Search Results

Search found 98 results on 4 pages for 'offload'.

Page 1/4 | 1 2 3 4  | Next Page >

  • IPSec Offload support in 82576GB controller for Linux

    - by Rodrigo Leal
    Due to migration of servers to cloud computing, we bought several NICs that support mechanisms like SRIOV and VMDQ. Furthermore, as security risk was also a concern and we did not want to create more overhead on the processor, IPSec Offload support was essential. The model chosen was: Intel Gigabit ET2 Quad Port Svr Adptr. (With 82576GB controller): http://ark.intel.com/products/49187/intel-gigabit-et2-quad-port-server-adapter However, we were unable to configure IPSec Offload on Linux. We tried to test on another server we have, a Windows Server 2012 R2, but again without success. It seems that the driver for this controller is not available for windows server 2012 R2, and Linux. The test on windows would be only for verification purposes, we will not use this platform. Could someone confirm this lack of support for Linux?

    Read the article

  • Gigabit network limited to 25MB/s by CPU. How to make it faster?

    - by netvope
    I have a Acer Aspire R1600-U910H with a nForce gigabit network adapter. The maximum TCP throughput of it is about 25MB/s, and apparently it is limited by the single core Intel Atom 230; when the maximum throughput is reached, the CPU usage is about 50%-60%, which corresponds to full utilization considering this is a Hyper-threading enabled CPU. The same problem occurs on both Windows XP and on Ubuntu 8.04. On Windows, I have installed the latest nForce chipset driver, disabled power saving features, and enabled checksum offload. On Linux, the default driver has checksum offload enabled. There is no Linux driver available on Nvidia's website. ethtool -k eth0 shows that checksum offload is enabled: Offload parameters for eth0: rx-checksumming: on tx-checksumming: on scatter-gather: on tcp segmentation offload: on udp fragmentation offload: off generic segmentation offload: off The following is the output of powertop when the network is idle: Wakeups-from-idle per second : 61.9 interval: 10.0s no ACPI power usage estimate available Top causes for wakeups: 90.9% (101.3) <interrupt> : eth0 4.5% ( 5.0) iftop : schedule_timeout (process_timeout) 1.8% ( 2.0) <kernel core> : clocksource_register (clocksource_watchdog) 0.9% ( 1.0) dhcdbd : schedule_timeout (process_timeout) 0.5% ( 0.6) <kernel core> : neigh_table_init_no_netlink (neigh_periodic_timer) And when the maximum throughput of about 25MB/s is reached: Wakeups-from-idle per second : 11175.5 interval: 10.0s no ACPI power usage estimate available Top causes for wakeups: 99.9% (22097.4) <interrupt> : eth0 0.0% ( 5.0) iftop : schedule_timeout (process_timeout) 0.0% ( 2.0) <kernel core> : clocksource_register (clocksource_watchdog) 0.0% ( 1.0) dhcdbd : schedule_timeout (process_timeout) 0.0% ( 0.6) <kernel core> : neigh_table_init_no_netlink (neigh_periodic_timer) Notice the 20000 interrupts per second. Could this be the cause for the high CPU usage and low throughput? If so, how can I improve the situation? The other computers in the network can usually transfer at 50+MB/s without problems. And a minor question: How can I find out what is the driver in use for eth0?

    Read the article

  • A gigabit network interface is CPU-limited to 25MB/s. How can I maximize the throughput?

    - by netvope
    I have a Acer Aspire R1600-U910H with a nForce gigabit network adapter. The maximum TCP throughput of it is about 25MB/s, and apparently it is limited by the single core Intel Atom 230; when the maximum throughput is reached, the CPU usage is about 50%-60%, which corresponds to full utilization considering this is a Hyper-threading enabled CPU. The same problem occurs on both Windows XP and on Ubuntu 8.04. On Windows, I have installed the latest nForce chipset driver, disabled power saving features, and enabled checksum offload. On Linux, the default driver has checksum offload enabled. There is no Linux driver available on Nvidia's website. ethtool -k eth0 shows that checksum offload is enabled: Offload parameters for eth0: rx-checksumming: on tx-checksumming: on scatter-gather: on tcp segmentation offload: on udp fragmentation offload: off generic segmentation offload: off The following is the output of powertop when the network is idle: Wakeups-from-idle per second : 61.9 interval: 10.0s no ACPI power usage estimate available Top causes for wakeups: 90.9% (101.3) <interrupt> : eth0 4.5% ( 5.0) iftop : schedule_timeout (process_timeout) 1.8% ( 2.0) <kernel core> : clocksource_register (clocksource_watchdog) 0.9% ( 1.0) dhcdbd : schedule_timeout (process_timeout) 0.5% ( 0.6) <kernel core> : neigh_table_init_no_netlink (neigh_periodic_timer) And when the maximum throughput of about 25MB/s is reached: Wakeups-from-idle per second : 11175.5 interval: 10.0s no ACPI power usage estimate available Top causes for wakeups: 99.9% (22097.4) <interrupt> : eth0 0.0% ( 5.0) iftop : schedule_timeout (process_timeout) 0.0% ( 2.0) <kernel core> : clocksource_register (clocksource_watchdog) 0.0% ( 1.0) dhcdbd : schedule_timeout (process_timeout) 0.0% ( 0.6) <kernel core> : neigh_table_init_no_netlink (neigh_periodic_timer) Notice the 20000 interrupts per second. Could this be the cause for the high CPU usage and low throughput? If so, how can I improve the situation? As a reference, the other computers in the network can usually transfer at 50+MB/s without problems. A computer with a Core 2 CPU generates only 5000 interrupts per second when it's transferring at 110MB/s. The number of interrupts is about 20 times less than the Atom system (if interrupts scale linearly with throughput.) And a minor question: How can I find out what is the driver in use for eth0?

    Read the article

  • Linux Cups raspberry pi offload processing to server

    - by jaredmsaul
    I am interested in setting up a raspberry pi as the local end of a printing solution. In my testing the pi chokes on acting as a complete cups based print server. It seems a little underpowered for some of the ghostscipt processing and other filtering that occurs-- particularly on larger or complex documents the processing time can be 5 or more minutes. My question is can the processing be largely done elsewhere and the prepared end product of the processing chain be fed to the pi for output on the connected printer? So in this scenario any arbitrary document (html, pdf, text) is initially 'printed' on a relatively powerful machine but the output is stored in a file. This file is then grabbed by the pi and with all the heavy work out of the way easily printed using cups. I know files can be pushed through cups in raw mode but I am fuzzy on the pros and cons and the applicability in what I describe. I have tested this with pdftops creating a ps file then feeding that raw to cups and I think it works but it seems like there may be a cleaner solution. This scenario would ideally work for any number of printer types.

    Read the article

  • When is it better to offload work to the RDBMS rather than to do it in code?

