Read the article

  • JMX Based Monitoring - Part Four - Business App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I talked about the Oracle Utilities Application Framework V4 feature for monitoring and managing aspects of the Web Application Server using JMX. In this blog entry I am going to discuss a similar new feature that allows JMX to be used for management and monitoring the Oracle Utilities business application server component. This feature is primarily focussed on performance tracking of the product. In first release of Oracle Utilities Customer Care And Billing (V1.x I am talking about), we used to use Oracle Tuxedo as part of the architecture. In Oracle Utilities Application Framework V2.0 and above, we removed Tuxedo from the architecture. One of the features that some customers used within Tuxedo was the performance tracking ability. The idea was that you enabled performance logging on the individual Tuxedo servers and then used a utility named txrpt to produce a performance report. This report would list every service called, the number of times it was called and the average response time. When I worked a performance consultant, I used this report to identify badly performing services and also gauge the overall performance characteristics of a site. When Tuxedo was removed from the architecture this information was also lost. While you can get some information from access.log and some Mbeans supplied by the Web Application Server it was not at the same granularity as txrpt or as useful. I am happy to say we have not only reintroduced this facility in Oracle Utilities Application Framework but it is now accessible via JMX and also we have added more detail into the performance tracking. Most of this new design was working with customers around the world to make sure we introduced a new feature that not only satisfied their performance tracking needs but allowed for finer grained performance analysis. As with the Web Application Server, the Business Application Server JMX monitoring is enabled by specifying a JMX port number in RMI Port number for JMX Business and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. These credentials are shared across the Web Application Server and Business Application Server for authorization purposes. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6750 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6750/oracle/ouaf/ejbAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.ejb.service.management.PerformanceStatistics=enabled ouaf.jmx.* files - contain the userid and password. The default configuration uses the JMX default configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see JMX Security for more details. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.runtime.management.connnector.url.default entry. For example: You are then able to track performance of the product using the PerformanceStatistics Mbean. The attributes of the PerformanceStatistics Mbean are counts of each object type. This is where this facility differs from txrpt. The information that is collected includes the following: The Service Type is captured so you can filter the results in terms of the type of service. For maintenance type services you can even see the transaction type (ADD, CHANGE etc) so you can see the performance of updates against read transactions. The Minimum and Maximum are also collected to give you an idea of the spread of performance. The last call is recorded. The date, time and user of the last call are recorded to give you an idea of the timeliness of the data. The Mbean maintains a set of counters per Service Type to give you a summary of the types of transactions being executed. This gives you an overall picture of the types of transactions and volumes at your site. There are a number of interesting operations that can also be performed: reset - This resets the statistics back to zero. This is an important operation. For example, txrpt is restricted to collecting statistics per hour, which is ok for most people. But what if you wanted to be more granular? This operation allows to set the collection period to anything you wish. The statistics collected will represent values since the last restart or last reset. completeExecutionDump - This is the operation that produces a CSV in memory to allow extraction of the data. All the statistics are extracted (see the Server Administration Guide for a full list). This can be then loaded into a database, a tool or simply into your favourite spreadsheet for analysis. Here is an extract of an execution dump from my demonstration environment to give you an idea of the format: ServiceName, ServiceType, MinTime, MaxTime, Avg Time, # of Calls, Latest Time, Latest Date, Latest User ... CFLZLOUL, EXECUTE_LIST, 15.0, 64.0, 22.2, 10, 16.0, 2009-12-16::11-25-36-932, ASHORTEN CILBBLLP, READ, 106.0, 1184.0, 466.3333333333333, 6, 106.0, 2009-12-16::11-39-01-645, BOBAMA CILBBLLP, DELETE, 70.0, 146.0, 108.0, 2, 70.0, 2009-12-15::12-53-58-280, BPAYS CILBBLLP, ADD, 860.0, 4903.0, 2243.5, 8, 860.0, 2009-12-16::17-54-23-862, LELLISON CILBBLLP, CHANGE, 112.0, 3410.0, 815.1666666666666, 12, 112.0, 2009-12-16::11-40-01-103, ASHORTEN CILBCBAL, EXECUTE_LIST, 8.0, 84.0, 26.0, 22, 23.0, 2009-12-16::17-54-01-643, LJACKMAN InitializeUserInfoService, READ_SYSTEM, 49.0, 962.0, 70.83777777777777, 450, 63.0, 2010-02-25::11-21-21-667, ASHORTEN InitializeUserService, READ_SYSTEM, 130.0, 2835.0, 234.85777777777778, 450, 216.0, 2010-02-25::11-21-21-446, ASHORTEN MenuLoginService, READ_SYSTEM, 530.0, 1186.0, 703.3333333333334, 9, 530.0, 2009-12-16::16-39-31-172, ASHORTEN NavigationOptionDescriptionService, READ_SYSTEM, 2.0, 7.0, 4.0, 8, 2.0, 2009-12-21::09-46-46-892, ASHORTEN ... There are other operations and attributes available. Refer to the Server Administration Guide provided with your product to understand the full et of operations and attributes. This is one of the many features I am proud that we implemented as it allows flexible monitoring of the performance of the product.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >