Search Results

Search found 10 results on 1 pages for 'occupancy'.

Page 1/1 | 1 

  • CUDA, more threads for same work = Longer run time despite better occupancy, Why?

    - by zenna
    I encountered a strange problem where increasing my occupancy by increasing the number of threads reduced performance. I created the following program to illustrate the problem: #include <stdio.h> #include <stdlib.h> #include <cuda_runtime.h> __global__ void less_threads(float * d_out) { int num_inliers; for (int j=0;j<800;++j) { //Do 12 computations num_inliers += threadIdx.x*1; num_inliers += threadIdx.x*2; num_inliers += threadIdx.x*3; num_inliers += threadIdx.x*4; num_inliers += threadIdx.x*5; num_inliers += threadIdx.x*6; num_inliers += threadIdx.x*7; num_inliers += threadIdx.x*8; num_inliers += threadIdx.x*9; num_inliers += threadIdx.x*10; num_inliers += threadIdx.x*11; num_inliers += threadIdx.x*12; } if (threadIdx.x == -1) d_out[blockIdx.x*blockDim.x+threadIdx.x] = num_inliers; } __global__ void more_threads(float *d_out) { int num_inliers; for (int j=0;j<800;++j) { // Do 4 computations num_inliers += threadIdx.x*1; num_inliers += threadIdx.x*2; num_inliers += threadIdx.x*3; num_inliers += threadIdx.x*4; } if (threadIdx.x == -1) d_out[blockIdx.x*blockDim.x+threadIdx.x] = num_inliers; } int main(int argc, char* argv[]) { float *d_out = NULL; cudaMalloc((void**)&d_out,sizeof(float)*25000); more_threads<<<780,128>>>(d_out); less_threads<<<780,32>>>(d_out); return 0; } Note both kernels should do the same amount of work in total, the (if threadIdx.x == -1 is a trick to stop the compiler optimising everything out and leaving an empty kernel). The work should be the same as more_threads is using 4 times as many threads but with each thread doing 4 times less work. Significant results form the profiler results are as followsL: more_threads: GPU runtime = 1474 us,reg per thread = 6,occupancy=1,branch=83746,divergent_branch = 26,instructions = 584065,gst request=1084552 less_threads: GPU runtime = 921 us,reg per thread = 14,occupancy=0.25,branch=20956,divergent_branch = 26,instructions = 312663,gst request=677381 As I said previously, the run time of the kernel using more threads is longer, this could be due to the increased number of instructions. Why are there more instructions? Why is there any branching, let alone divergent branching, considering there is no conditional code? Why are there any gst requests when there is no global memory access? What is going on here! Thanks

    Read the article

  • Display Outlook rooms occupancy in a web page

    - by pfonseca
    Hi everybody, I'm decommissioning a meeting room scheduling [web] tool in favor of the same Outlook's functionality. I'd like, however, to publish (read-only) a "Group Schedule" view in a web page. To make the idea more clear: On Outlook's Calendar view, select Actions / View Group Schedules and then create a new group for say, Conference Rooms. This new view will give a global view of Conference Rooms occupancy. I need a way to publish this room's occupancy. Any idea or suggestion? Thanks in advance

    Read the article

  • System.Threading.Timer Doesn't Trigger my TimerCallBack Delegate

    - by Tom Kong
    Hi, I am writing my first Windows Service using C# and I am having some trouble with my Timer class. When the service is started, it runs as expected but the code will not execute again (I want it to run every minute) Please take a quick look at the attached source and let me know if you see any obvious mistakes! TIA using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Diagnostics; using System.Linq; using System.ServiceProcess; using System.Text; using System.Threading; using System.IO; namespace CXO001 { public partial class Service1 : ServiceBase { public Service1() { InitializeComponent(); } /* * Aim: To calculate and update the Occupancy values for the different Sites * * Method: Retrieve data every minute, updating a public value which can be polled */ protected override void OnStart(string[] args) { Daemon(); } public void Daemon() { TimerCallback tcb = new TimerCallback(On_Tick); TimeSpan duetime = new TimeSpan(0, 0, 1); TimeSpan interval = new TimeSpan(0, 1, 0); Timer querytimer = new Timer(tcb, null, duetime, interval); } protected override void OnStop() { } static int[] floorplanids = new int[] { 115, 114, 107, 108 }; public static List<Record> Records = new List<Record>(); static bool firstrun = true; public static void On_Tick(object timercallback) { //Update occupancy data for the last minute //Save a copy of the public values to HDD with a timestamp string starttime; if (Records.Count > 0) { starttime = Records.Last().TS; firstrun = false; } else { starttime = DateTime.Today.AddHours(7).ToString(); firstrun = true; } DateTime endtime = DateTime.Now; GetData(starttime, endtime); } public static void GetData(string starttime, DateTime endtime) { string connstr = "Data Source = 192.168.1.123; Initial Catalog = Brickstream_OPS; User Id = Brickstream; Password = bstas;"; DataSet resultds = new DataSet(); //Get the occupancy for each Zone foreach (int zone in floorplanids) { SQL s = new SQL(); string querystr = "SELECT SUM(DIRECTIONAL_METRIC.NUM_TO_ENTER - DIRECTIONAL_METRIC.NUM_TO_EXIT) AS 'Occupancy' FROM REPORT_OBJECT INNER JOIN REPORT_OBJ_METRIC ON REPORT_OBJECT.REPORT_OBJ_ID = REPORT_OBJ_METRIC.REPORT_OBJECT_ID INNER JOIN DIRECTIONAL_METRIC ON REPORT_OBJ_METRIC.REP_OBJ_METRIC_ID = DIRECTIONAL_METRIC.REP_OBJ_METRIC_ID WHERE (REPORT_OBJ_METRIC.M_START_TIME BETWEEN '" + starttime + "' AND '" + endtime.ToString() + "') AND (REPORT_OBJECT.FLOORPLAN_ID = '" + zone + "');"; resultds = s.Go(querystr, connstr, zone.ToString(), resultds); } List<Record> result = new List<Record>(); int c = 0; foreach (DataTable dt in resultds.Tables) { Record r = new Record(); r.TS = DateTime.Now.ToString(); r.Zone = dt.TableName; if (!firstrun) { r.Occupancy = (dt.Rows[0].Field<int>("Occupancy")) + (Records[c].Occupancy); } else { r.Occupancy = dt.Rows[0].Field<int>("Occupancy"); } result.Add(r); c++; } Records = result; MrWriter(); } public static void MrWriter() { StringBuilder output = new StringBuilder("Time,Zone,Occupancy\n"); foreach (Record r in Records) { output.Append(r.TS); output.Append(","); output.Append(r.Zone); output.Append(","); output.Append(r.Occupancy.ToString()); output.Append("\n"); } output.Append(firstrun.ToString()); output.Append(DateTime.Now.ToFileTime()); string filePath = @"C:\temp\CXO.csv"; File.WriteAllText(filePath, output.ToString()); } } }

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • What would you do if you just had this code dumped in your lap?

    - by chickeninabiscuit
    Man, I just had this project given to me - expand on this they say. This is an example of ONE function: <?php //500+ lines of pure wonder. function page_content_vc($content) { global $_DBH, $_TPL, $_SET; $_SET['ignoreTimezone'] = true; lu_CheckUpdateLogin(); if($_SESSION['dash']['VC']['switch'] == 'unmanned' || $_SESSION['dash']['VC']['switch'] == 'touchscreen') { if($content['page_name'] != 'vc') { header('Location: /vc/'); die(); } } if($_GET['l']) { unset($_SESSION['dash']['VC']); if($loc_id = lu_GetFieldValue('ID', 'Location', $_GET['l'])) { if(lu_CheckPermissions('vc', $loc_id)) { $timezone = lu_GetFieldValue('Time Zone', 'Location', $loc_id, 'ID'); if(strlen($timezone) > 0) { $_SESSION['time_zone'] = $timezone; } $_SESSION['dash']['VC']['loc_ID'] = $loc_id; header('Location: /vc/'); die(); } } } if($_SESSION['dash']['VC']['loc_ID']) { $timezone = lu_GetFieldValue('Time Zone', 'Location', $_SESSION['dash']['VC']['loc_ID'], 'ID'); if(strlen($timezone) > 0) { $_SESSION['time_zone'] = $timezone; } $loc_id = $_SESSION['dash']['VC']['loc_ID']; $org_id = lu_GetFieldValue('record_ID', 'Location', $loc_id); $_TPL->assign('loc_id', $loc_id); $location_name = lu_GetFieldValue('Location Name', 'Location', $loc_id); $_TPL->assign('LocationName', $location_name); $customer_name = lu_GetFieldValue('Customer Name', 'Organisation', $org_id); $_TPL->assign('CustomerName', $customer_name); $enable_visitor_snap = lu_GetFieldValue('VisitorSnap', 'Location', $loc_id); $_TPL->assign('EnableVisitorSnap', $enable_visitor_snap); $lacps = explode("\n", lu_GetFieldValue('Location Access Control Point', 'Location', $loc_id)); array_walk($lacps, 'trim_value'); if(count($lacps) > 0) { if(count($lacps) == 1) { $_SESSION['dash']['VC']['lacp'] = $lacps[0]; } else { if($_GET['changeLACP'] && in_array($_GET['changeLACP'], $lacps)) { $_SESSION['dash']['VC']['lacp'] = $_GET['changeLACP']; header('Location: /vc/'); die(); } else if(!in_array($_SESSION['dash']['VC']['lacp'], $lacps)) { $_SESSION['dash']['VC']['lacp'] = $lacps[0]; } $_TPL->assign('LACP_array', $lacps); } $_TPL->assign('current_LACP', $_SESSION['dash']['VC']['lacp']); $_TPL->assign('showContractorSearch', true); /* if($contractorStaff = lu_GetTableRow('ContractorStaff', $org_id, 'record_ID', 'record_Inactive != "checked"')) { foreach($contractorStaff['rows'] as $contractor) { $lacp_rights = lu_OrganiseCustomDataFunctionMultiselect($contractor[lu_GetFieldName('Location Access Rights', 'ContractorStaff')]); if(in_array($_SESSION['dash']['VC']['lacp'], $lacp_rights)) { $_TPL->assign('showContractorSearch', true); } } } */ } $selectedOptions = explode(',', lu_GetFieldValue('Included Fields', 'Location', $_SESSION['dash']['VC']['loc_ID'])); $newOptions = array(); foreach($selectedOptions as $selOption) { $so_array = explode('|', $selOption, 2); if(count($so_array) > 1) { $newOptions[$so_array[0]] = $so_array[1]; } else { $newOptions[$so_array[0]] = "Both"; } } if($newOptions[lu_GetFieldName('Expected Length of Visit', 'Visitor')]) { $alert = false; if($visitors = lu_OrganiseVisitors( lu_GetTableRow('Visitor', 'checked', lu_GetFieldName('Checked In', 'Visitor'), lu_GetFieldName('Location for Visit', 'Visitor').'="'.$_SESSION['dash']['VC']['loc_ID'].'" AND '.lu_GetFieldName('Checked Out', 'Visitor').' != "checked"'), false, true, true)) { foreach($visitors['rows'] as $key => $visitor) { if($visitor['expected'] && $visitor['expected'] + (60*30) < time()) { $alert = true; } } } if($alert == true) { $_TPL->assign('showAlert', 'red'); } else { //$_TPL->assign('showAlert', 'green'); } } $_TPL->assign('switch', $_SESSION['dash']['VC']['switch']); if($_SESSION['dash']['VC']['switch'] == 'touchscreen') { $_TPL->assign('VC_unmanned', true); } if($_GET['check'] == 'in') { if($_SESSION['dash']['VC']['switch'] == 'touchscreen') { lu_CheckInTouchScreen(); } else { lu_CheckIn(); } } else if($_GET['check'] == 'out') { if($_SESSION['dash']['VC']['switch'] == 'touchscreen') { lu_CheckOutTouchScreen(); } else { lu_CheckOut(); } } else if($_GET['switch'] == 'unmanned') { $_SESSION['dash']['VC']['switch'] = 'unmanned'; if($_GET['printing'] == true && (lu_GetFieldValue('Printing', 'Location', $_SESSION['dash']['VC']['loc_ID']) != "No" && lu_GetFieldValue('Printing', 'Location', $_SESSION['dash']['VC']['loc_ID']) != "")) { $_SESSION['dash']['VC']['printing'] = true; } else { $_SESSION['dash']['VC']['printing'] = false; } header('Location: /vc/'); die(); } else if($_GET['switch'] == 'touchscreen') { $_SESSION['dash']['VC']['switch'] = 'touchscreen'; if($_GET['printing'] == true && (lu_GetFieldValue('Printing', 'Location', $_SESSION['dash']['VC']['loc_ID']) != "No" && lu_GetFieldValue('Printing', 'Location', $_SESSION['dash']['VC']['loc_ID']) != "")) { $_SESSION['dash']['VC']['printing'] = true; } else { $_SESSION['dash']['VC']['printing'] = false; } header('Location: /vc/'); die(); } else if($_GET['switch'] == 'manned') { if($_POST['password']) { if(md5($_POST['password']) == $_SESSION['dash']['password']) { unset($_SESSION['dash']['VC']['switch']); //setcookie('email', "", time() - 3600); //setcookie('location', "", time() - 3600); header('Location: /vc/'); die(); } else { $_TPL->assign('switchLoginError', 'Incorrect Password'); } } $_TPL->assign('switchLogin', 'true'); } else if($_GET['m'] == 'visitor') { lu_ModifyVisitorVC(); } else if($_GET['m'] == 'enote') { lu_ModifyEnoteVC(); } else if($_GET['m'] == 'medical') { lu_ModifyMedicalVC(); } else if($_GET['print'] == 'label' && $_GET['v']) { lu_PrintLabelVC(); } else { unset($_SESSION['dash']['VC']['checkin']); unset($_SESSION['dash']['VC']['checkout']); $_TPL->assign('icon', 'GroupCheckin'); if($_SESSION['dash']['VC']['switch'] != 'unmanned' && $_SESSION['dash']['VC']['switch'] != 'touchscreen') { $staff_ids = array(); if($staffs = lu_GetTableRow('Staff', $_SESSION['dash']['VC']['loc_ID'], 'record_ID')) { foreach($staffs['rows'] as $staff) { $staff_ids[] = $staff['ID']; } } if($_GET['view'] == "tomorrow") { $dateStart = date('Y-m-d', mktime(0, 0, 0, date("m") , date("d")+1, date("Y"))); $dateEnd = date('Y-m-d', mktime(0, 0, 0, date("m") , date("d")+1, date("Y"))); } else if($_GET['view'] == "month") { $dateStart = date('Y-m-d', mktime(0, 0, 0, date("m"), date("d"), date("Y"))); $dateEnd = date('Y-m-d', mktime(0, 0, 0, date("m"), date("d")+30, date("Y"))); } else if($_GET['view'] == "week") { $dateStart = date('Y-m-d', mktime(0, 0, 0, date("m"), date("d"), date("Y"))); $dateEnd = date('Y-m-d', mktime(0, 0, 0, date("m"), date("d")+7, date("Y"))); } else { $dateStart = date('Y-m-d'); $dateEnd = date('Y-m-d'); } if(lu_GetFieldValue('Enable Survey', 'Location', $_SESSION['dash']['VC']['loc_ID']) == 'checked' && lu_GetFieldValue('Add Survey', 'Location', $_SESSION['dash']['VC']['loc_ID']) == 'checked') { $_TPL->assign('enableSurvey', true); } //lu_GetFieldName('Checked In', 'Visitor') //!= "checked" //date('d/m/Y'), lu_GetFieldName('Date of Visit', 'Visitor') if($visitors = lu_OrganiseVisitors(lu_GetTableRow('Visitor', $_SESSION['dash']['VC']['loc_ID'], lu_GetFieldName('Location for Visit', 'Visitor'), lu_GetFieldName('Checked In', 'Visitor').' != "checked" AND '.lu_GetFieldName('Checked Out', 'Visitor').' != "checked" AND '.lu_GetFieldName('Date of Visit', 'Visitor').' >= "'.$dateStart.'" AND '.lu_GetFieldName('Date of Visit', 'Visitor').' <= "'.$dateEnd.'"'))) { foreach($visitors['days'] as $day => $visitors_day) { foreach($visitors_day['rows'] as $key => $visitor) { $visitors['days'][$day]['rows'][$key]['visiting'] = lu_GetTableRow('Staff', $visitor['record_ID'], 'ID'); $visitors['days'][$day]['rows'][$key]['visiting']['notify'] = $_DBH->getRow('SELECT * FROM lu_notification WHERE ent_ID = "'.$visitor['record_ID'].'"'); } } //array_dump($visitors); $_TPL->assign('visitors', $visitors); } if($_GET['conGroup']) { if($_GET['action'] == 'add') { $_SESSION['dash']['VC']['conGroup'][$_GET['conGroup']] = $_GET['conGroup']; } else { unset($_SESSION['dash']['VC']['conGroup'][$_GET['conGroup']]); } } if(count($_SESSION['dash']['VC']['conGroup']) > 0) { if($conGroupResult = lu_GetTableRow('ContractorStaff', '1', '1', ' ID IN ('.implode(',', $_SESSION['dash']['VC']['conGroup']).')')) { if($_POST['_submit'] == 'Check-In Group >>') { $form = lu_GetForm('VisitorStandard'); $standarddata = array(); foreach($form['items'] as $key=>$item) { $standarddata[$key] = $_POST[lu_GetFieldName($item['name'], 'Visitor')]; } foreach($conGroupResult['rows'] as $conStaff) { $data = $standarddata; foreach($form['items'] as $key=>$item) { if($key != 'ID' && $key != 'record_ID' && $conStaff[lu_GetFieldName(lu_GetNameField($key, 'Visitor'), 'ContractorStaff')]) { $data[$key] = $conStaff[lu_GetFieldName(lu_GetNameField($key, 'Visitor'), 'ContractorStaff')]; } } $data['record_ID'] = $data[lu_GetFieldName('Visiting', 'Visitor')]; $data[lu_GetFieldName('Date of Visit', 'Visitor')] = date('Y-m-d'); $data[lu_GetFieldName('Time of Visit', 'Visitor')] = date('H:i'); $data[lu_GetFieldName('Checked In', 'Visitor')] = 'checked'; $data[lu_GetFieldName('Location for Visit', 'Visitor')] = $_SESSION['dash']['VC']['loc_ID']; $data[lu_GetFieldName('ConStaff ID', 'Visitor')] = $conStaff['ID']; $data[lu_GetFieldName('From', 'Visitor')] = lu_GetFieldValue('Legal Name', 'Contractor', $conStaff[lu_GetFieldName('Contractor', 'ContractorStaff')]); $id = lu_UpdateData($form, $data); lu_VisitorCheckIn($id); //array_dump($data); //array_dump($id); } unset($_SESSION['dash']['VC']['conGroup']); header('Location: /vc/'); die(); } if(count($conGroupResult['rows'])) { foreach($conGroupResult['rows'] as $key => $cstaff) { $conGroupResult['rows'][$key]['contractor'] = lu_GetTableRow('Contractor', $cstaff[lu_GetFieldName('Contractor', 'ContractorStaff')], 'ID'); } $_TPL->assign('conGroupResult', $conGroupResult); } $conGroupForm = lu_GetForm('VisitorConGroup'); $conGroupForm = lu_OrganiseVisitorForm($conGroupForm, $_SESSION['dash']['VC']['loc_ID'], 'Contractor'); $secure_options_array = lu_GetSecureOptions($org_id); if($secure_options_array[$_SESSION['dash']['VC']['loc_ID']]) { $conGroupForm['items'][lu_GetFieldName('Secure Area', 'Visitor')]['options']['values'] = $secure_options_array[$_SESSION['dash']['VC']['loc_ID']]; $conGroupForm['items'][lu_GetFieldName('Secure Area', 'Visitor')]['name'] = 'Secure Area'; } else { unset($conGroupForm['items'][lu_GetFieldName('Secure Area', 'Visitor')]); } if($secure_options_array) { $form['items'][lu_GetFieldName('Secure Area', 'Visitor')]['options']['values'] = $secure_options_array; $form['items'][lu_GetFieldName('Secure Area', 'Visitor')]['name'] = 'Secure Area'; } else { unset($form['items'][lu_GetFieldName('Secure Area', 'Visitor')]); } $_TPL->assign('conGroupForm', $conGroupForm); $_TPL->assign('hideFormCancel', true); } } if($_GET['searchVisitors']) { $_TPL->assign('searchVisitorsQuery', $_GET['searchVisitors']); $where = ''; if($_GET['searchVisitorsIn'] == 'Yes') { $where .