    - by GeminiDomino
    Okay, I'll cop to it: I'm a better coder than I am at databases, and I'm wondering where thoughts on "best practices" lie on the subject of doing "simple" calculations in the SQL query vs. in the code, such as this MySQL example (I didn't write it, I just have to maintain it!) -- This returns the username, and the users age as of the last event. SELECT u.username as user, IF ((DAY(max(e.date)) - DAY(u.DOB)) &lt; 0 , TRUNCATE(((((YEAR(max(e.date))*12)+MONTH(max(e.date))) -((YEAR(u.DOB)*12)+MONTH(u.DOB)))-1)/12, 0), TRUNCATE((((YEAR(max(e.date))*12)+MONTH(max(e.date))) - ((YEAR(u.DOB)*12)+MONTH(u.DOB)))/12, 0)) AS age FROM users as u JOIN events as e ON u.id = e.uid ... Compared to doing the "heavy" lifting in code: Query: SELECT u.username, u.DOB as dob, e.event_date as edate FROM users as u JOIN events as e ON u.id = e.uid code: function ageAsOfDate($birth, $aod) { //expects dates in mysql Y-m-d format... list($by,$bm,$bd) = explode('-',$birth); list($ay,$am,$ad) = explode('-',$aod); //Insert Calculations here ... return $Dy; //Difference in years } echo "Hey! ". $row['user'] ." was ". ageAsOfDate($row['dob'], $row['edate']) . " when we last saw him."; I'm pretty sure in a simple case like this it wouldn't make much difference (other than the creeping feeling of horror when I have to make changes to queries like the first one), but I think it makes it clearer what I'm looking for. Thanks!

    Read the article

  • What components of your site do you typically "offload" or embed?

    - by Chad
    Here's what I mean. In developing my ASP.NET MVC based site, I've managed to offload a great deal of the static file hosting and even some of the "work". Like so: jQuery for my javascript framework. Instead of hosting it on my site, I use the Google CDN Google maps, obviously "offloaded" - no real work being performed on my server - Google hosted jQueryUI framework - Google CDN jQueryUI CSS framework - Google CDN jQueryUI CSS framework themes - Google CDN So what I'm asking is this, other than what I've got listed... What aspects of your sites have you been able to offload, or embed, from outside services? Couple others that come to mind... OpenAuth - take much of the authentication process work off your site Google Wave - when it comes out, take communication work off of your site

    Read the article

  • My server is slower than the average user's computer, should I still offload Access queries to SQL Server? [closed]

    - by andrewb
    Possible Duplicate: How do you do Load Testing and Capacity Planning for Databases I have a database set up with MS Access 2007 front ends and an SQL Server 2005 back end. At the moment, all the queries are saved in the front end as I've only recently moved to an SQL Server backend. I'm wondering how much of those queries I should save as stored procedures/views on SQL Server. About the system The number of concurrent users is only a handful, though it could be as high as 25 at one time (very unlikely). The average computer has an Intel i3-2120 CPU running at 3.3 GHz, which gets a PassMark score of 3,987, whilst the server has an Intel Xeon E5335 running at 2.0 GHz, which gets a PassMark score of 2,637. Always an awkward situation when an i3 outperforms a Xeon... though the i3 is from Q1 2011 and the Xeon is Q2 2009. There is potential for a server upgrade in the future, though it wouldn't come easy. I'm inclined to move the queries to the back end, as they are beginning to take noticeable time and I figure that is a better way of doing things. I like the idea of throwing everything at the server, then pushing for a server upgrade. It makes more sense in my mind to be upgrading one server rather than 30 PCs. Or am I being overzealous? Why my question isn't a duplicate It seems that my question has been misinterpreted and labelled a duplicate of quite a different question, one about testing and capacity planning. I'll try explain how my question is very different from the linked question. The crux of my question is something like "Even though my server is technically slower, is it better to have it doing more of the queries?" There's two ways that people could have answered this: I agree the server is going to be slower, but the extra benefits of such and such (like the less Access the better) means you should move most to the server anyway. (OR no it doesn't outweigh the benefit, keep them in Access) Actually the server will be faster because of such and such. I'm hoping that people out there could provide some answers like this, and the question in the dupe link doesn't really provide either of these answers. Ok sure, I suppose I could do extensive performance testing to compare Access queries running on a local machine to SQL Server queries running on the server, but that sounds like a very hard task (particularly performance testing of access) compared to someone giving some quick general guidance, and again, my question is looking for a lot more than immediate performance benefit.

    Read the article

  • Can you safely rely upon Yahoo Pipes to offload ETL for your application?

    - by Daniel DiPaolo
    Yahoo Pipes are a very intriguing choice for sort of a poor-man's server-free ETL solution, but would it be a good idea to build an application around one or many Pipes? I've really only used them for toy things here and there, with the only thing I've used longer than a week or two being one amalgamated and filtered RSS feed that I've plugged into Google Reader (which has worked great, but if it goes out for a while I wouldn't notice). So, my question is, would building an application around Yahoo Pipes be reliable (available most of the time)? Ideally it'd be something I could rely on being up 99+% of the time. It looks like the Pipes Terms of Use permit building apps around it, but I am unfamiliar with anyone building anything significant using them.

    Read the article

  • Improving TCP performance over a gigabit network with lots of connections and high traffic of small packets

