Search Results

Search found 113 results on 5 pages for 'odi'.

Page 1/5 | 1 2 3 4 5  | Next Page >

  • ODI 12c - Installing ODI Studio

    - by David Allan
    Today the 12c release of the Oracle Data Integrator was made GA on OTN. Once you have downloaded and are running the installer, if you want to install the ODI Studio, ensure you select 'Enterprise Installation' as this is where the ODI Studio for 12.1.2 can be installed from. If you choose 'Standalone Installation' you will be hunting for the ODI studio software. So ensure you pick Enterprise Installation to get the ODI design studio. Once that's done you are ready to go!

    Read the article

  • New Feature in ODI 11.1.1.6: ODI for Big Data

    - by Julien Testut
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} By Ananth Tirupattur Starting with Oracle Data Integrator 11.1.1.6.0, ODI is offering a solution to process Big Data. This post provides an overview of this feature. With all the buzz around Big Data and before getting into the details of ODI for Big Data, I will provide a brief introduction to Big Data and Oracle Solution for Big Data. So, what is Big Data? Big data includes: structured data (this includes data from relation data stores, xml data stores), semi-structured data (this includes data from weblogs) unstructured data (this includes data from text blob, images) Traditionally, business decisions are based on the information gathered from transactional data. For example, transactional Data from CRM applications is fed to a decision system for analysis and decision making. Products such as ODI play a key role in enabling decision systems. However, with the emergence of massive amounts of semi-structured and unstructured data it is important for decision system to include them in the analysis to achieve better decision making capability. While there is an abundance of opportunities for business for gaining competitive advantages, process of Big Data has challenges. The challenges of processing Big Data include: Volume of data Velocity of data - The high Rate at which data is generated Variety of data In order to address these challenges and convert them into opportunities, we would need an appropriate framework, platform and the right set of tools. Hadoop is an open source framework which is highly scalable, fault tolerant system, for storage and processing large amounts of data. Hadoop provides 2 key services, distributed and reliable storage called Hadoop Distributed File System or HDFS and a framework for parallel data processing called Map-Reduce. Innovations in Hadoop and its related technology continue to rapidly evolve, hence therefore, it is highly recommended to follow information on the web to keep up with latest information. Oracle's vision is to provide a comprehensive solution to address the challenges faced by Big Data. Oracle is providing the necessary Hardware, software and tools for processing Big Data Oracle solution includes: Big Data Appliance Oracle NoSQL Database Cloudera distribution for Hadoop Oracle R Enterprise- R is a statistical package which is very popular among data scientists. ODI solution for Big Data Oracle Loader for Hadoop for loading data from Hadoop to Oracle. Further details can be found here: http://www.oracle.com/us/products/database/big-data-appliance/overview/index.html ODI Solution for Big Data: ODI’s goal is to minimize the need to understand the complexity of Hadoop framework and simplify the adoption of processing Big Data seamlessly in an enterprise. ODI is providing the capabilities for an integrated architecture for processing Big Data. This includes capability to load data in to Hadoop, process data in Hadoop and load data from Hadoop into Oracle. ODI is expanding its support for Big Data by providing the following out of the box Knowledge Modules (KMs). IKM File to Hive (LOAD DATA).Load unstructured data from File (Local file system or HDFS ) into Hive IKM Hive Control AppendTransform and validate structured data on Hive IKM Hive TransformTransform unstructured data on Hive IKM File/Hive to Oracle (OLH)Load processed data in Hive to Oracle RKM HiveReverse engineer Hive tables to generate models Using the Loading KM you can map files (local and HDFS files) to the corresponding Hive tables. For example, you can map weblog files categorized by date into a corresponding partitioned Hive table schema. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Hive control Append KM you can validate and transform data in Hive. In the below example, two source Hive tables are joined and mapped to a target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} The Hive Transform KM facilitates processing of semi-structured data in Hive. In the below example, the data from weblog is processed using a Perl script and mapped to target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Oracle Loader for Hadoop (OLH) KM you can load data from Hive table or HDFS to a corresponding table in Oracle. OLH is available as a standalone product. ODI greatly enhances OLH capability by generating the configuration and mapping files for OLH based on the configuration provided in the interface and KM options. ODI seamlessly invokes OLH when executing the scenario. In the below example, a HDFS file is mapped to a table in Oracle. Development and Deployment:The following diagram illustrates the development and deployment of ODI solution for Big Data. Using the ODI Studio on your development machine create and develop ODI solution for processing Big Data by connecting to a MySQL DB or Oracle database on a BDA machine or Hadoop cluster. Schedule the ODI scenarios to be executed on the ODI agent deployed on the BDA machine or Hadoop cluster. ODI Solution for Big Data provides several exciting new capabilities to facilitate the adoption of Big Data in an enterprise. You can find more information about the Oracle Big Data connectors on OTN. You can find an overview of all the new features introduced in ODI 11.1.1.6 in the following document: ODI 11.1.1.6 New Features Overview

    Read the article

  • ODI 12c's Mapping Designer - Combining Flow Based and Expression Based Mapping

    - by Madhu Nair
    post by David Allan ODI is renowned for its declarative designer and minimal expression based paradigm. The new ODI 12c release has extended this even further to provide an extended declarative mapping designer. The ODI 12c mapper is a fusion of ODI's new declarative designer with the familiar flow based designer while retaining ODI’s key differentiators of: Minimal expression based definition, The ability to incrementally design an interface and to extract/load data from any combination of sources, and most importantly Backed by ODI’s extensible knowledge module framework. The declarative nature of the product has been extended to include an extensible library of common components that can be used to easily build simple to complex data integration solutions. Big usability improvements through consistent interactions of components and concepts all constructed around the familiar knowledge module framework provide the utmost flexibility. Here is a little taster: So what is a mapping? A mapping comprises of a logical design and at least one physical design, it may have many. A mapping can have many targets, of any technology and can be arbitrarily complex. You can build reusable mappings and use them in other mappings or other reusable mappings. In the example below all of the information from an Oracle bonus table and a bonus file are joined with an Oracle employees table before being written to a target. Some things that are cool include the one-click expression cross referencing so you can easily see what's used where within the design. The logical design in a mapping describes what you want to accomplish  (see the animated GIF here illustrating how the above mapping was designed) . The physical design lets you configure how it is to be accomplished. So you could have one logical design that is realized as an initial load in one physical design and as an incremental load in another. In the physical design below we can customize how the mapping is accomplished by picking Knowledge Modules, in ODI 12c you can pick multiple nodes (on logical or physical) and see common properties. This is useful as we can quickly compare property values across objects - below we can see knowledge modules settings on the access points between execution units side by side, in the example one table is retrieved via database links and the other is an external table. In the logical design I had selected an append mode for the integration type, so by default the IKM on the target will choose the most suitable/default IKM - which in this case is an in-built Oracle Insert IKM (see image below). This supports insert and select hints for the Oracle database (the ANSI SQL Insert IKM does not support these), so by default you will get direct path inserts with Oracle on this statement. In ODI 12c, the mapper is just that, a mapper. Design your mapping, write to multiple targets, the targets can be in the same data server, in different data servers or in totally different technologies - it does not matter. ODI 12c will derive and generate a plan that you can use or customize with knowledge modules. Some of the use cases which are greatly simplified include multiple heterogeneous targets, multi target inserts for Oracle and writing of XML. Let's switch it up now and look at a slightly different example to illustrate expression reuse. In ODI you can define reusable expressions using user functions. These can be reused across mappings and the implementations specialized per technology. So you can have common expressions across Oracle, SQL Server, Hive etc. shielding the design from the physical aspects of the generated language. Another way to reuse is within a mapping itself. In ODI 12c expressions can be defined and reused within a mapping. Rather than replicating the expression text in larger expressions you can decompose into smaller snippets, below you can see UNIT_TAX AMOUNT has been defined and is used in two downstream target columns - its used in the TOTAL_TAX_AMOUNT plus its used in the UNIT_TAX_AMOUNT (a recording of the calculation).  You can see the columns that the expressions depend on (upstream) and the columns the expression is used in (downstream) highlighted within the mapper. Also multi selecting attributes is a convenient way to see what's being used where, below I have selected the TOTAL_TAX_AMOUNT in the target datastore and the UNIT_TAX_AMOUNT in UNIT_CALC. You can now see many expressions at once now and understand much more at the once time without needlessly clicking around and memorizing information. Our mantra during development was to keep it simple and make the tool more powerful and do even more for the user. The development team was a fusion of many teams from Oracle Warehouse Builder, Sunopsis and BEA Aqualogic, debating and perfecting the mapper in ODI 12c. This was quite a project from supporting the capabilities of ODI in 11g to building the flow based mapping tool to support the future. I hope this was a useful insight, there is so much more to come on this topic, this is just a preview of much more that you will see of the mapper in ODI 12c.

