Search Results

Search found 58112 results on 2325 pages for 'ajax net'.

Page 10/2325 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • jQuery Ajax (beforeSend and complete) working properly on FireFox but not on IE8 and Chrome

    - by Farhan Zia
    I am using jQuery ajax version 1.4.1 in my MVC application (though the issue I am discussing was same with the old jQuery version 3.2.1) as well, to check during customer registration if the username is already registered. As the user clicks on the "Check Availibility" button, I am showing a busy image in place of the check button (actually hiding the check button and showing the image) while checking the availibility on the server and then displaying a message. It is a Sync call (async: false) and I used beforeSend: and complete: to show and hide the busy image and the check button. This thing is working well on Firefox but in IE 8 and Chrome, neither the busy image appear nor the check button hides rather the check button remained pressed as the whole thing has hanged. The available and not available messages appear correctly though. Below is the code: HTML in a User Control (ascx): (i have replaced the angular braces with square below) [div id="available"]This Username is Available [div id="not_available"]This Username is not available [input id="txtUsername" name="txtUsername" type="text" size="50" /]  [button id="check" name="check" type="button"]Check Availability[/button] [img id="busy" src="/Content/Images/busy.gif" /] On the top of this user control, I am linking an external javascript file that has the following code: $(document).ready(function() { $('img#busy').hide(); $('div#available').hide(); $('div#not_available').hide(); $("button#check").click(function() { var available = checkUsername($("input#txtUsername").val()); if (available == "1") { $("div#available").show(); $("div#not_available").hide(); } else { $("div#available").hide(); $("div#not_available").show(); } }); }); function checkUsername(username) { $.ajax({ type: "POST", url: "/SomeController/SomeAction", data: { "id": username }, timeout: 3000, async: false, beforeSend: function() { $("button#check").hide(); $("img#busy").show(); }, complete: function() { $("button#check").show(); $("img#busy").hide(); }, cache: false, success: function(result) { return result; }, error: function(error) { $("img#busy").hide(); $("button#check").show(); alert("Some problems have occured. Please try again later: " + error); } }); }

    Read the article

  • Ajax and Brower Navigation for Back/Forward

    - by David Rodecker
    I am using a ASP.net form with custom onclick mouse events to modify data values. Upon clicking and updating the values, one div section of the form performs a postback. onclick="__doPostBack('ctl01$phCon1$gridReports','sel1')" This is working well, however when the browser BACK option is selected, the browser opens goes through the history of the DIV ajax/onclick actions prior to going back to the prior URL. I suspect that this may be due to the doPostBack being treated as a browsing operation. Is there a means to perform the necessary ASP.net code events to make the page work, but not have the action stored in the browser history?

    Read the article

  • Daily tech links for .net and related technologies - May 13-16, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - May 13-16, 2010 Web Development Integrating Twitter Into An ASP.NET Website Using OAuth - Scott Mitchell T4MVC Extensions for MVC Partials - Evan Building a Data Grid in ASP.NET MVC - Ali Bastani Introducing the MVC Music Store - MVC 2 Sample Application and Tutorial - Jon Galloway Announcing the RTM of MvcExtensions - kazimanzurrashid Optimizing Your Website For Speed Web Design Validation with the jQuery UI Tabs Widget - Chris Love A Brief History...(read more)

    Read the article

  • Daily tech links for .net and related technologies - June 8-11, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - June 8-11, 2010 Web Development ASPNET MVC: Handling Multiple Buttons on a Form with jQuery - Donn Building a MVC2 Template, Part 14, Logging Services - Eric Simple Accordion Menu With jQuery & ASP.NET - Steve Boschi Conditional Validation in MVC -Simonince Creating a RESTful Web Service Using ASP.Net MVC Part 23 – Bug Fixes and Area Support - Shoulders of Giants Web Design The Principles Of Cross-Browser CSS Coding - Louis Lazaris Transparency...(read more)