= ' AND '.lu_GetFieldName('Checked In', 'Visitor').' = "checked"'; $_TPL->assign('searchVisitorsIn', 'Yes'); } else { $where .= ' AND '.lu_GetFieldName('Checked In', 'Visitor').' != "checked"'; $_TPL->assign('searchVisitorsIn', 'No'); } if($_GET['searchVisitorsOut'] == 'Yes') { $where = ''; $where .= ' AND '.lu_GetFieldName('Checked Out', 'Visitor').' = "checked"'; $_TPL->assign('searchVisitorsOut', 'Yes'); } else { $where .= ' AND '.lu_GetFieldName('Checked Out', 'Visitor').' != "checked"'; $_TPL->assign('searchVisitorsOut', 'No'); } if($searchVisitors = lu_OrganiseVisitors(lu_GetTableRow('Visitor', $_GET['searchVisitors'], '#search#', lu_GetFieldName('Location for Visit', 'Visitor').'="'.$_SESSION['dash']['VC']['loc_ID'].'"'.$where))) { foreach($searchVisitors['rows'] as $key => $visitor) { $searchVisitors['rows'][$key]['visiting'] = lu_GetTableRow('Staff', $visitor['record_ID'], 'ID'); } $_TPL->assign('searchVisitors', $searchVisitors); } else { $_TPL->assign('searchVisitorsNotFound', true); } } else if($_GET['searchStaff']) { if($_POST['staff_id']) { if(lu_CheckPermissions('staff', $_POST['staff_id'])) { $_DBH->query('UPDATE '.lu_GetTableName('Staff').' SET '.lu_GetFieldName('Current Location', 'Staff').' = "'.$_POST['current_location'].'" WHERE ID="'.$_POST['staff_id'].'"'); } } $locations = lu_GetTableRow('Location', $org_id, 'record_ID'); if(count($locations['rows']) > 1) { $_TPL->assign('staffLocations', $locations); } $loc_ids = array(); foreach($locations['rows'] as $location) { $loc_ids[] = $location['ID']; } // array_dump($locations); // array_dump($_POST); $_TPL->assign('searchStaffQuery', $_GET['searchStaff']); $where = ' AND record_Inactive != "checked"'; if($_GET['searchStaffIn'] == 'Yes' && $_GET['searchStaffOut'] != 'Yes') { $where .= ' AND ('.lu_GetFieldName('Staff Status', 'Staff').' = "" OR '.lu_GetFieldName('Staff Status', 'Staff').' = "On-Site")'. $_TPL->assign('searchStaffIn', 'Yes'); $_TPL->assign('searchStaffOut', 'No'); } else if($_GET['searchStaffOut'] == 'Yes' && $_GET['searchStaffIn'] != 'Yes') { $where .= ' AND ('.lu_GetFieldName('Staff Status', 'Staff').' != "" AND '.lu_GetFieldName('Staff Status', 'Staff').' != "On-Site")'. $_TPL->assign('searchStaffOut', 'Yes'); $_TPL->assign('searchStaffIn', 'No'); } else { $_TPL->assign('searchStaffOut', 'Yes'); $_TPL->assign('searchStaffIn', 'Yes'); } if($searchStaffs = lu_GetTableRow('Staff', $_GET['searchStaff'], '#search#', 'record_ID IN ('.implode(',', $loc_ids).')'.$where, lu_GetFieldName('First Name', 'Staff').','.lu_GetFieldName('Surname', 'Staff'))) { $_TPL->assign('searchStaffs', $searchStaffs); } else { $_TPL->assign('searchStaffNotFound', true); } } else if($_GET['searchContractor']) { $_TPL->assign('searchContractorQuery', $_GET['searchContractor']); //$where = ' AND '.lu_GetTableName('ContractorStaff').'.record_Inactive != "checked"'; $where = ' '; if($_GET['searchContractorIn'] == 'Yes' && $_GET['searchContractorOut'] != 'Yes') { $where .= ' AND ('.lu_GetFieldName('Onsite Status', 'ContractorStaff').' = "Onsite")'; $_TPL->assign('searchContractorIn', 'Yes'); $_TPL->assign('searchContractorOut', 'No'); } else if($_GET['searchContractorOut'] == 'Yes' && $_GET['searchContractorIn'] != 'Yes') { $where .= ' AND ('.lu_GetFieldName('Onsite Status', 'ContractorStaff').' != "Onsite")'. $_TPL->assign('searchContractorOut', 'Yes'); $_TPL->assign('searchContractorIn', 'No'); } else { $_TPL->assign('searchContractorOut', 'Yes'); $_TPL->assign('searchContractorIn', 'Yes'); } $join = 'LEFT JOIN '.lu_GetTableName('Contractor').' ON '.lu_GetTableName('Contractor').'.ID = '.lu_GetTableName('ContractorStaff').'.'.lu_GetFieldName('Contractor', 'ContractorStaff'); $extrasearch = array ( lu_GetTableName('Contractor').'.'.lu_GetFieldName('Legal Name', 'Contractor') ); if($searchContractorResult = lu_GetTableRow('ContractorStaff', $_GET['searchContractor'], '#search#', lu_GetTableName('ContractorStaff').'.record_ID = "'.$org_id.'" '.$where, lu_GetFieldName('First Name', 'ContractorStaff').','.lu_GetFieldName('Surname', 'ContractorStaff'), $join, $extrasearch)) { /* foreach($searchContractorResult['rows'] as $key=>$contractor) { $lacp_rights = lu_OrganiseCustomDataFunctionMultiselect($contractor[lu_GetFieldName('Location Access Rights', 'ContractorStaff')]); if(!in_array($_SESSION['dash']['VC']['lacp'], $lacp_rights)) { unset($searchContractorResult['rows'][$key]); } } */ if(count($searchContractorResult['rows'])) { foreach($searchContractorResult['rows'] as $key => $cstaff) { /* if($cstaff[lu_GetFieldName('Onsite_Status', 'Contractor')] == 'Onsite')) { if($visitor['rows'][0][lu_GetFieldName('ConStaff ID', 'Visitor')]) { $_DBH->query('UPDATE '.lu_GetTableName('ContractorStaff').' SET '.lu_GetFieldName('Onsite Status', 'ContractorStaff').' = "" WHERE ID="'.