    Read the article

  • ODI 12c - Parallel Table Load

    - by David Allan
    In this post we will look at the ODI 12c capability of parallel table load from the aspect of the mapping developer and the knowledge module developer - two quite different viewpoints. This is about parallel table loading which isn't to be confused with loading multiple targets per se. It supports the ability for ODI mappings to be executed concurrently especially if there is an overlap of the datastores that they access, so any temporary resources created may be uniquely constructed by ODI. Temporary objects can be anything basically - common examples are staging tables, indexes, views, directories - anything in the ETL to help the data integration flow do its job. In ODI 11g users found a few workarounds (such as changing the technology prefixes - see here) to build unique temporary names but it was more of a challenge in error cases. ODI 12c mappings by default operate exactly as they did in ODI 11g with respect to these temporary names (this is also true for upgraded interfaces and scenarios) but can be configured to support the uniqueness capabilities. We will look at this feature from two aspects; that of a mapping developer and that of a developer (of procedures or KMs). 1. Firstly as a Mapping Developer..... 1.1 Control when uniqueness is enabled A new property is available to set unique name generation on/off. When unique names have been enabled for a mapping, all temporary names used by the collection and integration objects will be generated using unique names. This property is presented as a check-box in the Property Inspector for a deployment specification. 1.2 Handle cleanup after successful execution Provided that all temporary objects that are created have a corresponding drop statement then all of the temporary objects should be removed during a successful execution. This should be the case with the KMs developed by Oracle. 1.3 Handle cleanup after unsuccessful execution If an execution failed in ODI 11g then temporary tables would have been left around and cleaned up in the subsequent run. In ODI 12c, KM tasks can now have a cleanup-type task which is executed even after a failure in the main tasks. These cleanup tasks will be executed even on failure if the property 'Remove Temporary Objects on Error' is set. If the agent was to crash and not be able to execute this task, then there is an ODI tool (OdiRemoveTemporaryObjects here) you can invoke to cleanup the tables - it supports date ranges and the like. That's all there is to it from the aspect of the mapping developer it's much, much simpler and straightforward. You can now execute the same mapping concurrently or execute many mappings using the same resource concurrently without worrying about conflict.  2. Secondly as a Procedure or KM Developer..... In the ODI Operator the executed code shows the actual name that is generated - you can also see the runtime code prior to execution (introduced in 11.1.1.7), for example below in the code type I selected 'Pre-executed Code' this lets you see the code about to be processed and you can also see the executed code (which is the default view). References to the collection (C$) and integration (I$) names will be automatically made unique by using the odiRef APIs - these objects will have unique names whenever concurrency has been enabled for a particular mapping deployment specification. It's also possible to use name uniqueness functions in procedures and your own KMs. 2.1 New uniqueness tags  You can also make your own temporary objects have unique names by explicitly including either %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG in the name passed to calls to the odiRef APIs. Such names would always include the unique tag regardless of the concurrency setting. To illustrate, let's look at the getObjectName() method. At <% expansion time, this API will append %UNIQUE_STEP_TAG to the object name for collection and integration tables. The name parameter passed to this API may contain  %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. This API always generates to the <? version of getObjectName() At execution time this API will replace the unique tag macros with a string that is unique to the current execution scope. The returned name will conform to the name-length restriction for the target technology, and its pattern for the unique tag. Any necessary truncation will be performed against the initial name for the object and any other fixed text that may have been specified. Examples are:- <?=odiRef.getObjectName("L", "%COL_PRFEMP%UNIQUE_STEP_TAG", "D")?> SCOTT.C$_EABH7QI1BR1EQI3M76PG9SIMBQQ <?=odiRef.getObjectName("L", "EMP%UNIQUE_STEP_TAG_AE", "D")?> SCOTT.EMPAO96Q2JEKO0FTHQP77TMSAIOSR_ Methods which have this kind of support include getFrom, getTableName, getTable, getObjectShortName and getTemporaryIndex. There are APIs for retrieving this tag info also, the getInfo API has been extended with the following properties (the UNIQUE* properties can also be used in ODI procedures); UNIQUE_STEP_TAG - Returns the unique value for the current step scope, e.g. 5rvmd8hOIy7OU2o1FhsF61 Note that this will be a different value for each loop-iteration when the step is in a loop. UNIQUE_SESSION_TAG - Returns the unique value for the current session scope, e.g. 6N38vXLrgjwUwT5MseHHY9 IS_CONCURRENT - Returns info about the current mapping, will return 0 or 1 (only in % phase) GUID_SRC_SET - Returns the UUID for the current source set/execution unit (only in % phase) The getPop API has been extended with the IS_CONCURRENT property which returns info about an mapping, will return 0 or 1.  2.2 Additional APIs Some new APIs are provided including getFormattedName which will allow KM developers to construct a name from fixed-text or ODI symbols that can be optionally truncate to a max length and use a specific encoding for the unique tag. It has syntax getFormattedName(String pName[, String pTechnologyCode]) This API is available at both the % and the ? phase.  The format string can contain the ODI prefixes that are available for getObjectName(), e.g. %INT_PRF, %COL_PRF, %ERR_PRF, %IDX_PRF alongwith %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. The latter tags will be expanded into a unique string according to the specified technology. Calls to this API within the same execution context are guaranteed to return the same unique name provided that the same parameters are passed to the call. e.g. <%=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")%> <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")?> C$_MY_TAB7wDiBe80vBog1auacS1xB_AE <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG.log", "FILE")?> C2_MY_TAB7wDiBe80vBog1auacS1xB.log 2.3 Name length generation  As part of name generation, the length of the generated name will be compared with the maximum length for the target technology and truncation may need to be applied. When a unique tag is included in the generated string it is important that uniqueness is not compromised by truncation of the unique tag. When a unique tag is NOT part of the generated name, the name will be truncated by removing characters from the end - this is the existing 11g algorithm. When a unique tag is included, the algorithm will first truncate the <postfix> and if necessary  the <prefix>. It is recommended that users will ensure there is sufficient uniqueness in the <prefix> section to ensure uniqueness of the final resultant name. SUMMARY To summarize, ODI 12c make it much simpler to utilize mappings in concurrent cases and provides APIs for helping developing any procedures or custom knowledge modules in such a way they can be used in highly concurrent, parallel scenarios. 

