Search Results

Search found 4 results on 1 pages for 'obsoleteattribute'.

Page 1/1 | 1 

  • Adding ObsoleteAttribute to (or otherwise greylisting) Types not under my control?

    - by Michael Stum
    Is there a way to somehow mark Types I do not control as Obsolete? Basically I would like to add ObsoleteAttribute to types I do not want to use in my .net Project (i.e., SerializableAttribute) I believe I can do something like that with FxCop, but ideally I would like to have the compiler already generate warnings for "greylisted" Types? This should be on a Per-Project level, but sadly "Extension Attributes" don't exist, and adding them at Runtime is too late for ObsoleteAttribute...

    Read the article

  • Method Vs Property

    - by obsoleteattribute
    Hi, I'm a newbie to .NET. I have a class called Project, a project can have multiple forecasts.Now If I want to check if the projects has any forecasts or not should I use a readonly boolean property called HasForecast() or should I use a method named HasForecast() which basically returns a boolean value.From framework design guidelines I came to know that methods should be used when the operation is complex,since here I'm retrieving the value of forecasts from DB should I consider method, or since it is a logical data member should I use a property.If I use a property can I call a method in DBLayer from its getter.Please explain Regards, Ravi

    Read the article

  • Subterranean IL: Pseudo custom attributes

    - by Simon Cooper
    Custom attributes were designed to make the .NET framework extensible; if a .NET language needs to store additional metadata on an item that isn't expressible in IL, then an attribute could be applied to the IL item to represent this metadata. For instance, the C# compiler uses DecimalConstantAttribute and DateTimeConstantAttribute to represent compile-time decimal or datetime constants, which aren't allowed in pure IL, and FixedBufferAttribute to represent fixed struct fields. How attributes are compiled Within a .NET assembly are a series of tables containing all the metadata for items within the assembly; for instance, the TypeDef table stores metadata on all the types in the assembly, and MethodDef does the same for all the methods and constructors. Custom attribute information is stored in the CustomAttribute table, which has references to the IL item the attribute is applied to, the constructor used (which implies the type of attribute applied), and a binary blob representing the arguments and name/value pairs used in the attribute application. For example, the following C# class: [Obsolete("Please use MyClass2", true)] public class MyClass { // ... } corresponds to the following IL class definition: .class public MyClass { .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor(string, bool) = { string('Please use MyClass2' bool(true) } // ... } and results in the following entry in the CustomAttribute table: TypeDef(MyClass) MemberRef(ObsoleteAttribute::.ctor(string, bool)) blob -> {string('Please use MyClass2' bool(true)} However, there are some attributes that don't compile in this way. Pseudo custom attributes Just like there are some concepts in a language that can't be represented in IL, there are some concepts in IL that can't be represented in a language. This is where pseudo custom attributes come into play. The most obvious of these is SerializableAttribute. Although it looks like an attribute, it doesn't compile to a CustomAttribute table entry; it instead sets the serializable bit directly within the TypeDef entry for the type. This flag is fully expressible within IL; this C#: [Serializable] public class MySerializableClass {} compiles to this IL: .class public serializable MySerializableClass {} For those interested, a full list of pseudo custom attributes is available here. For the rest of this post, I'll be concentrating on the ones that deal with P/Invoke. P/Invoke attributes P/Invoke is built right into the CLR at quite a deep level; there are 2 metadata tables within an assembly dedicated solely to p/invoke interop, and many more that affect it. Furthermore, all the attributes used to specify p/invoke methods in C# or VB have their own keywords and syntax within IL. For example, the following C# method declaration: [DllImport("mscorsn.dll", SetLastError = true)] [return: MarshalAs(UnmanagedType.U1)] private static extern bool StrongNameSignatureVerificationEx( [MarshalAs(UnmanagedType.LPWStr)] string wszFilePath, [MarshalAs(UnmanagedType.U1)] bool fForceVerification, [MarshalAs(UnmanagedType.U1)] ref bool pfWasVerified); compiles to the following IL definition: .method private static pinvokeimpl("mscorsn.dll" lasterr winapi) bool marshal(unsigned int8) StrongNameSignatureVerificationEx( string marshal(lpwstr) wszFilePath, bool marshal(unsigned int8) fForceVerification, bool& marshal(unsigned int8) pfWasVerified) cil managed preservesig {} As you can see, all the p/invoke and marshal properties are specified directly in IL, rather than using attributes. And, rather than creating entries in CustomAttribute, a whole bunch of metadata is emitted to represent this information. This single method declaration results in the following metadata being output to the assembly: A MethodDef entry containing basic information on the method Four ParamDef entries for the 3 method parameters and return type An entry in ModuleRef to mscorsn.dll An entry in ImplMap linking ModuleRef and MethodDef, along with the name of the function to import and the pinvoke options (lasterr winapi) Four FieldMarshal entries containing the marshal information for each parameter. Phew! Applying attributes Most of the time, when you apply an attribute to an element, an entry in the CustomAttribute table will be created to represent that application. However, some attributes represent concepts in IL that aren't expressible in the language you're coding in, and can instead result in a single bit change (SerializableAttribute and NonSerializedAttribute), or many extra metadata table entries (the p/invoke attributes) being emitted to the output assembly.