$visitor['rows'][0][lu_GetFieldName('ConStaff ID', 'Visitor')].'"'); } } */ if($cstaff[lu_GetFieldName('SACN Expiry Date', 'ContractorStaff')] != '0000-00-00') { if(strtotime($cstaff[lu_GetFieldName('SACN Expiry Date', 'ContractorStaff')]) < time()) { $searchContractorResult['rows'][$key]['sacn_expiry'] = true; } else { $searchContractorResult['rows'][$key]['sacn_expiry'] = false; } } else { $searchContractorResult['rows'][$key]['sacn_expiry'] = false; } if($cstaff[lu_GetFieldName('Induction Valid Until', 'ContractorStaff')] != '0000-00-00') { if(strtotime($cstaff[lu_GetFieldName('Induction Valid Until', 'ContractorStaff')]) < time()) { $searchContractorResult['rows'][$key]['induction_expiry'] = true; } else { $searchContractorResult['rows'][$key]['induction_expiry'] = false; } } else { $searchContractorResult['rows'][$key]['induction_expiry'] = false; } $searchContractorResult['rows'][$key]['contractor'] = lu_GetTableRow('Contractor', $cstaff[lu_GetFieldName('Contractor', 'ContractorStaff')], 'ID'); } $_TPL->assign('searchContractorResult', $searchContractorResult); } else { $_TPL->assign('searchContractorNotFound', true); } } else { $_TPL->assign('searchContractorNotFound', true); } } $occupancy = array(); $occupancy['staffNumber'] = $_DBH->getOne('SELECT count(*) FROM '.lu_GetTableName('Staff').' WHERE record_ID = "'.$_SESSION['dash']['VC']['loc_ID'].'" AND record_Inactive != "checked" AND '.lu_GetFieldName('Ignore Counts', 'Staff').' != "checked"'); $occupancy['staffNumberOnsite']= $_DBH->getOne( 'SELECT count(*) FROM '.lu_GetTableName('Staff').' WHERE ( (record_ID = "'.$_SESSION['dash']['VC']['loc_ID'].'" AND ('.lu_GetFieldName('Staff Status', 'Staff').' = "" OR '.lu_GetFieldName('Staff Status', 'Staff').' = "On-Site")) OR '.lu_GetFieldName('Current Location', 'Staff').' = "'.$_SESSION['dash']['VC']['loc_ID'].'") AND record_Inactive != "checked" AND '.lu_GetFieldName('Ignore Counts', 'Staff').' != "checked"'); $occupancy['visitorsOnsite'] = $_DBH->getOne('SELECT count(*) FROM '.lu_GetTableName('Visitor').' WHERE '.lu_GetFieldName('Location for Visit', 'Visitor').' = "'.$_SESSION['dash']['VC']['loc_ID'].'" AND '.lu_GetFieldName('Checked In', 'Visitor').' = "checked" AND '.lu_GetFieldName('Checked Out', 'Visitor').' != "checked"'); $_TPL->assign('occupancy', $occupancy); if($enotes = lu_GetTableRow('Enote', $org_id, 'record_ID', lu_GetFieldName('Note Emailed', 'Enote').' = "0000-00-00" AND '.lu_GetFieldName('Note Passed On', 'Enote').' != "Yes"')) { $_TPL->assign('EnoteNotice', true); } if($medical = lu_GetTableRow('MedicalRoom', $_SESSION['dash']['VC']['loc_ID'], 'record_ID', 'record_Inactive != "Yes"')) { $_TPL->assign('MedicalNotice', true); } if(lu_GetFieldValue('Printing', 'Location', $_SESSION['dash']['VC']['loc_ID']) != "No" && lu_GetFieldValue('Printing', 'Location', $_SESSION['dash']['VC']['loc_ID']) != "") { $_TPL->assign('UnmannedPrinting', true); } } else { if($_SESSION['dash']['VC']['printing'] == true) { $_TPL->assign('UnmannedPrinting', true); } } // enable if contractor check-in buttons should be enabled if(lu_GetFieldValue('Enable Contractor Check In', 'Location', $_SESSION['dash']['VC']['loc_ID']) == "checked") { $_TPL->assign('ContractorCheckin', true); } } if($_SESSION['dash']['entity_id'] && $_GET['fixupCon'] == 'true') { $conStaffs = lu_GetTableRow('ContractorStaff', $_SESSION['dash']['ModifyConStaffs']['org_ID'], 'record_ID', '', lu_GetFieldName('First Name', 'ContractorStaff').','.lu_GetFieldName('Surname', 'ContractorStaff')); foreach($conStaffs['rows'] as $key => $cstaff) { if($cstaff[lu_GetFieldName('Site Access Card Number', 'ContractorStaff')] && $cstaff[lu_GetFieldName('Site Access Card Type', 'ContractorStaff')]) { echo $cstaff['ID'].' '; $_DBH->query('UPDATE '.lu_GetTableName('Visitor').' SET '.lu_GetFieldName('Site Access Card Number', 'Visitor').' = "'.$cstaff[lu_GetFieldName('Site Access Card Number', 'ContractorStaff')].'", '.lu_GetFieldName('Site Access Card Type', 'Visitor').' = "'.$cstaff[lu_GetFieldName('Site Access Card Type', 'ContractorStaff')].'" WHERE '.lu_GetFieldName('ConStaff ID', 'Visitor').'="'.$cstaff['ID'].'"'); } } } } else { if($_SESSION['dash']['staffs']) { foreach($_SESSION['dash']['staffs']['rows'] as $staff) { if($staff[lu_GetFieldName('Reception Manager', 'Staff')] == 'checked') { $loc_id = $staff['record_ID']; unset($_SESSION['dash']['VC']); if($loc_id = lu_GetFieldValue('ID', 'Location', $loc_id)) { $_SESSION['dash']['VC']['loc_ID'] = $loc_id; header('Location: /vc/'); die(); } } } } $_TPL->assign('mode', 'public'); } $content['page_content'] = $_TPL->fetch('modules/vc.htm'); return $content; } ?> die();die();die();die();die(); This question will probably be closed - i just need some support from my coding brothers and sisters. *SOB*