    - by MinimeDJ
    I’m trying to improve my TCP throughput over a “gigabit network with lots of connections and high traffic of small packets”. My server OS is Ubuntu 11.10 Server 64bit. There are about 50.000 (and growing) clients connected to my server through TCP Sockets (all on the same port). 95% of of my packets have size of 1-150 bytes (TCP header and payload). The rest 5% vary from 150 up to 4096+ bytes. With the config below my server can handle traffic up to 30 Mbps (full duplex). Can you please advice best practice to tune OS for my needs? My /etc/sysctl.cong looks like this: kernel.pid_max = 1000000 net.ipv4.ip_local_port_range = 2500 65000 fs.file-max = 1000000 # net.core.netdev_max_backlog=3000 net.ipv4.tcp_sack=0 # net.core.rmem_max = 16777216 net.core.wmem_max = 16777216 net.core.somaxconn = 2048 # net.ipv4.tcp_rmem = 4096 87380 16777216 net.ipv4.tcp_wmem = 4096 65536 16777216 # net.ipv4.tcp_synack_retries = 2 net.ipv4.tcp_syncookies = 1 net.ipv4.tcp_mem = 50576 64768 98152 # net.core.wmem_default = 65536 net.core.rmem_default = 65536 net.ipv4.tcp_window_scaling=1 # net.ipv4.tcp_mem= 98304 131072 196608 # net.ipv4.tcp_timestamps = 0 net.ipv4.tcp_rfc1337 = 1 net.ipv4.ip_forward = 0 net.ipv4.tcp_congestion_control=cubic net.ipv4.tcp_tw_recycle = 0 net.ipv4.tcp_tw_reuse = 0 # net.ipv4.tcp_orphan_retries = 1 net.ipv4.tcp_fin_timeout = 25 net.ipv4.tcp_max_orphans = 8192 Here are my limits: $ ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 193045 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1000000 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 1000000 [ADDED] My NICs are the following: $ dmesg | grep Broad [ 2.473081] Broadcom NetXtreme II 5771x 10Gigabit Ethernet Driver bnx2x 1.62.12-0 (2011/03/20) [ 2.477808] bnx2x 0000:02:00.0: eth0: Broadcom NetXtreme II BCM57711E XGb (A0) PCI-E x4 5GHz (Gen2) found at mem fb000000, IRQ 28, node addr d8:d3:85:bd:23:08 [ 2.482556] bnx2x 0000:02:00.1: eth1: Broadcom NetXtreme II BCM57711E XGb (A0) PCI-E x4 5GHz (Gen2) found at mem fa000000, IRQ 40, node addr d8:d3:85:bd:23:0c [ADDED 2] ethtool -k eth0 Offload parameters for eth0: rx-checksumming: on tx-checksumming: on scatter-gather: on tcp-segmentation-offload: on udp-fragmentation-offload: off generic-segmentation-offload: on generic-receive-offload: on large-receive-offload: on rx-vlan-offload: on tx-vlan-offload: on ntuple-filters: off receive-hashing: off [ADDED 3] sudo ethtool -S eth0|grep -vw 0 NIC statistics: [1]: rx_bytes: 17521104292 [1]: rx_ucast_packets: 118326392 [1]: tx_bytes: 35351475694 [1]: tx_ucast_packets: 191723897 [2]: rx_bytes: 16569945203 [2]: rx_ucast_packets: 114055437 [2]: tx_bytes: 36748975961 [2]: tx_ucast_packets: 194800859 [3]: rx_bytes: 16222309010 [3]: rx_ucast_packets: 109397802 [3]: tx_bytes: 36034786682 [3]: tx_ucast_packets: 198238209 [4]: rx_bytes: 14884911384 [4]: rx_ucast_packets: 104081414 [4]: rx_discards: 5828 [4]: rx_csum_offload_errors: 1 [4]: tx_bytes: 35663361789 [4]: tx_ucast_packets: 194024824 [5]: rx_bytes: 16465075461 [5]: rx_ucast_packets: 110637200 [5]: tx_bytes: 43720432434 [5]: tx_ucast_packets: 202041894 [6]: rx_bytes: 16788706505 [6]: rx_ucast_packets: 113123182 [6]: tx_bytes: 38443961940 [6]: tx_ucast_packets: 202415075 [7]: rx_bytes: 16287423304 [7]: rx_ucast_packets: 110369475 [7]: rx_csum_offload_errors: 1 [7]: tx_bytes: 35104168638 [7]: tx_ucast_packets: 184905201 [8]: rx_bytes: 12689721791 [8]: rx_ucast_packets: 87616037 [8]: rx_discards: 2638 [8]: tx_bytes: 36133395431 [8]: tx_ucast_packets: 196547264 [9]: rx_bytes: 15007548011 [9]: rx_ucast_packets: 98183525 [9]: rx_csum_offload_errors: 1 [9]: tx_bytes: 34871314517 [9]: tx_ucast_packets: 188532637 [9]: tx_mcast_packets: 12 [10]: rx_bytes: 12112044826 [10]: rx_ucast_packets: 84335465 [10]: rx_discards: 2494 [10]: tx_bytes: 36562151913 [10]: tx_ucast_packets: 195658548 [11]: rx_bytes: 12873153712 [11]: rx_ucast_packets: 89305791 [11]: rx_discards: 2990 [11]: tx_bytes: 36348541675 [11]: tx_ucast_packets: 194155226 [12]: rx_bytes: 12768100958 [12]: rx_ucast_packets: 89350917 [12]: rx_discards: 2667 [12]: tx_bytes: 35730240389 [12]: tx_ucast_packets: 192254480 [13]: rx_bytes: 14533227468 [13]: rx_ucast_packets: 98139795 [13]: tx_bytes: 35954232494 [13]: tx_ucast_packets: 194573612 [13]: tx_bcast_packets: 2 [14]: rx_bytes: 13258647069 [14]: rx_ucast_packets: 92856762 [14]: rx_discards: 3509 [14]: rx_csum_offload_errors: 1 [14]: tx_bytes: 35663586641 [14]: tx_ucast_packets: 189661305 rx_bytes: 226125043936 rx_ucast_packets: 1536428109 rx_bcast_packets: 351 rx_discards: 20126 rx_filtered_packets: 8694 rx_csum_offload_errors: 11 tx_bytes: 548442367057 tx_ucast_packets: 2915571846 tx_mcast_packets: 12 tx_bcast_packets: 2 tx_64_byte_packets: 35417154 tx_65_to_127_byte_packets: 2006984660 tx_128_to_255_byte_packets: 373733514 tx_256_to_511_byte_packets: 378121090 tx_512_to_1023_byte_packets: 77643490 tx_1024_to_1522_byte_packets: 43669214 tx_pause_frames: 228 Some info about SACK: When to turn TCP SACK off?

    Read the article

  • HOWTO Turn off SPARC T4 or Intel AES-NI crypto acceleration.

    - by darrenm
    Since we released hardware crypto acceleration for SPARC T4 and Intel AES-NI support we have had a common question come up: 'How do I test without the hardware crypto acceleration?'. Initially this came up just for development use so developers can do unit testing on a machine that has hardware offload but still cover the code paths for a machine that doesn't (our integration and release testing would run on all supported types of hardware anyway).  I've also seen it asked in a customer context too so that we can show that there is a performance gain from the hardware crypto acceleration, (not just the fact that SPARC T4 much faster performing processor than T3) and measure what it is for their application. With SPARC T2/T3 we could easily disable the hardware crypto offload by running 'cryptoadm disable provider=n2cp/0'.  We can't do that with SPARC T4 or with Intel AES-NI because in both of those classes of processor the encryption doesn't require a device driver instead it is unprivileged user land callable instructions. Turns out there is away to do this by using features of the Solaris runtime loader (ld.so.1). First I need to expose a little bit of implementation detail about how the Solaris Cryptographic Framework is implemented in Solaris 11.  One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.  The alternate to this is having the application coded to call getisax() and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so, and the unfortunately misnamed due to historical reasons libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  For SPARC T4 that would be: export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" and for Intel systems with AES-NI support: export LD_HWCAP="-aes" This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  It also works for the Oracle DB and Java JCE.  However does not work for the default enabled OpenSSL "t4" or "aes-ni" engines (unfortunately) because they do explicit calls to getisax() themselves rather than using multiple ELF cap sections. However we can still use OpenSSL to demonstrate this by explicitly selecting "pkcs11" engine  using only a single process and thread.  $ openssl speed -engine pkcs11 -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 54170.81k 187416.00k 489725.70k 805445.63k 1018880.00k $ LD_HWCAP="-aes" openssl speed -engine pkcs11 -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 29376.37k 58328.13k 79031.55k 86738.26k 89191.77k We can clearly see the difference this makes in the case where AES offload to the SPARC T4 was disabled. The "t4" engine is faster than the pkcs11 one because there is less overhead (again on a SPARC T4-1 using only a single process/thread - using -multi you will get even bigger numbers). $ openssl speed -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 85526.61k 89298.84k 91970.30k 92662.78k 92842.67k Yet another cool feature of the Solaris linker/loader, thanks Rod and Ali. Note these above openssl speed output is not intended to show the actual performance of any particular benchmark just that there is a significant improvement from using hardware acceleration on SPARC T4. For cryptographic performance benchmarks see the http://blogs.oracle.com/BestPerf/ postings.