    Read the article

  • ODI 12c - Aggregating Data

    - by David Allan
    This posting will look at the aggregation component that was introduced in ODI 12c. For many ETL tool users this shouldn't be a big surprise, its a little different than ODI 11g but for good reason. You can use this component for composing data with relational like operations such as sum, average and so forth. Also, Oracle SQL supports special functions called Analytic SQL functions, you can use a specially configured aggregation component or the expression component for these now in ODI 12c. In database systems an aggregate transformation is a transformation where the values of multiple rows are grouped together as input on certain criteria to form a single value of more significant meaning - that's exactly the purpose of the aggregate component. In the image below you can see the aggregate component in action within a mapping, for how this and a few other examples are built look at the ODI 12c Aggregation Viewlet here - the viewlet illustrates a simple aggregation being built and then some Oracle analytic SQL such as AVG(EMP.SAL) OVER (PARTITION BY EMP.DEPTNO) built using both the aggregate component and the expression component. In 11g you used to just write the aggregate expression directly on the target, this made life easy for some cases, but it wan't a very obvious gesture plus had other drawbacks with ordering of transformations (agg before join/lookup. after set and so forth) and supporting analytic SQL for example - there are a lot of postings from creative folks working around this in 11g - anything from customizing KMs, to bypassing aggregation analysis in the ODI code generator. The aggregate component has a few interesting aspects. 1. Firstly and foremost it defines the attributes projected from it - ODI automatically will perform the grouping all you do is define the aggregation expressions for those columns aggregated. In 12c you can control this automatic grouping behavior so that you get the code you desire, so you can indicate that an attribute should not be included in the group by, that's what I did in the analytic SQL example using the aggregate component. 2. The component has a few other properties of interest; it has a HAVING clause and a manual group by clause. The HAVING clause includes a predicate used to filter rows resulting from the GROUP BY clause. Because it acts on the results of the GROUP BY clause, aggregation functions can be used in the HAVING clause predicate, in 11g the filter was overloaded and used for both having clause and filter clause, this is no longer the case. If a filter is after an aggregate, it is after the aggregate (not sometimes after, sometimes having).  3. The manual group by clause let's you use special database grouping grammar if you need to. For example Oracle has a wealth of highly specialized grouping capabilities for data warehousing such as the CUBE function. If you want to use specialized functions like that you can manually define the code here. The example below shows the use of a manual group from an example in the Oracle database data warehousing guide where the SUM aggregate function is used along with the CUBE function in the group by clause. The SQL I am trying to generate looks like the following from the data warehousing guide; SELECT channel_desc, calendar_month_desc, countries.country_iso_code,       TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels, countries WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND   sales.channel_id= channels.channel_id  AND customers.country_id = countries.country_id  AND channels.channel_desc IN   ('Direct Sales', 'Internet') AND times.calendar_month_desc IN   ('2000-09', '2000-10') AND countries.country_iso_code IN ('GB', 'US') GROUP BY CUBE(channel_desc, calendar_month_desc, countries.country_iso_code); I can capture the source datastores, the filters and joins using ODI's dataset (or as a traditional flow) which enables us to incrementally design the mapping and the aggregate component for the sum and group by as follows; In the above mapping you can see the joins and filters declared in ODI's dataset, allowing you to capture the relationships of the datastores required in an entity-relationship style just like ODI 11g. The mix of ODI's declarative design and the common flow design provides for a familiar design experience. The example below illustrates flow design (basic arbitrary ordering) - a table load where only the employees who have maximum commission are loaded into a target. The maximum commission is retrieved from the bonus datastore and there is a look using employees as the driving table and only those with maximum commission projected. Hopefully this has given you a taster for some of the new capabilities provided by the aggregate component in ODI 12c. In summary, the actions should be much more consistent in behavior and more easily discoverable for users, the use of the components in a flow graph also supports arbitrary designs and the tool (rather than the interface designer) takes care of the realization using ODI's knowledge modules. Interested to know if a deep dive into each component is interesting for folks. Any thoughts? 

    Read the article

  • Running ODI 11gR1 Standalone Agent as a Windows Service

    - by fx.nicolas
    ODI 11gR1 introduces the capability to use OPMN to start and protect agent processes as services. Setting up the OPMN agent is covered in the following post and extensively in the ODI Installation Guide. Unfortunately, OPMN is not installed along with ODI, and ODI 10g users who are really at ease with the old Java Wrapper are a little bit puzzled by OPMN, and ask: "How can I simply set up the agent as a service?". Well... although the Tanuki Service Wrapper is no longer available for free, and the agentservice.bat script lost, you can switch to another service wrapper for the same result. For example, Yet Another Java Service Wrapper (YAJSW) is a good candidate. To configure a standalone agent with YAJSW: download YAJSW Uncompress the zip to a folder (called %YAJSW% in this example) Configure, start and test your standalone agent. Make sure that this agent is loaded with all the required libraries and drivers, as the service will not load dynamically the drivers added subsequently in the /drivers directory. Retrieve the PID of the agent process: Open Task Manager. Select View Select Columns Select the PID (Process Identifier) column, then click OK In the list of processes, find the java.exe process corresponding to your agent, and note its PID. Open a command line prompt in %YAJSW%/bat and run: genConfig.bat <your_pid> This command generates a wrapper configuration file for the agent. This file is called %YAJSW%/conf/wrapper.conf. Stop your agent. Edit the wrapper.conf file and modify the configuration of your service. For example, modify the display name and description of the service as shown in the example below. Important: Make sure to escape the commas in the ODI encoded passwords with a backslash! In the example below, the ODI_SUPERVISOR_ENCODED_PASS contained a comma character which had to be prefixed with a backslash. # Title to use when running as a console wrapper.console.title=\"AGENT\" #******************************************************************** # Wrapper Windows Service and Posix Daemon Properties #******************************************************************** # Name of the service wrapper.ntservice.name=AGENT_113 # Display name of the service wrapper.ntservice.displayname=ODI Agent # Description of the service wrapper.ntservice.description=Oracle Data Integrator Agent 11gR3 (11.1.1.3.0) ... # Escape the comma in the password with a backslash. wrapper.app.parameter.7 = -ODI_SUPERVISOR_ENCODED_PASS=fJya.vR5kvNcu9TtV\,jVZEt Execute your wrapped agent as console by calling in the command line prompt: runConsole.bat Check that your agent is running, and test it again.This command starts the agent with the configuration but does not install it yet as a service. To Install the agent as service call installService.bat From that point, you can view, start and stop the agent via the windows services. Et voilà ! Two final notes: - To modify the agent configuration, you must uninstall/reinstall the service. For this purpose, run the uninstallService.bat to uninstall it and play again the process above. - To be able to uninstall the agent service, you should keep a backup of the wrapper.conf file. This is particularly important when starting several services with the wrapper.