    Read the article

  • How Do You Profile & Optimize CUDA Kernels?

    - by John Dibling
    I am somewhat familiar with the CUDA visual profiler and the occupancy spreadsheet, although I am probably not leveraging them as well as I could. Profiling & optimizing CUDA code is not like profiling & optimizing code that runs on a CPU. So I am hoping to learn from your experiences about how to get the most out of my code. There was a post recently looking for the fastest possible code to identify self numbers, and I provided a CUDA implementation. I'm not satisfied that this code is as fast as it can be, but I'm at a loss as to figure out both what the right questions are and what tool I can get the answers from. How do you identify ways to make your CUDA kernels perform faster?

    Read the article

  • JVM CMS Garbage Collecting Issues

    - by jlintz
    I'm seeing the following symptoms on an application's GC log file with the Concurrent Mark-Sweep collector: 4031.248: [CMS-concurrent-preclean-start] 4031.250: [CMS-concurrent-preclean: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4031.250: [CMS-concurrent-abortable-preclean-start] CMS: abort preclean due to time 4036.346: [CMS-concurrent-abortable-preclean: 0.159/5.096 secs] [Times: user=0.00 sys=0.01, real=5.09 secs] 4036.346: [GC[YG occupancy: 55964 K (118016 K)]4036.347: [Rescan (parallel) , 0.0641200 secs]4036.411: [weak refs processing, 0.0001300 secs]4036.411: [class unloading, 0.0041590 secs]4036.415: [scrub symbol & string tables, 0.0053220 secs] [1 CMS-remark: 16015K(393216K)] 71979K(511232K), 0.0746640 secs] [Times: user=0.08 sys=0.00, real=0.08 secs] The preclean process keeps aborting continously. I've tried adjusting CMSMaxAbortablePrecleanTime to 15 seconds, from the default of 5, but that has not helped. The current JVM options are as follows... Djava.awt.headless=true -Xms512m -Xmx512m -Xmn128m -XX:MaxPermSize=128m -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:BiasedLockingStartupDelay=0 -XX:+DoEscapeAnalysis -XX:+UseBiasedLocking -XX:+EliminateLocks -XX:+CMSParallelRemarkEnabled -verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -XX:+PrintHeapAtGC -Xloggc:gc.log -XX:+CMSClassUnloadingEnabled -XX:+CMSPermGenPrecleaningEnabled -XX:CMSInitiatingOccupancyFraction=50 -XX:ReservedCodeCacheSize=64m -Dnetworkaddress.cache.ttl=30 -Xss128k It appears the concurrent-abortable-preclean never gets a chance to run. I read through http://blogs.sun.com/jonthecollector/entry/did_you_know which had a suggestion of enabling CMSScavengeBeforeRemark, but the side effects of pausing did not seem ideal. Could anyone offer up any suggestions? Also I was wondering if anyone had a good reference for grokking the CMS GC logs, in particular this line: [1 CMS-remark: 16015K(393216K)] 71979K(511232K), 0.0746640 secs] Not clear on what memory regions those numbers are referring to.

    Read the article

  • JVM throws OutOfMemory during gc though there are plenty memory left...

    - by Shu L.
    I have my java application configured to use 5G memory. I got an OutOfMemory out of blue. I inspected the gc log and found plenty of memory left: young generation occupies 4% allocated space, tenure generation occupancy is 5% and perm generation is 43%. I am puzzled why JVM throws an OutOfMemory at the gc time. Does anyone know why this is happening? Your help is greatly appreciated. JVM memory and gc settings: -server -Xms5g -Xmx5g -Xss256k -XX:NewSize=2g -XX:MaxNewSize=2g -XX:+UseParallelOldGC -XX:+UseTLAB -XX:SurvivorRatio=8 -XX:TargetSurvivorRatio=90 -XX:+DisableExplicitGC gc.log 2009-09-19T03:34:59.741+0000: 92836.778: [GC Desired survivor size 152567808 bytes, new threshold 1 (max 15) [PSYoungGen: 1941492K-144057K(1947072K)] 3138022K-1340830K(5092800K), 0.1947640 secs] [Times: user=0.61 sys=0.01, real=0.19 secs] 2009-09-19T03:35:29.918+0000: 92866.954: [GC Desired survivor size 152109056 bytes, new threshold 1 (max 15) [PSYoungGen: 1941625K-144049K(1948608K)] 3138398K-1341080K(5094336K), 0.1942000 secs] [Times: user=0.61 sys=0.01, real=0.20 secs] 2009-09-19T03:35:56.883+0000: 92893.920: [GC Desired survivor size 156565504 bytes, new threshold 1 (max 15) [PSYoungGen: 1567994K-115427K(1915072K)] 2765026K-1312820K(5060800K), 0.1586320 secs] [Times: user=0.50 sys=0.01, real=0.16 secs] 2009-09-19T03:35:57.042+0000: 92894.079: [GC Desired survivor size 179961856 bytes, new threshold 1 (max 15) [PSYoungGen: 115427K-0K(1898560K)] 1312820K-1313987K(5044288K), 0.0775650 secs] [Times: user=0.42 sys=0.19, real=0.08 secs] 2009-09-19T03:35:57.120+0000: 92894.157: [Full GC [PSYoungGen: 0K-0K(1898560K)] [ParOldGen: 1313987K-159522K(3145728K)] 1313987K-159522K(5044288K) [PSPermGen: 20025K-19942K(40256K)], 0.56923 00 secs] [Times: user=2.18 sys=0.05, real=0.57 secs] 2009-09-19T03:35:57.690+0000: 92894.726: [GC Desired survivor size 197066752 bytes, new threshold 1 (max 15) [PSYoungGen: 0K-0K(1745728K)] 159522K-159522K(4891456K), 0.0072590 secs] [Times: user=0.01 sys=0.00, real=0.00 secs] 2009-09-19T03:35:57.698+0000: 92894.734: [Full GC [PSYoungGen: 0K-0K(1745728K)] [ParOldGen: 159522K-158627K(3145728K)] 159522K-158627K(4891456K) [PSPermGen: 19942K-19934K(45504K)], 0.3280480 secs] [Times: user=1.46 sys=0.00, real=0.33 secs] Heap PSYoungGen total 1745728K, used 87233K [0x00002aab73650000, 0x00002aabf3650000, 0x00002aabf3650000) eden space 1745664K, 4% used [0x00002aab73650000,0x00002aab78b80778,0x00002aabddf10000) from space 64K, 0% used [0x00002aabddf10000,0x00002aabddf10000,0x00002aabddf20000) to space 192448K, 0% used [0x00002aabe7a60000,0x00002aabe7a60000,0x00002aabf3650000) ParOldGen total 3145728K, used 158627K [0x00002aaab3650000, 0x00002aab73650000, 0x00002aab73650000) object space 3145728K, 5% used [0x00002aaab3650000,0x00002aaabd138d28,0x00002aab73650000) PSPermGen total 45504K, used 19965K [0x00002aaaae250000, 0x00002aaab0ec0000, 0x00002aaab3650000) object space 45504K, 43% used [0x00002aaaae250000,0x00002aaaaf5cf668,0x00002aaab0ec0000) I am on 64-bit Linux and JRE 1.6.0_10: $uname -a Linux x 2.6.24-etchnhalf.1-amd64 #1 SMP Tue Oct 14 03:11:45 UTC 2008 x86_64 GNU/Linux $java -version java version "1.6.0_10" Java(TM) SE Runtime Environment (build 1.6.0_10-b33) Java HotSpot(TM) 64-Bit Server VM (build 11.0-b15, mixed mode)