    Read the article

  • Hidden Features of C#?

    - by Serhat Özgel
    This came to my mind after I learned the following from this question: where T : struct We, C# developers, all know the basics of C#. I mean declarations, conditionals, loops, operators, etc. Some of us even mastered the stuff like Generics, anonymous types, lambdas, linq, ... But what are the most hidden features or tricks of C# that even C# fans, addicts, experts barely know? Here are the revealed features so far: Keywords yield by Michael Stum var by Michael Stum using() statement by kokos readonly by kokos as by Mike Stone as / is by Ed Swangren as / is (improved) by Rocketpants default by deathofrats global:: by pzycoman using() blocks by AlexCuse volatile by Jakub Šturc extern alias by Jakub Šturc Attributes DefaultValueAttribute by Michael Stum ObsoleteAttribute by DannySmurf DebuggerDisplayAttribute by Stu DebuggerBrowsable and DebuggerStepThrough by bdukes ThreadStaticAttribute by marxidad FlagsAttribute by Martin Clarke ConditionalAttribute by AndrewBurns Syntax ?? operator by kokos number flaggings by Nick Berardi where T:new by Lars Mæhlum implicit generics by Keith one-parameter lambdas by Keith auto properties by Keith namespace aliases by Keith verbatim string literals with @ by Patrick enum values by lfoust @variablenames by marxidad event operators by marxidad format string brackets by Portman property accessor accessibility modifiers by xanadont ternary operator (?:) by JasonS checked and unchecked operators by Binoj Antony implicit and explicit operators by Flory Language Features Nullable types by Brad Barker Currying by Brian Leahy anonymous types by Keith __makeref __reftype __refvalue by Judah Himango object initializers by lomaxx format strings by David in Dakota Extension Methods by marxidad partial methods by Jon Erickson preprocessor directives by John Asbeck DEBUG pre-processor directive by Robert Durgin operator overloading by SefBkn type inferrence by chakrit boolean operators taken to next level by Rob Gough pass value-type variable as interface without boxing by Roman Boiko programmatically determine declared variable type by Roman Boiko Static Constructors by Chris Easier-on-the-eyes / condensed ORM-mapping using LINQ by roosteronacid Visual Studio Features select block of text in editor by Himadri snippets by DannySmurf Framework TransactionScope by KiwiBastard DependantTransaction by KiwiBastard Nullable<T> by IainMH Mutex by Diago System.IO.Path by ageektrapped WeakReference by Juan Manuel Methods and Properties String.IsNullOrEmpty() method by KiwiBastard List.ForEach() method by KiwiBastard BeginInvoke(), EndInvoke() methods by Will Dean Nullable<T>.HasValue and Nullable<T>.Value properties by Rismo GetValueOrDefault method by John Sheehan Tips & Tricks nice method for event handlers by Andreas H.R. Nilsson uppercase comparisons by John access anonymous types without reflection by dp a quick way to lazily instantiate collection properties by Will JavaScript-like anonymous inline-functions by roosteronacid Other netmodules by kokos LINQBridge by Duncan Smart Parallel Extensions by Joel Coehoorn

    Read the article

1