    Read the article

  • Heterogén adatelérés OWB-vel: ODI EE Enterprise ETL

    - by Fekete Zoltán
    Az elozo ketto blogbejegyzéshez kapcsolódva felmerül a kérdés: Hogyan lehet az Oracle Warehouse Builderrel heterogén adatforrásokat elérni? Ajánlott olvasmány: Oracle Warehouse Builder 11gR2: OWB ETL Using ODI Knowledge Modules Természetesen az OWB az Oracle Database Heterogeneous Services-zel ODBC-vel illetve Oracle Gateway-k alkalmazásával eddig is lehetett mindenféle ODBC kompatibilis továbbá mainframe-es adatbázisokat elérni. Oracle Database Gateways: MS SQL Server, Sybase, Teradata, Informix, ODBC, DRDA, APPC, WebSphere MQ, DB2, DB2/400. A megfelelo Application Adapters megvásárlásával lehet csatlakozni az OWB-vel például a következo forrásokhoz: SAP, Oracle E-Business Suite, Peoplesoft, Siebel, Oracle Customer Data Hub (CDH), Universal Customer Master (UCM), Product Information Management (PIM). Az OWB 11gR2-tol kezdve az OWB tudja használni az Oracle Data Integrator Knowledge moduljait a heterogén adatelérésre, ez JDBC-vel illetve más heterogén elérési módokkal. Ajánlott olvasmány: Oracle Warehouse Builder 11gR2: OWB ETL Using ODI Knowledge Modules Letöltés: Oracle Warehouse Builder. BTW az OWB Java-s kliens szoftver Linux-on és Windows-on is használható. A szerver oldal pedig természetesen az Oracle adatbázisban fut: Solaris, Linux, HP-UX, AIX, Windows operációs rendszereken.

    Read the article

  • ODI 12c - Getting up and running fast

    - by David Allan
    Here's a quick A-B-C to show you how to quickly get up and running with ODI 12c, from getting the software to creating a repository via wizard or the command line, then installing an agent for running load plans and the like. A. Get the software from OTN and install studio. Check out this viewlet here for quickly doing this. B. Create a repository using the RCU, check out this viewlet here which uses the FMW Repository Creation Utility.  You can also silently create (and drop) a repository using the command line, this is really easy. .\rcu -silent -createRepository -connectString yourhost:1521:orcl.st-users.us.oracle.com -dbUser sys -dbRole sysdba -useSamePasswordForAllSchemaUsers true -schemaPrefix X -component ODI -component IAU  -component IAU_APPEND  -component IAU_VIEWER -component OPSS < passwords.txt where the passwords file contains info such as; sysdba_passwd newschema_passwd odi_user_passwd D workreposname workrepos_passwd  You can find details about the silent use of RCU here in the FMW documentation. C. Quickly create an agent for executing load plans and the like -  there is a great OBE for this, check it out here. If you are on your laptop and just wanting as minimal an agent as possible then this link is a must. With these three steps you are ready to get to the fun stuff! Check out more OBEs here - keep on the lookout for more!

    Read the article

  • ODI SDK: Retrieving Information From the Logs

    - by Christophe Dupupet
    It is fairly common to want to retrieve data from the ODI logs: statistics, execution status, even the generated code can be retrieved from the logs. The ODI SDK provides a robust set of APIs to parse the repository and retreve such information. To locate the information you are looking for, you have to keep in mind the structure of the logs: sessions contain steps; steps containt tasks. The session is the execution unit: basically, each time you execute something (interface, package, procedure, scenario) you create a new session. The steps are the individual entries found in a session: these will be the icons in your package for instance. Or if you are running an interface, you will have one single step: the interface itself. The tasks will represent the more atomic elements of the steps: the individual DDL, DML, scripts and so forth that are generated by ODI, along with all the detailed statistics for that task. All these details can be retrieved with the SDK. Because I had a question recently on the API ODIStepReport, I focus explicitly in this code on Scenario logs, but a lot more can be done with these APIs. Here is the code sample (you can just cut and paste that code in your ODI 11.1.1.6 Groovy console). Just save, adapt the code to your environment (in particular to connect to your repository) and hit "run" //Created by ODI Studioimport oracle.odi.core.OdiInstanceimport oracle.odi.core.config.OdiInstanceConfigimport oracle.odi.core.config.MasterRepositoryDbInfo import oracle.odi.core.config.WorkRepositoryDbInfo import oracle.odi.core.security.Authentication  import oracle.odi.core.config.PoolingAttributes import oracle.odi.domain.runtime.scenario.finder.IOdiScenarioFinder import oracle.odi.domain.runtime.scenario.OdiScenario import java.util.Collection import java.io.* /* ----------------------------------------------------------------------------------------- Simple sample code to list all executions of the last version of a scenario,along with detailed steps information----------------------------------------------------------------------------------------- */ /* update the following parameters to match your environment => */def url = "jdbc:oracle:thin:@myserver:1521:orcl"def driver = "oracle.jdbc.OracleDriver"def schema = "ODIM1116"def schemapwd = "ODIM1116PWD"def workrep = "WORKREP1116"def odiuser= "SUPERVISOR"def odiuserpwd = "SUNOPSIS" // Rather than hardcoding the project code and folder name, // a great improvement here would be to parse the entire repository def scenario_name = "LOAD_DWH" /*Scenario Name*/ /* <=End of the update section */ //--------------------------------------//Connection to the repository// Note for ODI 11.1.1.6: you could use predefined odiInstance variable if you are // running the script from a Studio that is already connected to the repository def masterInfo = new MasterRepositoryDbInfo(url, driver, schema, schemapwd.toCharArray(), new PoolingAttributes())def workInfo = new WorkRepositoryDbInfo(workrep, new PoolingAttributes())def odiInstance = OdiInstance.createInstance(new OdiInstanceConfig(masterInfo, workInfo)) //--------------------------------------// In all cases, we need to make sure we have authorized access to the repositorydef auth = odiInstance.getSecurityManager().createAuthentication(odiuser, odiuserpwd.toCharArray())odiInstance.getSecurityManager().setCurrentThreadAuthentication(auth) //--------------------------------------// Retrieve the scenario we are looking fordef odiScenario = ((IOdiScenarioFinder)odiInstance.getTransactionalEntityManager().getFinder(OdiScenario.class)).findLatestByName(scenario_name) if (odiScenario == null){    println("Error: cannot find scenario "+scenario_name);    return} //--------------------------------------// Retrieve all reports for the scenario def OdiScenarioReportsList = odiScenario.getScenarioReports() println("*** Listing all reports for Scenario \""+scenario_name+"\" ") //--------------------------------------// For each report, print the folowing:// - start time// - duration// - status// - step reports: selection of details for (s in OdiScenarioReportsList){        println("\tStart time: " + s.getSessionStartTime())        println("\tDuration: " + s.getSessionDuration())        println("\tStatus: " + s.getSessionStatus())                def OdiScenarioStepReportsList = s.getStepReports()        for (st in OdiScenarioStepReportsList){            println("\t\tStep Name: " + st.getStepName())            println("\t\tStep Resource Name: " + st.getStepResourceName())            println("\t\tStep Start time: " + st.getStepStartTime())            println("\t\tStep Duration: " + st.getStepDuration())            println("\t\tStep Status: " + st.getStepStatus())            println("\t\tStep # of inserts: " + st.getStepInsertCount())            println("\t\tStep # of updates: " + st.getStepUpdateCount()+'\n')      }      println("\t")}