    Read the article

  • Hung JVM consuming 100% CPU

    - by Bogdan
    We have a JAVA server running on Sun JRE 6u20 on Linux 32-bit (CentOS). We use the Server Hotspot with CMS collector with the following options (I've only provided the relevant ones): -Xmx896m -Xss128k -XX:NewSize=384M -XX:MaxPermSize=96m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC Sometimes, after running for a while, the JVM seems to slip into a hung state, whereby even though we don't make any requests to the application, the CPU continues to spin at 100% (we have 8 logical CPUs, so it looks like only one CPU does the spinning). In this state the JVM doesn't respond to SIGHUP signals (kill -3) and we can't connect to it normally with jstack. We CAN connect with "jstack -F", but the output is dodgy (we can see lots of NullPointerExceptions from JStack apparently because it wasn't able to 'walk' some stacks). So the "jstack -F" output seems to be useless. We have run a stack dump from "gdb" though, and we were able to match the thread id that spins the CPU (we found that using "top" with a per-thread view - "H" option) with a thread stack that appears in the gdb result and this is how it looks like: Thread 443 (Thread 0x7e5b90 (LWP 26310)): #0 0x0115ebd3 in CompactibleFreeListSpace::block_size(HeapWord const*) const () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #1 0x01160ff9 in CompactibleFreeListSpace::prepare_for_compaction(CompactPoint*) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #2 0x0123456c in Generation::prepare_for_compaction(CompactPoint*) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #3 0x01229b2c in GenCollectedHeap::prepare_for_compaction() () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #4 0x0122a7fc in GenMarkSweep::invoke_at_safepoint(int, ReferenceProcessor*, bool) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #5 0x01186024 in CMSCollector::do_compaction_work(bool) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #6 0x011859ee in CMSCollector::acquire_control_and_collect(bool, bool) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #7 0x01185705 in ConcurrentMarkSweepGeneration::collect(bool, bool, unsigned int, bool) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #8 0x01227f53 in GenCollectedHeap::do_collection(bool, bool, unsigned int, bool, int) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #9 0x0115c7b5 in GenCollectorPolicy::satisfy_failed_allocation(unsigned int, bool) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #10 0x0122859c in GenCollectedHeap::satisfy_failed_allocation(unsigned int, bool) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #11 0x0158a8ce in VM_GenCollectForAllocation::doit() () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #12 0x015987e6 in VM_Operation::evaluate() () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #13 0x01597c93 in VMThread::evaluate_operation(VM_Operation*) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #14 0x01597f0f in VMThread::loop() () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #15 0x015979f0 in VMThread::run() () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #16 0x0145c24e in java_start(Thread*) () from /usr/java/jdk1.6.0_20/jre/lib/i386/server/libjvm.so #17 0x00ccd46b in start_thread () from /lib/libpthread.so.0 #18 0x00bc2dbe in clone () from /lib/libc.so.6 It seems that a JVM thread is spinning while doing some CMS related work. We have checked the memory usage on the box, there seems to be enough memory available and the system is not swapping. Has anyone come across such a situation? Does it look like a JVM bug? UPDATE I've obtained some more information about this problem (it happened again on a server that has been running for more than 7 days). When the JVM entered the "hung" state it stayed like that for 2 hours until the server was manually restarted. We have obtained a core dump of the process and the gc log. We tried to get a heap dump as well, but "jmap" failed. We tried to use jmap -F but then only a 4Mb file was written before the program aborted with an exception (something about the a memory location not being accessible). So far I think the most interesting information comes from the gc log. It seems that the GC logging stopped as well (possibly at the time when the VM thread went into the long loop): 657501.199: [Full GC (System) 657501.199: [CMS: 400352K->313412K(524288K), 2.4024120 secs] 660634K->313412K(878208K), [CMS Perm : 29455K->29320K(68568K)], 2.4026470 secs] [Times: user=2.39 sys=0.01, real=2.40 secs] 657513.941: [GC 657513.941: [ParNew: 314624K->13999K(353920K), 0.0228180 secs] 628036K->327412K(878208K), 0.0230510 secs] [Times: user=0.08 sys=0.00, real=0.02 secs] 657523.772: [GC 657523.772: [ParNew: 328623K->17110K(353920K), 0.0244910 secs] 642036K->330523K(878208K), 0.0247140 secs] [Times: user=0.08 sys=0.00, real=0.02 secs] 657535.473: [GC 657535.473: [ParNew: 331734K->20282K(353920K), 0.0259480 secs] 645147K->333695K(878208K), 0.0261670 secs] [Times: user=0.11 sys=0.00, real=0.02 secs] .... .... 688346.765: [GC [1 CMS-initial-mark: 485248K(524288K)] 515694K(878208K), 0.0343730 secs] [Times: user=0.03 sys=0.00, real=0.04 secs] 688346.800: [CMS-concurrent-mark-start] 688347.964: [CMS-concurrent-mark: 1.083/1.164 secs] [Times: user=2.52 sys=0.09, real=1.16 secs] 688347.964: [CMS-concurrent-preclean-start] 688347.969: [CMS-concurrent-preclean: 0.004/0.005 secs] [Times: user=0.00 sys=0.01, real=0.01 secs] 688347.969: [CMS-concurrent-abortable-preclean-start] CMS: abort preclean due to time 688352.986: [CMS-concurrent-abortable-preclean: 2.351/5.017 secs] [Times: user=3.83 sys=0.38, real=5.01 secs] 688352.987: [GC[YG occupancy: 297806 K (353920 K)]688352.987: [Rescan (parallel) , 0.1815250 secs]688353.169: [weak refs processing, 0.0312660 secs] [1 CMS-remark: 485248K(524288K)] 783055K(878208K), 0.2131580 secs] [Times: user=1.13 sys =0.00, real=0.22 secs] 688353.201: [CMS-concurrent-sweep-start] 688353.903: [CMS-concurrent-sweep: 0.660/0.702 secs] [Times: user=0.91 sys=0.07, real=0.70 secs] 688353.903: [CMS-concurrent-reset-start] 688353.912: [CMS-concurrent-reset: 0.008/0.008 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 688354.243: [GC 688354.243: [ParNew: 344928K->30151K(353920K), 0.0305020 secs] 681955K->368044K(878208K), 0.0308880 secs] [Times: user=0.15 sys=0.00, real=0.03 secs] .... .... 688943.029: [GC 688943.029: [ParNew: 336531K->17143K(353920K), 0.0237360 secs] 813250K->494327K(878208K), 0.0241260 secs] [Times: user=0.10 sys=0.00, real=0.03 secs] 688950.620: [GC 688950.620: [ParNew: 331767K->22442K(353920K), 0.0344110 secs] 808951K->499996K(878208K), 0.0347690 secs] [Times: user=0.11 sys=0.00, real=0.04 secs] 688956.596: [GC 688956.596: [ParNew: 337064K->37809K(353920K), 0.0488170 secs] 814618K->515896K(878208K), 0.0491550 secs] [Times: user=0.18 sys=0.04, real=0.05 secs] 688961.470: [GC 688961.471: [ParNew (promotion failed): 352433K->332183K(353920K), 0.1862520 secs]688961.657: [CMS I suspect this problem has something to do with the last line in the log (I've added some "...." in order to skip some lines that were not interesting). The fact that the server stayed in the hung state for 2 hours (probably trying to GC and compact the old generation) seems quite strange to me. Also, the gc log stops suddenly with that message and nothing else gets printed any more, probably because the VM Thread gets into some sort of infinite loop (or something that takes 2+ hours).