    Read the article

  • unexplainable packet drops with 5 ethernet NICs and low traffic on Ubuntu

    - by jon
    I'm stuck on problem where my machine started to drops packets with no sign of ANY system load or high interrupt usage after an upgrade to Ubuntu 12.04. My server is a network monitoring sensor, running Ubuntu LTS 12.04, it passively collects packets from 5 interfaces doing network intrusion type stuff. Before the upgrade I managed to collect 200+GB of packets a day while writing them to disk with around 0% packet loss depending on the day with the help of CPU affinity and NIC IRQ to CPU bindings. Now I lose a great deal of packets with none of my applications running and at very low PPS rate which a modern workstation NIC would have no trouble with. Specs: x64 Xeon 4 cores 3.2 Ghz 16 GB RAM NICs: 5 Intel Pro NICs using the e1000 driver (NAPI). [1] eth0 and eth1 are integrated NICs (in the motherboard) There are 2 other PCI-X network cards, each with 2 Ethernet ports. 3 of the interfaces are running at Gigabit Ethernet, the others are not because they're attached to hubs. Specs: [2] http://support.dell.com/support/edocs/systems/pe2850/en/ug/t1390aa.htm uptime 17:36:00 up 1:43, 2 users, load average: 0.00, 0.01, 0.05 # uname -a Linux nms 3.2.0-29-generic #46-Ubuntu SMP Fri Jul 27 17:03:23 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux I also have the CPU governor set to performance mode and irqbalance off. The problem still occurs with them on. # lspci -t -vv -[0000:00]-+-00.0 Intel Corporation E7520 Memory Controller Hub +-02.0-[01-03]--+-00.0-[02]----0e.0 Dell PowerEdge Expandable RAID controller 4 | \-00.2-[03]-- +-04.0-[04]-- +-05.0-[05-07]--+-00.0-[06]----07.0 Intel Corporation 82541GI Gigabit Ethernet Controller | \-00.2-[07]----08.0 Intel Corporation 82541GI Gigabit Ethernet Controller +-06.0-[08-0a]--+-00.0-[09]--+-04.0 Intel Corporation 82546EB Gigabit Ethernet Controller (Copper) | | \-04.1 Intel Corporation 82546EB Gigabit Ethernet Controller (Copper) | \-00.2-[0a]--+-02.0 Digium, Inc. Wildcard TE210P/TE212P dual-span T1/E1/J1 card 3.3V | +-03.0 Intel Corporation 82546EB Gigabit Ethernet Controller (Copper) | \-03.1 Intel Corporation 82546EB Gigabit Ethernet Controller (Copper) +-1d.0 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #1 +-1d.1 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #2 +-1d.2 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #3 +-1d.7 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB2 EHCI Controller +-1e.0-[0b]----0d.0 Advanced Micro Devices [AMD] nee ATI RV100 QY [Radeon 7000/VE] +-1f.0 Intel Corporation 82801EB/ER (ICH5/ICH5R) LPC Interface Bridge \-1f.1 Intel Corporation 82801EB/ER (ICH5/ICH5R) IDE Controller I believe the NIC nor the NIC drivers are dropping the packets because ethtool reports 0 under rx_missed_errors and rx_no_buffer_count for each interface. On the old system, if it couldn't keep up this is where the drops would be. I drop packets on multiple interfaces just about every second, usually in small increments of 2-4. I tried all these sysctl values, I'm currently using the uncommented ones. # cat /etc/sysctl.conf # high net.core.netdev_max_backlog = 3000000 net.core.rmem_max = 16000000 net.core.rmem_default = 8000000 # defaults #net.core.netdev_max_backlog = 1000 #net.core.rmem_max = 131071 #net.core.rmem_default = 163480 # moderate #net.core.netdev_max_backlog = 10000 #net.core.rmem_max = 33554432 #net.core.rmem_default = 33554432 Here's an example of an interface stats report with ethtool. They are all the same, nothing is out of the ordinary ( I think ), so I'm only going to show one: ethtool -S eth2 NIC statistics: rx_packets: 7498 tx_packets: 0 rx_bytes: 2722585 tx_bytes: 0 rx_broadcast: 327 tx_broadcast: 0 rx_multicast: 1504 tx_multicast: 0 rx_errors: 0 tx_errors: 0 tx_dropped: 0 multicast: 1504 collisions: 0 rx_length_errors: 0 rx_over_errors: 0 rx_crc_errors: 0 rx_frame_errors: 0 rx_no_buffer_count: 0 rx_missed_errors: 0 tx_aborted_errors: 0 tx_carrier_errors: 0 tx_fifo_errors: 0 tx_heartbeat_errors: 0 tx_window_errors: 0 tx_abort_late_coll: 0 tx_deferred_ok: 0 tx_single_coll_ok: 0 tx_multi_coll_ok: 0 tx_timeout_count: 0 tx_restart_queue: 0 rx_long_length_errors: 0 rx_short_length_errors: 0 rx_align_errors: 0 tx_tcp_seg_good: 0 tx_tcp_seg_failed: 0 rx_flow_control_xon: 0 rx_flow_control_xoff: 0 tx_flow_control_xon: 0 tx_flow_control_xoff: 0 rx_long_byte_count: 2722585 rx_csum_offload_good: 0 rx_csum_offload_errors: 0 alloc_rx_buff_failed: 0 tx_smbus: 0 rx_smbus: 0 dropped_smbus: 01 # ifconfig eth0 Link encap:Ethernet HWaddr 00:11:43:e0:e2:8c UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:373348 errors:16 dropped:95 overruns:0 frame:16 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:356830572 (356.8 MB) TX bytes:0 (0.0 B) eth1 Link encap:Ethernet HWaddr 00:11:43:e0:e2:8d UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:13616 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:8690528 (8.6 MB) TX bytes:0 (0.0 B) eth2 Link encap:Ethernet HWaddr 00:04:23:e1:77:6a UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:7750 errors:0 dropped:471 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:2780935 (2.7 MB) TX bytes:0 (0.0 B) eth3 Link encap:Ethernet HWaddr 00:04:23:e1:77:6b UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:5112 errors:0 dropped:206 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:639472 (639.4 KB) TX bytes:0 (0.0 B) eth4 Link encap:Ethernet HWaddr 00:04:23:b6:35:6c UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:961467 errors:0 dropped:935 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:958561305 (958.5 MB) TX bytes:0 (0.0 B) eth5 Link encap:Ethernet HWaddr 00:04:23:b6:35:6d inet addr:192.168.1.6 Bcast:192.168.1.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:4264 errors:0 dropped:16 overruns:0 frame:0 TX packets:699 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:572228 (572.2 KB) TX bytes:124456 (124.4 KB) I tried the defaults, then started to play around with settings. I wasn't using any flow control and I increased the RxDescriptor count to 4096 before the upgrade as well without any problems. # cat /etc/modprobe.d/e1000.conf options e1000 XsumRX=0,0,0,0,0 RxDescriptors=4096,4096,4096,4096,4096 FlowControl=0,0,0,0,0 debug=16 Here's my network configuration file, I turned off checksumming and various offloading mechanisms along with setting CPU affinity with heavy use interfaces getting an entire CPU and light use interfaces sharing a CPU. I used these settings prior to the upgrade without problems. # cat /etc/network/interfaces # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet manual pre-up /sbin/ethtool -G eth0 rx 4096 tx 0 pre-up /sbin/ethtool -K eth0 gro off gso off rx off pre-up /sbin/ethtool -A eth0 rx off autoneg off up ifconfig eth0 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "4" > /proc/irq/48/smp_affinity down ifconfig eth0 down post-down /sbin/ethtool -G eth0 rx 256 tx 256 post-down /sbin/ethtool -K eth0 gro on gso on rx on post-down /sbin/ethtool -A eth0 rx on autoneg on auto eth1 iface eth1 inet manual pre-up /sbin/ethtool -G eth1 rx 4096 tx 0 pre-up /sbin/ethtool -K eth1 gro off gso off rx off pre-up /sbin/ethtool -A eth1 rx off autoneg off up ifconfig eth1 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "4" > /proc/irq/49/smp_affinity down ifconfig eth1 down post-down /sbin/ethtool -G eth1 rx 256 tx 256 post-down /sbin/ethtool -K eth1 gro on gso on rx on post-down /sbin/ethtool -A eth1 rx on autoneg on auto eth2 iface eth2 inet manual pre-up /sbin/ethtool -G eth2 rx 4096 tx 0 pre-up /sbin/ethtool -K eth2 gro off gso off rx off pre-up /sbin/ethtool -A eth2 rx off autoneg off up ifconfig eth2 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "1" > /proc/irq/82/smp_affinity down ifconfig eth2 down post-down /sbin/ethtool -G eth2 rx 256 tx 256 post-down /sbin/ethtool -K eth2 gro on gso on rx on post-down /sbin/ethtool -A eth2 rx on autoneg on auto eth3 iface eth3 inet manual pre-up /sbin/ethtool -G eth3 rx 4096 tx 0 pre-up /sbin/ethtool -K eth3 gro off gso off rx off pre-up /sbin/ethtool -A eth3 rx off autoneg off up ifconfig eth3 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "2" > /proc/irq/83/smp_affinity down ifconfig eth3 down post-down /sbin/ethtool -G eth3 rx 256 tx 256 post-down /sbin/ethtool -K eth3 gro on gso on rx on post-down /sbin/ethtool -A eth3 rx on autoneg on auto eth4 iface eth4 inet manual pre-up /sbin/ethtool -G eth4 rx 4096 tx 0 pre-up /sbin/ethtool -K eth4 gro off gso off rx off pre-up /sbin/ethtool -A eth4 rx off autoneg off up ifconfig eth4 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "4" > /proc/irq/77/smp_affinity down ifconfig eth4 down post-down /sbin/ethtool -G eth4 rx 256 tx 256 post-down /sbin/ethtool -K eth4 gro on gso on rx on post-down /sbin/ethtool -A eth4 rx on autoneg on auto eth5 iface eth5 inet static pre-up /etc/fw.conf address 192.168.1.1 netmask 255.255.255.0 broadcast 192.168.1.255 gateway 192.168.1.1 dns-nameservers 192.168.1.2 192.168.1.3 up ifconfig eth5 up post-up echo "8" > /proc/irq/77/smp_affinity down ifconfig eth5 down Here's a few examples of packet drops, i ran one after another, probabling totaling 3 or 4 seconds. You can see increases in the drops from the 1st and 3rd. This was a non-busy time, very little traffic. # awk '{ print $1,$5 }' /proc/net/dev Inter-| face drop eth3: 225 lo: 0 eth2: 505 eth1: 0 eth5: 17 eth0: 105 eth4: 1034 # awk '{ print $1,$5 }' /proc/net/dev Inter-| face drop eth3: 225 lo: 0 eth2: 507 eth1: 0 eth5: 17 eth0: 105 eth4: 1034 # awk '{ print $1,$5 }' /proc/net/dev Inter-| face drop eth3: 227 lo: 0 eth2: 512 eth1: 0 eth5: 17 eth0: 105 eth4: 1039 I tried the pci=noacpi options. With and without, it's the same. This is what my interrupt stats looked like before the upgrade, after, with ACPI on PCI it showed multiple NICs bound to an interrupt and shared with other devices such as USB drives which I didn't like so I think i'm going to keep it with ACPI off as it's easier to designate sole purpose interrupts. Is there any advantage I would have using the default i.e. ACPI w/ PCI. ? # cat /etc/default/grub | grep CMD_LINE GRUB_CMDLINE_LINUX_DEFAULT="ipv6.disable=1 noacpi pci=noacpi" GRUB_CMDLINE_LINUX="" # cat /proc/interrupts CPU0 CPU1 CPU2 CPU3 0: 45 0 0 16 IO-APIC-edge timer 1: 1 0 0 7936 IO-APIC-edge i8042 2: 0 0 0 0 XT-PIC-XT-PIC cascade 6: 0 0 0 3 IO-APIC-edge floppy 8: 0 0 0 1 IO-APIC-edge rtc0 9: 0 0 0 0 IO-APIC-edge acpi 12: 0 0 0 1809 IO-APIC-edge i8042 14: 1 0 0 4498 IO-APIC-edge ata_piix 15: 0 0 0 0 IO-APIC-edge ata_piix 16: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb2 18: 0 0 0 1350 IO-APIC-fasteoi uhci_hcd:usb4, radeon 19: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb3 23: 0 0 0 4099 IO-APIC-fasteoi ehci_hcd:usb1 38: 0 0 0 61963 IO-APIC-fasteoi megaraid 48: 0 0 1002319 4 IO-APIC-fasteoi eth0 49: 0 0 38772 3 IO-APIC-fasteoi eth1 77: 0 0 130076 432159 IO-APIC-fasteoi eth4 78: 0 0 0 23917 IO-APIC-fasteoi eth5 82: 1329033 0 0 4 IO-APIC-fasteoi eth2 83: 0 4886525 0 6 IO-APIC-fasteoi eth3 NMI: 5 6 4 5 Non-maskable interrupts LOC: 61409 57076 64257 114764 Local timer interrupts SPU: 0 0 0 0 Spurious interrupts IWI: 0 0 0 0 IRQ work interrupts RES: 17956 25333 13436 14789 Rescheduling interrupts CAL: 22436 607 539 478 Function call interrupts TLB: 1525 1458 4600 4151 TLB shootdowns TRM: 0 0 0 0 Thermal event interrupts THR: 0 0 0 0 Threshold APIC interrupts MCE: 0 0 0 0 Machine check exceptions MCP: 16 16 16 16 Machine check polls ERR: 0 MIS: 0 Here's sample output of vmstat, showing the system. Barebones system right now. root@nms:~# vmstat -S m 1 procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 0 0 0 14992 192 1029 0 0 56 2 419 29 1 0 99 0 0 0 0 14992 192 1029 0 0 0 0 922 27 0 0 100 0 0 0 0 14991 192 1029 0 0 0 36 763 50 0 0 100 0 0 0 0 14991 192 1029 0 0 0 0 646 35 0 0 100 0 0 0 0 14991 192 1029 0 0 0 0 722 54 0 0 100 0 0 0 0 14991 192 1029 0 0 0 0 793 27 0 0 100 0 ^C Here's dmesg output. I can't figure out why my PCI-X slots are negotiated as PCI. The network cards are all PCI-X with the exception of the integrated NICs that came with the server. In the output below it looks as if eth3 and eth2 negotiated at PCI-X speeds rather than PCI:66Mhz. Wouldn't they all drop to PCI:66Mhz? If your integrated NICs are PCI, as labeled below (eth0,eth1), then wouldn't all devices on your bus speed drop down to that slower bus speed? If not, I still don't know why only one of my NICs ( each has two ethernet ports) is labeled as PCI-X in the output below. Does that mean it is running at PCI-X speeds are is it showing that it's capable? # dmesg | grep e1000 [ 3678.349337] e1000: Intel(R) PRO/1000 Network Driver - version 7.3.21-k8-NAPI [ 3678.349342] e1000: Copyright (c) 1999-2006 Intel Corporation. [ 3678.349394] e1000 0000:06:07.0: PCI->APIC IRQ transform: INT A -> IRQ 48 [ 3678.409725] e1000 0000:06:07.0: Receive Descriptors set to 4096 [ 3678.409730] e1000 0000:06:07.0: Checksum Offload Disabled [ 3678.409734] e1000 0000:06:07.0: Flow Control Disabled [ 3678.586409] e1000 0000:06:07.0: eth0: (PCI:66MHz:32-bit) 00:11:43:e0:e2:8c [ 3678.586419] e1000 0000:06:07.0: eth0: Intel(R) PRO/1000 Network Connection [ 3678.586642] e1000 0000:07:08.0: PCI->APIC IRQ transform: INT A -> IRQ 49 [ 3678.649854] e1000 0000:07:08.0: Receive Descriptors set to 4096 [ 3678.649859] e1000 0000:07:08.0: Checksum Offload Disabled [ 3678.649863] e1000 0000:07:08.0: Flow Control Disabled [ 3678.826436] e1000 0000:07:08.0: eth1: (PCI:66MHz:32-bit) 00:11:43:e0:e2:8d [ 3678.826444] e1000 0000:07:08.0: eth1: Intel(R) PRO/1000 Network Connection [ 3678.826627] e1000 0000:09:04.0: PCI->APIC IRQ transform: INT A -> IRQ 82 [ 3679.093266] e1000 0000:09:04.0: Receive Descriptors set to 4096 [ 3679.093271] e1000 0000:09:04.0: Checksum Offload Disabled [ 3679.093275] e1000 0000:09:04.0: Flow Control Disabled [ 3679.130239] e1000 0000:09:04.0: eth2: (PCI-X:133MHz:64-bit) 00:04:23:e1:77:6a [ 3679.130246] e1000 0000:09:04.0: eth2: Intel(R) PRO/1000 Network Connection [ 3679.130449] e1000 0000:09:04.1: PCI->APIC IRQ transform: INT B -> IRQ 83 [ 3679.397312] e1000 0000:09:04.1: Receive Descriptors set to 4096 [ 3679.397318] e1000 0000:09:04.1: Checksum Offload Disabled [ 3679.397321] e1000 0000:09:04.1: Flow Control Disabled [ 3679.434350] e1000 0000:09:04.1: eth3: (PCI-X:133MHz:64-bit) 00:04:23:e1:77:6b [ 3679.434360] e1000 0000:09:04.1: eth3: Intel(R) PRO/1000 Network Connection [ 3679.434553] e1000 0000:0a:03.0: PCI->APIC IRQ transform: INT A -> IRQ 77 [ 3679.704072] e1000 0000:0a:03.0: Receive Descriptors set to 4096 [ 3679.704077] e1000 0000:0a:03.0: Checksum Offload Disabled [ 3679.704081] e1000 0000:0a:03.0: Flow Control Disabled [ 3679.738364] e1000 0000:0a:03.0: eth4: (PCI:33MHz:64-bit) 00:04:23:b6:35:6c [ 3679.738371] e1000 0000:0a:03.0: eth4: Intel(R) PRO/1000 Network Connection [ 3679.738538] e1000 0000:0a:03.1: PCI->APIC IRQ transform: INT B -> IRQ 78 [ 3680.046060] e1000 0000:0a:03.1: eth5: (PCI:33MHz:64-bit) 00:04:23:b6:35:6d [ 3680.046067] e1000 0000:0a:03.1: eth5: Intel(R) PRO/1000 Network Connection [ 3682.132415] e1000: eth0 NIC Link is Up 100 Mbps Half Duplex, Flow Control: None [ 3682.224423] e1000: eth1 NIC Link is Up 100 Mbps Half Duplex, Flow Control: None [ 3682.316385] e1000: eth2 NIC Link is Up 100 Mbps Half Duplex, Flow Control: None [ 3682.408391] e1000: eth3 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None [ 3682.500396] e1000: eth4 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None [ 3682.708401] e1000: eth5 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: RX At first I thought it was the NIC drivers but I'm not so sure. I really have no idea where else to look at the moment. Any help is greatly appreciated as I'm struggling with this. If you need more information just ask. Thanks! [1]http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/Documentation/networking/e1000.txt?v=2.6.11.8 [2] http://support.dell.com/support/edocs/systems/pe2850/en/ug/t1390aa.htm