    Read the article

  • ODI 12c - Loading Files into Oracle, community post from ToadWorld

    - by David Allan
    There's a complete soup to nuts post from Deepak Vohra on the Oracle community pages of ToadWorld on loading a fixed length file into the Oracle database. This post is interesting from a few fronts; firstly this is the out of the box experience, no specialized KMs so just basic integration from getting the software installed to running a mapping. Also it demonstrates fixed length file integration including how to use the ODI UI to define the fields and pertinent properties.  Check the blog post out below.... http://www.toadworld.com/platforms/oracle/w/wiki/10935.loading-text-file-data-into-oracle-database-12c-with-oracle-data-integrator-12c.aspx Hopefully you also find this useful, many thanks to Deepak for sharing his experiences. You could take this example further and illustrate how to load into Oracle using the LKM File to Oracle via External table knowledge module which will perform much better and also leverage such things as using wildcards for loading many files into the 12c database.

    Read the article

  • ODI - Creating a Repository in a 12c Pluggable Database

    - by David Allan
    To install ODI 11g into an Oracle 12c pluggable database, one way is to connect using a TNS string to the pluggable database service that is executing. For example when I installed my master repository, I used a JDBC URL such as; jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=mydbserver)(PORT=1522)))(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=PDBORA12.US.ORACLE.COM)))   I used the above approach rather than the host:port:sid which is a common mechanism many users use to quickly get up and going. Below you can see the repository creation wizard in action, I used the 11g release and simply installed the master and work repository into my pluggable database. Be wise with your repository IDs, I simply used the default, but you should be aware that these are key in larger deployments. The database in 12c has much more tighter control on users and resources, so just getting the user creating with sufficient resource on tablespaces etc in 12c was a little more work. Once you have the repositories up and running, then the fun starts using the 12c features. More to come.

    Read the article

  • ODI 11g – Insight to the SDK

    - by David Allan
    This post is a useful index into the ODI SDK that cross references the type names from the user interface with the SDK class and also the finder for how to get a handle on the object or objects. The volume of content in the SDK might seem a little ominous, there is a lot there, but there is a general pattern to the SDK that I will describe here. Also I will illustrate some basic CRUD operations so you can see how the SDK usage pattern works. The examples are written in groovy, you can simply run from the groovy console in ODI 11.1.1.6. Entry to the Platform   Object Finder SDK odiInstance odiInstance (groovy variable for console) OdiInstance Topology Objects Object Finder SDK Technology IOdiTechnologyFinder OdiTechnology Context IOdiContextFinder OdiContext Logical Schema IOdiLogicalSchemaFinder OdiLogicalSchema Data Server IOdiDataServerFinder OdiDataServer Physical Schema IOdiPhysicalSchemaFinder OdiPhysicalSchema Logical Schema to Physical Mapping IOdiContextualSchemaMappingFinder OdiContextualSchemaMapping Logical Agent IOdiLogicalAgentFinder OdiLogicalAgent Physical Agent IOdiPhysicalAgentFinder OdiPhysicalAgent Logical Agent to Physical Mapping IOdiContextualAgentMappingFinder OdiContextualAgentMapping Master Repository IOdiMasterRepositoryInfoFinder OdiMasterRepositoryInfo Work Repository IOdiWorkRepositoryInfoFinder OdiWorkRepositoryInfo Project Objects Object Finder SDK Project IOdiProjectFinder OdiProject Folder IOdiFolderFinder OdiFolder Interface IOdiInterfaceFinder OdiInterface Package IOdiPackageFinder OdiPackage Procedure IOdiUserProcedureFinder OdiUserProcedure User Function IOdiUserFunctionFinder OdiUserFunction Variable IOdiVariableFinder OdiVariable Sequence IOdiSequenceFinder OdiSequence KM IOdiKMFinder OdiKM Load Plans and Scenarios   Object Finder SDK Load Plan IOdiLoadPlanFinder OdiLoadPlan Load Plan and Scenario Folder IOdiScenarioFolderFinder OdiScenarioFolder Model Objects Object Finder SDK Model IOdiModelFinder OdiModel Sub Model IOdiSubModel OdiSubModel DataStore IOdiDataStoreFinder OdiDataStore Column IOdiColumnFinder OdiColumn Key IOdiKeyFinder OdiKey Condition IOdiConditionFinder OdiCondition Operator Objects   Object Finder SDK Session Folder IOdiSessionFolderFinder OdiSessionFolder Session IOdiSessionFinder OdiSession Schedule OdiSchedule How to Create an Object? Here is a simple example to create a project, it uses IOdiEntityManager.persist to persist the object. import oracle.odi.domain.project.OdiProject; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) project = new OdiProject("Project For Demo", "PROJECT_DEMO") odiInstance.getTransactionalEntityManager().persist(project) tm.commit(txnStatus) How to Update an Object? This update example uses the methods on the OdiProject object to change the project’s name that was created above, it is then persisted. import oracle.odi.domain.project.OdiProject; import oracle.odi.domain.project.finder.IOdiProjectFinder; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) prjFinder = (IOdiProjectFinder)odiInstance.getTransactionalEntityManager().getFinder(OdiProject.class); project = prjFinder.findByCode("PROJECT_DEMO"); project.setName("A Demo Project"); odiInstance.getTransactionalEntityManager().persist(project) tm.commit(txnStatus) How to Delete an Object? Here is a simple example to delete all of the sessions, it uses IOdiEntityManager.remove to delete the object. import oracle.odi.domain.runtime.session.finder.IOdiSessionFinder; import oracle.odi.domain.runtime.session.OdiSession; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) sessFinder = (IOdiSessionFinder)odiInstance.getTransactionalEntityManager().getFinder(OdiSession.class); sessc = sessFinder.findAll(); sessItr = sessc.iterator() while (sessItr.hasNext()) {   sess = (OdiSession) sessItr.next()   odiInstance.getTransactionalEntityManager().remove(sess) } tm.commit(txnStatus) This isn't an all encompassing summary of the SDK, but covers a lot of the content to give you a good handle on the objects and how they work. For details of how specific complex objects are created via the SDK, its best to look at postings such as the interface builder posting here. Have fun, happy coding!