    Read the article

  • How can I change 'self.view' within a button method created outside of 'loadView'

    - by Scott
    Hey guys. So I am creating buttons dynamically within loadView. Each of these buttons is given an action using the @Selector method, such as : [button addTarget:self action:@selector(showCCView) forControlEvents:UIControlEventTouchUpInside]; Now that showCCView method is defined outside of loadView, where this above statement is located. The point of the method is to change the view currently on the screen (so set self.view = ccView). It gives me an error every time I try and access self.view outside of loadView, and even sometimes when I try and access it at random places within loadView, it just has been acting really weird. I tried to change it around so I wouldn't have to deal with this either. I had made a function + (void) showView: (UIView*) oldView: (UIView*) newView; but this didn't work out either because the @Selector was being real prissy about using it with a function that needed two parameters. Any help please? Here is my code: // // SiteOneController.m // InstantNavigator // // Created by dni on 2/22/10. // Copyright 2010 __MyCompanyName__. All rights reserved. // #import "SiteOneController.h" @implementation SiteOneController + (UIView*) ccContent { UIView *ccContent = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] applicationFrame]]; ccContent.backgroundColor = [UIColor whiteColor]; [ccContent addSubview:[SiteOneController myNavBar1:@"Constitution Center Content"]]; return ccContent; } // Button Dimensions int a = 62; int b = 80; int c = 200; int d = 30; // NPSIN Green Color + (UIColor*)myColor1 { return [UIColor colorWithRed:0.0f/255.0f green:76.0f/255.0f blue:29.0f/255.0f alpha:1.0f]; } // Creates Nav Bar with default Green at top of screen with given String as title + (UINavigationBar*)myNavBar1: (NSString*)input { UIView *test = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] applicationFrame]]; UINavigationBar *navBar = [[UINavigationBar alloc] initWithFrame:CGRectMake(0.0, 0.0, test.bounds.size.width, 45)]; navBar.tintColor = [SiteOneController myColor1]; UINavigationItem *navItem; navItem = [UINavigationItem alloc]; navItem.title = input; [navBar pushNavigationItem:navItem animated:false]; return navBar; } //-------------------------------------------------------------------------------------------// //-------------------------------------------------------------------------------------------// //-------------------------------------------------------------------------------------------// // Implement loadView to create a view hierarchy programmatically, without using a nib. - (void)loadView { //hard coded array of content for each site // CC NSMutableArray *allccContent = [[NSMutableArray alloc] init]; NSString *cc1 = @"House Model"; NSString *cc2 = @"James Dexter History"; [allccContent addObject: cc1]; [cc1 release]; [allccContent addObject: cc2]; [cc2 release]; // FC NSMutableArray *allfcContent = [[NSMutableArray alloc] init]; NSString *fc1 = @"Ghost House"; NSString *fc2 = @"Franklins Letters"; NSString *fc3 = @"Franklins Business"; [allfcContent addObject: fc1]; [fc1 release]; [allfcContent addObject: fc2]; [fc2 release]; [allfcContent addObject: fc3]; [fc3 release]; // PC NSMutableArray *allphContent = [[NSMutableArray alloc] init]; NSString *ph1 = @"Changing Occupancy"; NSString *ph2 = @"Sketches"; NSString *ph3 = @"Servant House"; NSString *ph4 = @"Monument"; NSString *ph5 = @"Virtual Model"; [allphContent addObject: ph1]; [ph1 release]; [allphContent addObject: ph2]; [ph2 release]; [allphContent addObject: ph3]; [ph3 release]; [allphContent addObject: ph4]; [ph4 release]; [allphContent addObject: ph5]; [ph5 release]; // Each content page's view //UIView *ccContent = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] applicationFrame]]; UIView *fcContent = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] applicationFrame]]; UIView *phContent = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] applicationFrame]]; //ccContent.backgroundColor = [UIColor whiteColor]; fcContent.backgroundColor = [UIColor whiteColor]; phContent.backgroundColor = [UIColor whiteColor]; //[ccContent addSubview:[SiteOneController myNavBar1:@"Constitution Center Content"]]; [fcContent addSubview:[SiteOneController myNavBar1:@"Franklin Court Content"]]; [phContent addSubview:[SiteOneController myNavBar1:@"Presidents House Content"]]; //allocate the view self.view = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] applicationFrame]]; //set the view's background color self.view.backgroundColor = [UIColor whiteColor]; [self.view addSubview:[SiteOneController myNavBar1:@"Sites"]]; NSMutableArray *sites = [[NSMutableArray alloc] init]; NSString *one = @"Constution Center"; NSString *two = @"Franklin Court"; NSString *three = @"Presidents House"; [sites addObject: one]; [one release]; [sites addObject: two]; [two release]; [sites addObject: three]; [three release]; NSString *ccName = @"Constitution Center"; NSString *fcName = @"Franklin Court"; NSString *element; int j = 0; for (element in sites) { UIButton *button = [UIButton buttonWithType:UIButtonTypeCustom]; //setframe (where on screen) //separation is 15px past the width (45-30) button.frame = CGRectMake(a, b + (j*45), c, d); [button setTitle:element forState:UIControlStateNormal]; button.backgroundColor = [SiteOneController myColor1]; /*- (void) fooFirstInput:(NSString*) first secondInput:(NSString*) second { NSLog(@"Logs %@ then %@", first, second); } - (void) performMethodsViaSelectors { [self performSelector:@selector(fooNoInputs)]; [self performSelector:@selector(fooOneInput:) withObject:@"first"]; [self performSelector;@selector(fooFirstInput:secondInput:) withObject:@"first" withObject:@"second"];*/ //UIView *old = self.view; if (element == ccName) { [button addTarget:self action:@selector(showCCView) forControlEvents:UIControlEventTouchUpInside]; } else if (element == fcName) { } else { } [self.view addSubview: button]; j++; } } // This method show the content views for each of the sites. /*+ (void) showCCView { self.view = [SiteOneController ccContent]; }*/

    Read the article

1