    Read the article

  • RHEL 5 SCSI ADPATEC

    - by Rajiv Sharma
    HI I have RHEL 5 box . and adpatec scsi card connected to it . I can see the adaptor under dsmeg | grep -i scsi dmesg | grep -i scsi SCSI subsystem initialized scsi0 : SCSI emulation for USB Mass Storage devices Type: CD-ROM ANSI SCSI revision: 00 scsi 0:0:0:0: Attached scsi generic sg0 type 5 sr0: scsi3-mmc drive: 0x/0x caddy sr 0:0:0:0: Attached scsi CD-ROM sr0 scsi1 : Adaptec AIC79XX PCI-X SCSI HBA DRIVER, Rev 3.0 aic7901: Ultra320 Wide Channel A, SCSI Id=7, PCI-X 101-133Mhz, 512 SCBs Loading iSCSI transport class v2.0-871. iscsi: registered transport (iser) iscsi: registered transport (cxgb3i) Broadcom NetXtreme II iSCSI Driver bnx2i v2.1.0 (Dec 06, 2009) iscsi: registered transport (bnx2i) scsi2 : Broadcom Offload iSCSI Initiator scsi3 : Broadcom Offload iSCSI Initiator iscsi: registered transport (tcp) iscsi: registered transport (be2iscsi) bnx2i: iSCSI not supported, dev=eth0 bnx2i: iSCSI not supported, dev=eth0 bnx2i: iSCSI not supported, dev=eth1 bnx2i: iSCSI not supported, dev=eth1 but cann't see under cat /proc/scsi/scsi cat /proc/scsi/scsi Attached devices: Host: scsi0 Channel: 00 Id: 00 Lun: 00 Vendor: KVM Model: vmDisk-CD Rev: 0.01 Type: CD-ROM ANSI SCSI revision: 02 all st and sg modules are enable. Anyone please help me thanks advance Rajiv