    Read the article

  • ODI 11g – Scripting Repository Creation

    - by David Allan
    Here’s a quick post on how to create both master and work repositories in one simple dialog, its using the groovy capabilities in ODI 11g and the groovy swing builder components. So if you want more/less take the groovy script and change, its easy stuff. The groovy script odi_create_repos.groovy is here, just open it in ODI before connecting and you will be able to create both master and work repositories with ease – or check the groovy out and script your own automation – you can construct the master, work and runtime repositories, so if you are embedding ODI as your DI engine this may be very useful. When you click ‘Create Repository’ you will see the following in the log as the master repository starts to be created; ====================================================== Repository Creation Started.... ====================================================== Master Repository Creation Started.... Then the completion message followed by the work repository creation and final completion message. Master Repository Creation Completed. Work Repository Creation Started. Work Repository Creation Completed. ====================================================== Repository Creation Completed Successfully ====================================================== Script exited. If any error is hit, the script just exits and prints any error to the log. For example if I enter no passwords, I will get this error; ====================================================== Repository Creation Started.... ====================================================== Master Repository Creation Started.... ====================================================== Repository Creation Complete in Error ====================================================== oracle.odi.setup.RepositorySetupException: oracle.odi.core.security.PasswordPolicyNotMatchedException: ODI-10189: Password policy MinPasswordLength is not matched. ====================================================== Script exited. This is another example of using the ODI 11g SDK showing how to automate the construction of your data integration environment. The main interfaces and classes used here are IMasterRepositorySetup / MasterRepositorySetupImpl and IWorkRepositorySetup / WorkRepositorySetupImpl.

    Read the article

  • ODI 11g – Scripting Repository Creation

    - by David Allan
    Here’s a quick post on how to create both master and work repositories in one simple dialog, its using the groovy capabilities in ODI 11g and the groovy swing builder components. So if you want more/less take the groovy script and change, its easy stuff. The groovy script odi_create_repos.groovy is here, just open it in ODI before connecting and you will be able to create both master and work repositories with ease – or check the groovy out and script your own automation – you can construct the master, work and runtime repositories, so if you are embedding ODI as your DI engine this may be very useful. When you click ‘Create Repository’ you will see the following in the log as the master repository starts to be created; ====================================================== Repository Creation Started.... ====================================================== Master Repository Creation Started.... Then the completion message followed by the work repository creation and final completion message. Master Repository Creation Completed. Work Repository Creation Started. Work Repository Creation Completed. ====================================================== Repository Creation Completed Successfully ====================================================== Script exited. If any error is hit, the script just exits and prints any error to the log. For example if I enter no passwords, I will get this error; ====================================================== Repository Creation Started.... ====================================================== Master Repository Creation Started.... ====================================================== Repository Creation Complete in Error ====================================================== oracle.odi.setup.RepositorySetupException: oracle.odi.core.security.PasswordPolicyNotMatchedException: ODI-10189: Password policy MinPasswordLength is not matched. ====================================================== Script exited. This is another example of using the ODI 11g SDK showing how to automate the construction of your data integration environment. The main interfaces and classes used here are IMasterRepositorySetup / MasterRepositorySetupImpl and IWorkRepositorySetup / WorkRepositorySetupImpl.

    Read the article

  • ODI and OBIEE 11g Integration

    - by David Allan
    Here we will see some of the connectivity options to OBIEE 11g using the JDBC driver. You’ll see based upon some connection properties how the physical or presentation layers can be utilized. In the integrators guide for OBIEE 11g you will find a brief statement indicating that there actually is a JDBC driver for OBIEE. In OBIEE 11g its now possible to connect directly to the physical layer, Venkat has an informative post here on this topic. In ODI 11g the Oracle BI technology is shipped with the product along with KMs for reverse engineering, and using OBIEE models for a data source. When you install OBIEE in 11g a light weight demonstration application is preinstalled in the server, when you open this in the BI Administration tool we see the regular 3 panel view within the administration tool. To interrogate this system via JDBC (just like ODI does using the KMs) need a couple of things; the JDBC driver from OBIEE 11g, a java client program and the credentials. In my java client program I want to connect to the OBIEE system, when I connect I can interrogate what the JDBC driver presents for the metadata. The metadata projected via the JDBC connection’s DatabaseMetadata changes depending on whether the property NQ_SESSION.SELECTPHYSICAL is set when the java client connects. Let’s use the sample app to illustrate. I have a java client program here that will print out the tables in the DatabaseMetadata, it will also output the catalog and schema. For example if I execute without any special JDBC properties as follows; java -classpath .;%BIHOMEDIR%\clients\bijdbc.jar meta_jdbc oracle.bi.jdbc.AnaJdbcDriver jdbc:oraclebi://localhost:9703/ weblogic mypass Then I get the following returned representing the presentation layer, the sample I used is XML, and has no schema; Catalog Schema Table Sample Sales Lite null Base Facts Sample Sales Lite null Calculated Facts …     Sample Targets Lite null Base Facts …     Now if I execute with the only difference being the JDBC property NQ_SESSION.SELECTPHYSICAL with the value Yes, then I see a different set of values representing the physical layer in OBIEE; java -classpath .;%BIHOMEDIR%\clients\bijdbc.jar meta_jdbc oracle.bi.jdbc.AnaJdbcDriver jdbc:oraclebi://localhost:9703/ weblogic mypass NQ_SESSION.SELECTPHYSICAL=Yes The following is returned; Catalog Schema Table Sample App Lite Data null D01 Time Day Grain Sample App Lite Data null F10 Revenue Facts (Order grain) …     System DB (Update me)     …     If this was a database system such as Oracle, the catalog value would be the OBIEE database name and the schema would be the Oracle database schema. Other systems which have real catalog structure such as SQLServer would use its catalog value. Its this ‘Catalog’ and ‘Schema’ value that is important when integration OBIEE with ODI. For the demonstration application in OBIEE 11g, the following illustration shows how the information from OBIEE is related via the JDBC driver through to ODI. In the XML example above, within ODI’s physical schema definition on the right, we leave the schema blank since the XML data source has no schema. When I did this at first, I left the default value that ODI places in the Schema field since which was ‘<Undefined>’ (like image below) but this string is actually used in the RKM so ended up not finding any tables in this schema! Entering an empty string resolved this. Below we see a regular Oracle database example that has the database, schema, physical table structure, and how this is defined in ODI.   Remember back to the physical versus presentation layer usage when we passed the special property, well to do this in ODI, the data server has a panel for properties where you can define key/value pairs. So if you want to select physical objects from the OBIEE server, then you must set this property. An additional changed in ODI 11g is the OBIEE connection pool support, this has been implemented via a ‘Connection Pool’ flex field for the Oracle BI data server. So here you set the connection pool name from the OBIEE system that you specifically want to use and this is used by the Oracle BI to Oracle (DBLINK) LKM, so if you are using this you must set this flex field. Hopefully a useful insight into some of the mechanics of how this hangs together.

    Read the article

  • ODI y Las funciones GROUP BY, SUM, etc

    - by Edmundo Carmona
    Las bondades de ODI Pase un buen rato buscando la forma de usar la función SUM en ODI, encontré que se puede modificar el KM para agregar la función "GROUP by" y agregar una función jython en el atributo destino, pero esa solución es muy "DURA" ya que si agregamos en el futuro un nuevo atributo, tendríamos que cambiar nuevamente el KM.  Pues bien la solución es bastante más fácil, resulta que podemos agregar la función SUM, MIN, MAX, etcétera a cualquier atributo numérico y ODI automáticamente agregará la función GROUP by con el resto de los atributos. Por ejemplo. La tabla destino tiene los siguientes atributos y asignaciones (mapeos en spanglish): T1.Att1 = T2.Att1 T1.Att2 = T2.Att2 T1.Att3 = SUM(T2.Att3)  ODI crea este Quey: Select T2.Att1, T2.Att2, SUM(Att3) from Table2 T2 group by T2.Att1, T2.Att2 Listo Nada más sencillo.