    Read the article

  • Efficiency Question for an Ajax App

    - by Kubi
    Hi, Currently I am dealing with a web application which uses a txt file as a database for testing for now. But we will connect it to a server later on. My question is, if there is a more efficient way to get my objects than the way I am using now. During the page_init I am getting all my objects into a Collection as List, then I am populating the ajax toolkit accordion objects in the page with that. I have some client side buttons which fires callbacks for getting some other objects to populate the accordions in an update panel. And I am using .net Collections too much like dictionary and list, I am wondering if using arrays is more efficient. Could you advise me about how to make this site better and faster ? Is it better or possible to initialize those TravelP objects in javascript at the beginning and use it like that ? Any comments would be greatly appreciated, Thanks

    Read the article

  • jquery - loading inline javascript via AJAX

    - by yaya3
    I have thrown together a quick prototype to try and establish a few very basic truths regarding what inline JavaScript can do when it is loaded with AJAX: index.html <html> <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script> </head> <body> <script type="text/javascript"> $('p').css('color','white'); alert($('p').css('color')); // DISPLAYS FIRST but is "undefined" $(document).ready(function(){ $('#ajax-loaded-content-wrapper').load('loaded-by-ajax.html', function(){ $('p').css('color','grey'); alert($('p').css('color')); // DISPLAYS LAST (as expected) }); $('p').css('color','purple'); alert($('p').css('color')); // DISPLAYS SECOND }); </script> <p>Content not loaded by ajax</p> <div id="ajax-loaded-content-wrapper"> </div> </body> </html> loaded-by-ajax.html <p>Some content loaded by ajax</p> <script type="text/javascript"> $('p').css('color','yellow'); alert($('p').css('color')); // DISPLAYS THIRD $(document).ready(function(){ $('p').css('color','pink'); alert($('p').css('color')); // DISPLAYS FOURTH }); </script> <p>Some content loaded by ajax</p> <script type="text/javascript"> $(document).ready(function(){ $('p').css('color','blue'); alert($('p').css('color')); // DISPLAYS FIFTH }); $('p').css('color','green'); alert($('p').css('color')); // DISPLAYS SIX </script> <p>Some content loaded by ajax</p> Notes: a) All of the above (except the first) successfully change the colour of all the paragraphs (in firefox 3.6.3). b) I've used alert instead of console.log as console is undefined when called in the 'loaded' HTML. Truths(?): $(document).ready() does not treat the 'loaded' HTML as a new document, or reread the entire DOM tree including the loaded HTML, it is pointless inside AJAX loaded content JavaScript that is contained inside 'loaded' HTML can effect the style of existing DOM nodes One can successfully use the jQuery library inside 'loaded' HTML to effect the style of existing DOM nodes One can not use the firebug inside 'loaded' HTML can effect the existing DOM (proven by Note a) Am I correct in deriving these 'truths' from my tests (test validity)? If not, how would you test for these?

    Read the article

  • Ajax.BeginForm driving me crazy

    - by Fabio Milheiro
    ASP.NET MVC3 I have a partial view that is initially rendered inside a div. The following is the partial code: @model Venue.Models.Validation.CustomerRequestModel <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script> <script type="text/javascript" src="/Scripts/MicrosoftAjax.js"></script> <script type="text/javascript" src="/Scripts/MicrosoftMvcAjax.js"></script> <script type="text/javascript" src="/Scripts/MicrosoftMvcValidation.js"></script> @{ Html.RenderPartial("Message"); } @Html.ValidationSummary() @using (Ajax.BeginForm( "Customer", "Service", null, new AjaxOptions() { HttpMethod = "post", InsertionMode = InsertionMode.Replace, LoadingElementDuration = 100, LoadingElementId = "loading-customer", OnBegin = "hideSubmitButton", OnSuccess = "hideForm", OnComplete = "showSubmitButton", OnFailure = "showErrorMessage", UpdateTargetId = "formclientes", }, new { id = "customer-form" })) { // Fields are all type="text" although some are numbers. <input type="text" name="Address" class="clientes_form" /> } The action: [AcceptVerbs(HttpVerbs.Post)] public ActionResult Customer(CustomerRequestModel customer) { // ... } In the immediate window, this is what I get: this.Request.IsAjaxRequest() false Why?!

    Read the article

  • Asp.net MVC: Edit html control for Admin

    - by coure06
    I have a Asp.net MVC web application, containing mostly text. I want to put a feature into it so that admin can easily edit text/html using the web. May be some double clicking on a page and converting it into editable and save able. How can i do it? any sample code? I need this to be done for Asp.net MVC. thanks

    Read the article

  • How do you implement a combobox filter using AJAX in ASP.NET?