    Read the article

  • LSI MegaRAID LINUX got Optimal after degradation but strange POST message

    - by kesrut
    Linux server box with LSI MegaRAID controller got degraded. But after some time RAID status changed to Optimal. Adapter 0 -- Virtual Drive Information: Virtual Drive: 0 (Target Id: 0) Name : RAID Level : Primary-1, Secondary-0, RAID Level Qualifier-0 Size : 2.727 TB Mirror Data : 2.727 TB State : Optimal Strip Size : 256 KB Number Of Drives per span:2 Span Depth : 3 Default Cache Policy: WriteBack, ReadAdaptive, Cached, No Write Cache if Bad BBU Current Cache Policy: WriteThrough, ReadAdaptive, Cached, No Write Cache if Bad BBU Default Access Policy: Read/Write Current Access Policy: Read/Write Disk Cache Policy : Disk's Default Encryption Type : None Is VD Cached: No But now I'm getting RAID BIOS POST message: Your battery is either charging, bad or missing, and you have VDs configured for write-back mode. Because the battery is not currently usable, these VDs willl actually run in write-through mode until the battery is fully charged or replaced if it is bad or missing. (Image: http://cl.ly/image/1h1O093b1i2d) So may it be battery issue caused problem ? I get information about battery: BatteryType: iBBU Voltage: 4001 mV Current: 0 mA Temperature: 22 C Battery State : Operational BBU Firmware Status: Charging Status : None Voltage : OK Temperature : OK Learn Cycle Requested : No Learn Cycle Active : No Learn Cycle Status : OK Learn Cycle Timeout : No I2c Errors Detected : No Battery Pack Missing : No Battery Replacement required : No Remaining Capacity Low : No Periodic Learn Required : No Transparent Learn : No No space to cache offload : No Pack is about to fail & should be replaced : No Cache Offload premium feature required : No Module microcode update required : No Where can be problem ? I'm disabled alarms, but get them if enabled. But don't know how find root of problem.

    Read the article

  • Thunderbird 17.0 message filters destroying my emails

    - by Adrien
    I have been using Thunderbird for years in the following manner (now it's Thunderbird 17.0 on Windows 7): I offload my IMAP emails to my local inbox weekly, then apply hundreds of message filters to said emails in order to move and store them into a few hundred subfolders. It's always worked like a charm - until recently. Now, after I apply the message filters, the emails get moved but they are destroyed in the process - bodies are scrambled up, with bits and pieces of other emails or they are simply blank! How do I fix this?

    Read the article

  • Remote Computer renting (moving my desktop to the cloud)

    - by Carl
    I would like to rent a remote computer, like a virtual Vista or Windows 7 desktop, and run everything on it and access it with RDP (fastest). It could be virtual (running on Xen or Hyper-V) and the price needs to be right. Windows 7 to Windows 7 has nice RDP offload feature and doing stuff in the cloud is fast. Anywhere I could rent something like that? I've been using Amazon and CloudLayer, but they are optimized for server versions of Windows.

    Read the article

  • Offloading (Some) EBS 12 Reporting to Active Data Guard Instances

    - by Steven Chan
    For most Oracle Database users, Oracle Active Data Guard allows users to:Create a physical standby database for business continuity and disaster recoveryOffload reporting from the production database to the read-only physical standby databaseE-Business Suite customers have been able to use Active Data Guard to create physical standby databases for their EBS environments since the feature was introduced with the 11g Database.  EBS sysadmins can use the generic Active Data Guard documentation to take advantage of the Active Data Guard standby database capabilities.  I am pleased to announce that it is now possible to offload a subset of some ReportWriter-based reports -- but not all -- from a production EBS environment to an Active Data Guard physical standby database.  But before I go into the details of this newly-certified configuration, it's necessary to understand some details about what happens whenever someone attempts to access the E-Business Suite.

    Read the article

  • MS Grad Student Project

    - by Bernie Perez
    I'm a computer science grad student at UCLA specializing in security and/or mobile devices. I'm looking for ideas for my M.S. Project. Something with research and experimenting or testing. I have a few in mind, just wondering if the community has some good thoughts. I'm currently working on a project that deals with offload security related operations to a grid-powered/cloud server to improve battery life on phones or tablets, aka Security-Aware software on mobile devices. I might be able to expand on this for my project... but I'm open to any new types of ideas. I have another idea about secure communications with a peer-2-peer ad-hoc network, but its seems a little dull. Hope this questions is not off topic for this StackExchange. I look forward to hearing your thoughts and ideas.

    Read the article

  • Exposing an MVC Application Through SharePoint

    - by Damon
    Below you will find my presentation slides and demo files for my SharePoint TechFest 2010 presentation on Exposing an MVC Application through SharePoint.  One of the points I forgot to mention goes back to the performance and licensing benefits of this approach.  If you have a SharePoint box that is completely slammed, you can put the MVC application on a separate web server and essentially offload the application processing to another server.  In terms of licensing, you can leave SharePoint off that new server and just access SharePoint data via web services from the box.  This makes it a lot cheaper if you have MOSS - but if you're just running WSS then it may not have as many cost benefits.  Remember, programming against the web services is not always the easiest thing, so you have to weight the cost/benefit ratio when making such a determination.

    Read the article

  • How do you off load work from the database?

    - by TheLQ
    In at least the web development field, web servers are everywhere but are backed by very few database servers. As web servers get hit with requests they execute large queries on the database, putting the server under heavy load. While web servers are very easy to scale, db servers are much harder (at least from what I know), making them a precious resource. One way I've heard from some answers here to take load off the database is to offload the work to the web server. Easy, until you realize that now you've got a ton of traffic internally as a web server tries to run SELECT TOP 3000 (presumably to crunch the results on its own), which still slows things down. What are other ways to take load off the database?

    Read the article

  • Welcome to our Friday tips series!

    - by Chris Kawalek
    Today we're starting a brand new blog series. For your Friday afternoon reading, we'll be posting a technical tip or question and answer on a technical topic. We'll start by introducing ideas on our own, but we'd really like it if you were involved and asked us questions via Twitter! Tag your tweet with #AskOracleVirtualization and we'll consider your question for the blog. Today's tip is on Storage and Oracle Virtual Desktop Infrastructure: Question: I run Oracle Virtual Desktop 3.4.1 on Solaris and use a local ZFS storage pool.  How should I configure my ZFS ARC cache?  Answer by John Renko, Consulting Developer, Oracle: Oracle recommends about 5G of ARC cache per template in use to achieve up to a 90% disk read offload. Set your ARC min=max to reserve the maximum amount of your remaining memory for your running VMs. In /etc/system: set zfs:zfs_arc_min = 5368709120 set zfs:zfs_arc_max = 5368709120 The amount you need to reserve will depend on your template but this has proven to be a great start for a typical windows 7 VM running productivity applications.