    Read the article

  • Webcast: ODI and Successful Strategies for Optimizing Your Data Warehouse

    - by antonio romero
    A new public webcast for ODI: “Successful Strategies for Optimizing Your Data Warehouse”  is scheduled for March 3th at 10am PT/1pm ET. In this webcast, Mala Narasimharajan, from the product marketing team and Denis Gray from the product management team, will be presenting ODI’s strong value proposition for data warehousing solutions. You can find the registration link below. Live webcast: Successful Strategies for Optimizing Your Data Warehouse March 3, 2011 1pm ET/10pm PT Registration link: http://www.oracle.com/us/dm/66153-wwmk10035379mpp011-se-309154.html

    Read the article

  • New Feature in ODI 11.1.1.6: Enterprise Data Quality Integration

    - by Julien Testut
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Oracle Data Integrator 11.1.1.6.0 introduces a new Open Tool called EnterpriseDataQuality which allows ODI users to invoke an Oracle Enterprise Data Quality Job from a Package. This post will give you an overview of this new feature. Oracle Enterprise Data Quality (OEDQ) provides organizations with an integrated suite of data quality tools that offer an end-to-end solution to measure, improve, and manage the quality of data from any domain, including customer and product data. The addition of the EnterpriseDataQuality Open Tool extends the inline Data Quality capabilities of Oracle Data Integrator with Oracle Enterprise Data Quality powerful data profiling, cleansing, matching, and monitoring capabilities. The EnterpriseDataQuality Open Tool can invoke any OEDQ Job stored in a Project. This Open Tool connects to an OEDQ server using a JMX (Java Management Extensions) interface. Once installed, this Open Tool will be found under Plugins in the Package Toolbox area: This EnterpriseDataQuality Open Tool takes a couple of parameters as inputs such as the Enterprise Data Quality Job and Project names, the OEDQ hostname and JMX port etc. With the EnterpriseDataQuality Open Tool, ODI customers can now incorporate their Oracle Enterprise Data Quality processes within their Data Integration workflows. You will find instructions about how to use the Enterprise Data Quality Open Tool in the Oracle Data Integrator documentation at: Using the EnterpriseDataQuality Open Tool.You can find an overview of all the new features introduced in ODI 11.1.1.6 in the following document: ODI 11.1.1.6 New Features Overview.

    Read the article

  • ODI 11g - Scripting a Reverse Engineer

    - by David Allan
    A common question is related to how to script the reverse engineer using the ODI SDK. This follows on from some of my posts on scripting in general and accelerated model and topology setup. Check out this viewlet here to see how to define a reverse engineering process using ODI's package. Using the ODI SDK, you can script this up using the OdiPackage and StepOdiCommand classes as follows;  OdiPackage pkg = new OdiPackage(folder, "Pkg_Rev"+modName);   StepOdiCommand step1 = new StepOdiCommand(pkg,"step1_cmd_reset");   step1.setCommandExpression(new Expression("OdiReverseResetTable \"-MODEL="+mod.getModelId()+"\"",null, Expression.SqlGroupType.NONE));   StepOdiCommand step2 = new StepOdiCommand(pkg,"step2_cmd_reset");   step2.setCommandExpression(new Expression("OdiReverseGetMetaData \"-MODEL="+mod.getModelId()+"\"",null, Expression.SqlGroupType.NONE));   StepOdiCommand step3 = new StepOdiCommand(pkg,"step3_cmd_reset");   step3.setCommandExpression(new Expression("OdiReverseSetMetaData \"-MODEL="+mod.getModelId()+"\"",null, Expression.SqlGroupType.NONE));   pkg.setFirstStep(step1);   step1.setNextStepAfterSuccess(step2);   step2.setNextStepAfterSuccess(step3); The biggest leap of faith for users is getting to know which SDK classes have to be used to build the objects in the design, using StepOdiCommand isn't necessarily obvious, once you see it in action though it is very simple to use. The above snippet uses an OdiModel variable named mod, its a snippet I added to the accelerated model creation script in the post linked above.

    Read the article

  • ODI 11g - Oracle Data Integrator 11g – A Hands-On Tutorial

    - by David Allan
    I've have been asked by Packt publishing to review a brand new book on Oracle Data Integrator: Getting Started with Oracle Data Integrator 11g – A Hands-On Tutorial. Waiting on this book to arrive and see what goodies are inside, I'll blog a review later. The book can be found at Oracle Data Integrator 11g – A Hands-On Tutorial Looking at the table of contents, it looks like it gives a good broad introduction (including various data formats) to the product; Chapter 1: Product Overview Chapter 2: Product Installation Chapter 3: Using Variables Chapter 4: ODI Sources, Targets, and Knowledge Modules Chapter 5: Working with Databases Chapter 6: Working with MySQL Chapter 7: Working with Microsoft SQL Server Chapter 8: Integrating File Data Chapter 9: Working with XML Files Chapter 10: Creating Workflows—Packages and Load Plans Chapter 11: Error Management Chapter 12: Managing and Monitoring ODI Components Chapter 13: Concluding Remarks Looking forward to it.

    Read the article

  • ODI 11g – How to Load Using Partition Exchange

    - by David Allan
    Here we will look at how to load large volumes of data efficiently into the Oracle database using a mixture of CTAS and partition exchange loading. The example we will leverage was posted by Mark Rittman a couple of years back on Interval Partitioning, you can find that posting here. The best thing about ODI is that you can encapsulate all those ‘how to’ blog posts and scripts into templates that can be reused – the templates are of course Knowledge Modules. The interface design to mimic Mark's posting is shown below; The IKM I have constructed performs a simple series of steps to perform a CTAS to create the stage table to use in the exchange, then lock the partition (to ensure it exists, it will be created if it doesn’t) then exchange the partition in the target table. You can find the IKM Oracle PEL.xml file here. The IKM performs the follows steps and is meant to illustrate what can be done; So when you use the IKM in an interface you configure the options for hints (for parallelism levels etc), initial extent size, next extent size and the partition variable;   The KM has an option where the name of the partition can be passed in, so if you know the name of the partition then set the variable to the name, if you have interval partitioning you probably don’t know the name, so you can use the FOR clause. In my example I set the variable to use the date value of the source data FOR (TO_DATE(''01-FEB-2010'',''dd-MON-yyyy'')) Using a variable lets me invoke the scenario many times loading different partitions of the same target table. Below you can see where this is defined within ODI, I had to double single-quote the strings since this is placed inside the execute immediate tasks in the KM; Note also this example interface uses the LKM Oracle to Oracle (datapump), so this illustration uses a lot of the high performing Oracle database capabilities – it uses Data Pump to unload, then a CreateTableAsSelect (CTAS) is executed on the external table based on top of the Data Pump export. This table is then exchanged in the target. The IKM and illustrations above are using ODI 11.1.1.6 which was needed to get around some bugs in earlier releases with how the variable is handled...as far as I remember.