    - by geocine
    To save some time on discussing my problem you could check the demo below: http://demos.telerik.com/aspnet-ajax/combobox/examples/functionality/filteringcombo/defaultcs.aspx I already checked the ListBoxExtender on the Ajax Control Toolkit but it wouldn't give me fine results. What I want to do is to filter a listbox which is populated by over 3000 records from the database upon typing. It should not only filter the listbox with the starting letters but also the group of characters which could be found in between each item on the list. The list is a list of Item Name as a value and an Item Code as the key.

    Read the article

  • Creating a new record using AJAX in ASP.NET-MVC

    - by RememberME
    I am having the hardest time wrapping my head around this. I recently asked this question Create/Edit/Save data in a jQuery pop-up for ASP.NET-MVC and Linq2Sql I'm sure that the response is the right way to go, but I just can't figure out how to write the back-end code to make it work. I originally made my site by following the nerddinner tutorial. I have a subcontracts model and a subcontracts controller. On my subcontract entry page, I'd like for there to be a pop-up/dialog box where the user can enter a new company if the company isn't already in the drop-down list. Do I need to create a new company controller? I wouldn't have a company model b/c the company table is linked to my subcontracts table within the subcontracts dbml. Can anyone point me to an example somewhere? Or offer any help.

    Read the article

  • Asp.net ajax library preview 6 (Ajax toolkits inside a dataview)

    - by Thurein
    Hi, I was using the sys.ui.dataview, ado.net data services and a html page to provide an edit page. It was working fine, but when I wanted to apply some ACT features, for instance watermark or autocomplete on a textbox (input) within the dataview div, its not applied. However, when I move that text box, out of the div, it is working fine and the watermark effect was applied. Am I doing something wrong or any advice ? Thanks

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • ASPX ajax form post help

    - by StealthRT
    Hey all, i have this peice of code that allows a user to select a jpg image, resize it and uploads it to the server driectory. The problem being is that it reloads the aspx page when it saves the image. My question is-is there any way to do this same thing but with ajax so that it doesn't leave the page after submitting it? I've done this pleanty of times with classic asp pages but never with a aspx page. Here is the code for the ASPX page: <%@ Page Trace="False" Language="vb" aspcompat="false" debug="true" validateRequest="false"%> <%@ Import Namespace=System.Drawing %> <%@ Import Namespace=System.Drawing.Imaging %> <%@ Import Namespace=System.Drawing.Text %> <%@ Import Namespace=System %> <%@ Import Namespace=System.IO %> <%@ Import Namespace=System.Web %> <%@ Import Namespace=System.ServiceProcess %> <%@ Import Namespace=Microsoft.Data.Odbc %> <%@ Import Namespace=System.Data.Odbc %> <%@ Import Namespace=MySql.Data.MySqlClient %> <%@ Import Namespace=MySql.Data %> <%@ Import Namespace=System.Drawing.Drawing2D %> <%@ Import Namespace="System.Data" %> <%@ Import Namespace="System.Data.ADO" %> <%@ Import Namespace=ADODB %> <SCRIPT LANGUAGE="VBScript" runat="server"> const Lx = 200 const Ly = 60 const upload_dir = "/img/avatar/" const upload_original = "tmpAvatar" const upload_thumb = "thumb" const upload_max_size = 256 dim fileExt dim newWidth, newHeight as integer dim l2 dim fileFld as HTTPPostedFile Dim originalimg As System.Drawing.Image dim msg dim upload_ok as boolean </script> <% Dim theID, theEmail, maleOrFemale theID = Request.QueryString("ID") theEmail = Request.QueryString("eMail") maleOrFemale = Request.QueryString("MF") randomize() upload_ok = false if lcase(Request.ServerVariables("REQUEST_METHOD"))="post" then fileFld = request.files(0) if fileFld.ContentLength > upload_max_size * 1024 then msg = "Sorry, the image must be less than " & upload_max_size & "Kb" else try fileExt = System.IO.Path.GetExtension(fileFld.FileName).ToLower() if fileExt = ".jpg" then originalImg = System.Drawing.Image.FromStream(fileFld.InputStream) if originalImg.Height > Ly then newWidth = Ly * (originalImg.Width / originalImg.Height) newHeight = Ly end if Dim thumb As New Bitmap(newWidth, newHeight) Dim gr_dest As Graphics = Graphics.FromImage(thumb) dim sb = new SolidBrush(System.Drawing.Color.White) gr_dest.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality gr_dest.CompositingQuality = System.Drawing.Drawing2D.CompositingQuality.HighQuality gr_dest.FillRectangle(sb, 0, 0, thumb.Width, thumb.Height) gr_dest.DrawImage(originalImg, 0, 0, thumb.Width, thumb.Height) try originalImg.save(Server.MapPath(upload_dir & upload_original & fileExt), originalImg.rawformat) thumb.save(Server.MapPath(upload_dir & theID & fileExt), originalImg.rawformat) msg = "Uploaded " & fileFld.FileName & " to " & Server.MapPath(upload_dir & upload_original & fileExt) upload_ok = true File.Delete(Server.MapPath(upload_dir & upload_original & fileExt)) catch msg = "Sorry, there was a problem saving your avatar. Please try again." end try if not thumb is nothing then thumb.Dispose() thumb = nothing end if else msg = "That image does not seem to be a JPG. Upload only JPG images." end if catch msg = "That image does not seem to be a JPG." end try end if if not originalImg is nothing then originalImg.Dispose() originalImg = nothing end if end if %><head> <meta http-equiv="pragma" content="no-cache" /> </head> <html> <script type="text/javascript" src="js/jquery-1.3.min.js"></script> <form enctype="multipart/form-data" method="post" runat="server" id="sendImg"> <input type="file" name="upload_file" id="upload_file" style="-moz-opacity: 0; opacity:0; filter: alpha(opacity=0); margin-top: 5px; float:left; cursor:pointer;" onChange="$('#sendImg').submit();" > <input type="submit" value="Upload" style="visibility:hidden; display:none;"> </form> </body> </html> Any help would be great! :o) David