    Read the article

  • Partner Webcast – Oracle Coherence Applications on WebLogic 12c Grid - 21st Nov 2013

    - by Roxana Babiciu
    Oracle Coherence is the industry leading in-memory data grid solution that enables organizations to predictably scale mission-critical applications by providing fast access to frequently used data. As data volumes and customer expectations increase, driven by the “internet of things”, social, mobile, cloud and always-connected devices, so does the need to handle more data in real-time, offload over-burdened shared data services and provide availability guarantees.The latest release of Oracle Coherence 12c comes with great improvements in ease of use, integration and RASP (Reliability, Availability, Scalability, and Performance) areas. In addition it features an innovating approach to build and deploy Coherence Application as an integral part of typical JEE Enterprise Application.Read more here

    Read the article

  • Oracle Solaris Preflight Applications Checker 11.2 now available

    - by CarylTakvorian-Oracle
    ISV Engineering is happy to announce the release of the latest version of our Solaris Preflight Checker tool supporting Solaris 11.2. which is now available for download. The Solaris Preflight Checker enables a developer to determine the Oracle Solaris 11.2 readiness of an application by analyzing a working application on Oracle Solaris 10. A successful check with this tool will be a strong indicator that an application will run unmodified on the latest Oracle Solaris 11.This release includes: Updated symbol database which will help migration from Solaris 10 to Solaris 11.2 Kernel binary and source scanners that now detects, usage of "data structures" changed between Solaris 10 and Solaris 11.2 An application analyzer, which looks for usage of specific Solaris features and recommends better ways of implementing the same on Solaris 11.2   e.g. suitability of high performance libraries shipped with Solaris, crypto offload for Java & C based applications,  etc. And bug fixes

    Read the article

  • What's a good video upload storage solution?

    - by Nikko
    What's a good video upload storage solution? I'm trying to find a way to offload bandwidth to another storage solution (something like S3), but at the same time, also trying to find a solution which is geared for video storage. Are there any solutions out there for this? Or should I just use S3? Thanks!

    Read the article

  • DBA Best Practices - A Blog Series: Episode 1 - Backups

    - by Argenis
      This blog post is part of the DBA Best Practices series, on which various topics of concern for daily database operations are discussed. Your feedback and comments are very much welcome, so please drop by the comments section and be sure to leave your thoughts on the subject. Morning Coffee When I was a DBA, the first thing I did when I sat down at my desk at work was checking that all backups had completed successfully. It really was more of a ritual, since I had a dual system in place to check for backup completion: 1) the scheduled agent jobs to back up the databases were set to alert the NOC in failure, and 2) I had a script run from a central server every so often to check for any backup failures. Why the redundancy, you might ask. Well, for one I was once bitten by the fact that database mail doesn't work 100% of the time. Potential causes for failure include issues on the SMTP box that relays your server email, firewall problems, DNS issues, etc. And so to be sure that my backups completed fine, I needed to rely on a mechanism other than having the servers do the taking - I needed to interrogate the servers and ask each one if an issue had occurred. This is why I had a script run every so often. Some of you might have monitoring tools in place like Microsoft System Center Operations Manager (SCOM) or similar 3rd party products that would track all these things for you. But at that moment, we had no resort but to write our own Powershell scripts to do it. Now it goes without saying that if you don't have backups in place, you might as well find another career. Your most sacred job as a DBA is to protect the data from a disaster, and only properly safeguarded backups can offer you peace of mind here. "But, we have a cluster...we don't need backups" Sadly I've heard this line more than I would have liked to. You need to understand that a cluster is comprised of shared storage, and that is precisely your single point of failure. A cluster will protect you from an issue at the Operating System level, and also under an outage of any SQL-related service or dependent devices. But it will most definitely NOT protect you against corruption, nor will it protect you against somebody deleting data from a table - accidentally or otherwise. Backup, fine. How often do I take a backup? The answer to this is something you will hear frequently when working with databases: it depends. What does it depend on? For one, you need to understand how much data your business is willing to lose. This is what's called Recovery Point Objective, or RPO. If you don't know how much data your business is willing to lose, you need to have an honest and realistic conversation about data loss expectations with your customers, internal or external. From my experience, their first answer to the question "how much data loss can you withstand?" will be "zero". In that case, you will need to explain how zero data loss is very difficult and very costly to achieve, even in today's computing environments. Do you want to go ahead and take full backups of all your databases every hour, or even every day? Probably not, because of the impact that taking a full backup can have on a system. That's what differential and transaction log backups are for. Have I answered the question of how often to take a backup? No, and I did that on purpose. You need to think about how much time you have to recover from any event that requires you to restore your databases. This is what's called Recovery Time Objective. Again, if you go ask your customer how long of an outage they can withstand, at first you will get a completely unrealistic number - and that will be your starting point for discussing a solution that is cost effective. The point that I'm trying to get across is that you need to have a plan. This plan needs to be practiced, and tested. Like a football playbook, you need to rehearse the moves you'll perform when the time comes. How often is up to you, and the objective is that you feel better about yourself and the steps you need to follow when emergency strikes. A backup is nothing more than an untested restore Backups are files. Files are prone to corruption. Put those two together and realize how you feel about those backups sitting on that network drive. When was the last time you restored any of those? Restoring your backups on another box - that, by the way, doesn't have to match the specs of your production server - will give you two things: 1) peace of mind, because now you know that your backups are good and 2) a place to offload your consistency checks with DBCC CHECKDB or any of the other DBCC commands like CHECKTABLE or CHECKCATALOG. This is a great strategy for VLDBs that cannot withstand the additional load created by the consistency checks. If you choose to offload your consistency checks to another server though, be sure to run DBCC CHECKDB WITH PHYSICALONLY on the production server, and if you're using SQL Server 2008 R2 SP1 CU4 and above, be sure to enable traceflags 2562 and/or 2549, which will speed up the PHYSICALONLY checks further - you can read more about this enhancement here. Back to the "How Often" question for a second. If you have the disk, and the network latency, and the system resources to do so, why not backup the transaction log often? As in, every 5 minutes, or even less than that? There's not much downside to doing it, as you will have to clear the log with a backup sooner than later, lest you risk running out space on your tlog, or even your drive. The one drawback to this approach is that you will have more files to deal with at restore time, and processing each file will add a bit of extra time to the entire process. But it might be worth that time knowing that you minimized the amount of data lost. Again, test your plan to make sure that it matches your particular needs. Where to back up to? Network share? Locally? SAN volume? This is another topic where everybody has a favorite choice. So, I'll stick to mentioning what I like to do and what I consider to be the best practice in this regard. I like to backup to a SAN volume, i.e., a drive that actually lives in the SAN, and can be easily attached to another server in a pinch, saving you valuable time - you wouldn't need to restore files on the network (slow) or pull out drives out a dead server (been there, done that, it’s also slow!). The key is to have a copy of those backup files made quickly, and, if at all possible, to a remote target on a different datacenter - or even the cloud. There are plenty of solutions out there that can help you put such a solution together. That right there is the first step towards a practical Disaster Recovery plan. But there's much more to DR, and that's material for a different blog post in this series.

    Read the article

1 2 3 4  | Next Page >