    Read the article

  • ODI 11g - Dynamic and Flexible Code Generation

    - by David Allan
    ODI supports conditional branching at execution time in its code generation framework. This is a little used, little known, but very powerful capability - this let's one piece of template code behave dynamically based on a runtime variable's value for example. Generally knowledge module's are free of any variable dependency. Using variable's within a knowledge module for this kind of dynamic capability is a valid use case - definitely in the highly specialized area. The example I will illustrate is much simpler - how to define a filter (based on mapping here) that may or may not be included depending on whether at runtime a certain value is defined for a variable. I define a variable V_COND, if I set this variable's value to 1, then I will include the filter condition 'EMP.SAL > 1' otherwise I will just use '1=1' as the filter condition. I use ODIs substitution tags using a special tag '<$' which is processed just prior to execution in the runtime code - so this code is included in the ODI scenario code and it is processed after variables are substituted (unlike the '<?' tag).  So the lines below are not equal ... <$ if ( "#V_COND".equals("1")  ) { $> EMP.SAL > 1 <$ } else { $> 1 = 1 <$ } $> <? if ( "#V_COND".equals("1")  ) { ?> EMP.SAL > 1 <? } else { ?> 1 = 1 <? } ?> When the <? code is evaluated the code is executed without variable substitution - so we do not get the desired semantics, must use the <$ code. You can see the jython (java) code in red is the conditional if statement that drives whether the 'EMP.SAL > 1' or '1=1' is included in the generated code. For this illustration you need at least the ODI 11.1.1.6 release - with the vanilla 11.1.1.5 release it didn't work for me (may be patches?). As I mentioned, normally KMs don't have dependencies on variables - since any users must then have these variables defined etc. but it does afford a lot of runtime flexibility if such capabilities are required - something to keep in mind, definitely.

    Read the article

  • ODI 11g - Cleaning control characters and User Functions

    - by David Allan
    In ODI user functions have a poor name really, they should be user expressions - a way of wrapping common expressions that you may wish to reuse many times - across many different technologies is an added bonus. To illustrate look at the problem of how to remove control characters from text. Users ask these types of questions over all technologies - Microsoft SQL Server, Oracle, DB2 and for many years - how do I clean a string, how do I tokenize a string and so on. After some searching around you will find a few ways of doing this, in Oracle there is a convenient way of using the TRANSLATE and REPLACE functions. So you can convert some text using the following SQL; replace( translate('This is my string'||chr(9)||' which has a control character', chr(3)||chr(4)||chr(5)||chr(9), chr(3) ), chr(3), '' ) If you had many columns to perform this kind of transformation on, in the Oracle database the natural solution you'd go to would be to code this as a PLSQL function since you don't want the code splattered everywhere. Someone tells you that there is another control character that needs added equals a maintenance headache. Coding it as a PLSQL function will incur a context switch between SQL and PLSQL which could prove costly. In ODI user functions let you capture this expression text and reference it many times across your mappings. This will protect the expression from being copy-pasted by developers and make maintenance much simpler - change the expression definition in one place. Firstly define a name and a syntax for the user function, I am calling it UF_STRIP_BAD_CHARACTERS and it has one parameter an input string;  We then can define an implementation for each technology we will use it, I will define Oracle's using the inputString parameter and the TRANSLATE and REPLACE functions with whatever control characters I want to replace; I can then use this inside mapping expressions in ODI, below I am cleaning the ENAME column - a fabricated example but you get the gist.  Note when I use the user function the function name remains in the text of the mapping, the actual expression is not substituted until I generate the scenario. If you generate the scenario and export the scenario you can have a peak at the code that is processed in the runtime - below you can see a snippet of my export scenario;  That's all for now, hopefully a useful snippet of info.

    Read the article

  • ODI 11g – How to override SQL at runtime?

    - by David Allan
    Following on from the posting some time back entitled ‘ODI 11g – Simple, Powerful, Flexible’ here we push the envelope even further. Rather than just having the SQL we override defined statically in the interface design we will have it configurable via a variable….at runtime. Imagine you have a well defined interface shape that you want to be fulfilled and that shape can be satisfied from a number of different sources that is what this allows - or the ability for one interface to consume data from many different places using variables. The cool thing about ODI’s reference API and this is that it can be fantastically flexible and useful. When I use the variable as the option value, and I execute the top level scenario that uses this temporary interface I get prompted (or can get prompted to be correct) for the value of the variable. Note I am using the <@=odiRef.getObjectName("L","EMP", "SCOTT","D")@> notation for the table reference, since this is done at runtime, then the context will resolve to the correct table name etc. Each time I execute, I could use a different source provider (obviously some dependencies on KMs/technologies here). For example, the following groovy snippet first executes and the query uses SCOTT model with EMP, the next time it is from BOB model and the datastore OTHERS. m=new Properties(); m.put("DEMO.SQLSTR", "select empno, deptno from <@=odiRef.getObjectName("L","EMP", "SCOTT","D")@>"); s=new StartupParams(m); runtimeAgent.startScenario("TOP", null, s, null, "GLOBAL", 5, null, true); m2=new Properties(); m2.put("DEMO.SQLSTR", "select empno, deptno from <@=odiRef.getObjectName("L","OTHERS", "BOB","D")@>"); s2=new StartupParams(m); runtimeAgent.startScenario("TOP", null, s2, null, "GLOBAL", 5, null, true); You’ll need a patch to 11.1.1.6 for this type of capability, thanks to my ole buddy Ron Gonzalez from the Enterprise Management group for help pushing the envelope!

    Read the article

  • OWB/ODI Users: Last Chance to Submit and Vote On Sessions for OpenWorld 2010

    - by antonio romero
    Now is the last chance for OWB and ODI users to propose new ETL/DW/DI sessions for OpenWorld! Oracle OpenWorld 2010 "Suggest a Session" lets members of the Oracle Mix community submit and vote on papers/talks for OpenWorld. The most popular session proposals will be included in the conference program. One promising OWB-related topic has already been submitted: Case Study: Real-Time Data Warehousing and Fraud Detection with Oracle 11gR2 Dr. Holger Friedrich and consultants from sumIT AG in Switzerland built a real-time data warehouse and accompanying BI system for real-time online fraud detection with very limited resources and a short schedule. His presentation will cover: How sumIT AG efficiently loads complex data feeds in real time in Oracle 11gR2 using, among others, Advanced Queues and XML DB How they lowered costs and sped up development, by leveraging the DBs development features including Oracle Warehouse Builder How they delivered a production-ready solution in a few short months using only three part-time developers Come vote for this proposal, on Oracle Mix: https://mix.oracle.com/oow10/proposals/10566-case-study-real-time-data-warehousing-and-fraud-detection-with-oracle-11gr2  I have already invited members of the OWB/ODI Linkedin group (with over 1400 members) to come vote on topics like this one and propose their own. If enough of us vote on a few topics, we are sure to get some on the agenda!  And if you have your own topics, using the Suggest-a-Session instructions here: http://wiki.oracle.com/page/Oracle+OpenWorld+2010+Suggest-a-Session If you propose a topic, don't forget to come to Linkedin and promote it! I have already sent the members of the Linkedin group an email announcement about this, and I will send another in a week, with links to all topics submitted. Thanks, all!

    Read the article

1 2 3 4 5  | Next Page >