    Read the article

  • jquery - establishing truths when loading inline javascript via AJAX

    - by yaya3
    I have thrown together a quick prototype to try and establish a few very basic truths regarding what inline JavaScript can do when it is loaded with AJAX: index.html <html> <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script> </head> <body> <script type="text/javascript"> $('p').css('color','white'); alert($('p').css('color')); // DISPLAYS FIRST but is "undefined" $(document).ready(function(){ $('#ajax-loaded-content-wrapper').load('loaded-by-ajax.html', function(){ $('p').css('color','grey'); alert($('p').css('color')); // DISPLAYS LAST (as expected) }); $('p').css('color','purple'); alert($('p').css('color')); // DISPLAYS SECOND }); </script> <p>Content not loaded by ajax</p> <div id="ajax-loaded-content-wrapper"> </div> </body> </html> loaded-by-ajax.html <p>Some content loaded by ajax</p> <script type="text/javascript"> $('p').css('color','yellow'); alert($('p').css('color')); // DISPLAYS THIRD $(document).ready(function(){ $('p').css('color','pink'); alert($('p').css('color')); // DISPLAYS FOURTH }); </script> <p>Some content loaded by ajax</p> <script type="text/javascript"> $(document).ready(function(){ $('p').css('color','blue'); alert($('p').css('color')); // DISPLAYS FIFTH }); $('p').css('color','green'); alert($('p').css('color')); // DISPLAYS SIX </script> <p>Some content loaded by ajax</p> Notes: a) All of the above (except the first) successfully change the colour of all the paragraphs (in firefox 3.6.3). b) I've used alert instead of console.log as console is undefined when called in the 'loaded' HTML. Truths(?): $(document).ready() does not treat the 'loaded' HTML as a new document, or reread the entire DOM tree including the loaded HTML JavaScript that is contained inside 'loaded' HTML can effect the style of existing DOM nodes One can successfully use the jQuery library inside 'loaded' HTML to effect the style of existing DOM nodes One can not use the firebug inside 'loaded' HTML can effect the existing DOM (proven by Note a) Am I correct in deriving these 'truths' from my tests (test validity)? If not, how would you test for these?

    Read the article

  • jQuery AJAX Validation Using The Validity Plugin

    - by schnieds
    Input validation is one of those areas that most developers view as a necessary evil. We know that it is necessary and we really do want to ensure that we get good input from our users. But most of us are lazy (me included) and input validation is one of those things that gets done but usually is a quick and dirty implementation. This is partly due to laziness and partly do to input validation being painful. Thanks to the amazing jQuery Validity plug in, input validation can be really slick, easy and robust enough to work any any scenario. I specifically like the Validity plugin because it supports jQuery AJAX input validation. Other input validation implementations that I have worked with require a form post to take place. However, if you are using jQuery.ajax methods then there isn’t a form and you need to validate the formless input. [Read More] Aaron Schniederhttp://www.churchofficeonline.com

    Read the article

  • Can I run asp.net mvc 1 on .net 4?

    - by Jenea
    I have a asp.net mvc site that references a couple of libraries. Recently I discovered that it is necessary to migrate those dlls to .net 4 (I mean compile them for .net 4). Can I run asp.net mvc 1 on .net 4. Migration to asp.net mvc 2 is postponed because of the removal of response.WriteSubstitution(...) method.

    Read the article

  • ASP.NET MVC3 checkbox dropdownlist create [migrated]

    - by user95381
    i'm new in asp.net MVC and I/m use view model to poppulate the dropdown list and group of checkboxes. I use SQL Server 2012, where have many to many relationships between Students - Books; Student - Cities. I need collect StudentName, one city and many books for one student. I have next questions: 1. How can I get the values from database to my StudentBookCityViewModel? 2. How can I save the values to my database in [HttpPost] Create method? Here is the code: MODEL public class Student { public int StudentId { get; set; } public string StudentName { get; set; } public ICollection<Book> Books { get; set; } public ICollection<City> Cities { get; set; } } public class Book { public int BookId { get; set; } public string BookName { get; set; } public bool IsSelected { get; set; } public ICollection<Student> Students { get; set; } } public class City { public int CityId { get; set; } public string CityName { get; set; } public bool IsSelected { get; set; } public ICollection<Student> Students { get; set; } } VIEW MODEL public class StudentBookCityViewModel { public string StudentName { get; set; } public IList<Book> Books { get; set; } public StudentBookCityViewModel() { Books = new[] { new Book {BookName = "Title1", IsSelected = false}, new Book {BookName = "Title2", IsSelected = false}, new Book {BookName = "Title3", IsSelected = false} }.ToList(); } public string City { get; set; } public IEnumerable<SelectListItem> CityValues { get { return new[] { new SelectListItem {Value = "Value1", Text = "Text1"}, new SelectListItem {Value = "Value2", Text = "Text2"}, new SelectListItem {Value = "Value3", Text = "Text3"} }; } } } Context public class EFDbContext : DbContext{ public EFDbContext(string connectionString) { Database.Connection.ConnectionString = connectionString; } public DbSet<Book> Books { get; set; } public DbSet<Student> Students { get; set; } public DbSet<City> Cities { get; set; } protected override void OnModelCreating(DbModelBuilder modelBuilder) { modelBuilder.Entity<Book>() .HasMany(x => x.Students).WithMany(x => x.Books) .Map(x => x.MapLeftKey("BookId").MapRightKey("StudentId").ToTable("StudentBooks")); modelBuilder.Entity<City>() .HasMany(x => x.Students).WithMany(x => x.Cities) .Map(x => x.MapLeftKey("CityId").MapRightKey("StudentId").ToTable("StudentCities")); } } Controller public ActionResult Create() { return View(); } [HttpPost] public ActionResult Create() { //I don't understand how I can save values to db context.SaveChanges(); return RedirectToAction("Index"); } View @model UsingEFNew.ViewModels.StudentBookCityViewModel @using (Html.BeginForm()) { Your Name: @Html.TextBoxFor(model = model.StudentName) <div>Genre:</div> <div> @Html.DropDownListFor(model => model.City, Model.CityValues) </div> <div>Books:</div> <div> @for (int i = 0; i < Model.Books.Count; i++) { <div> @Html.HiddenFor(x => x.Books[i].BookId) @Html.CheckBoxFor(x => x.Books[i].IsSelected) @Html.LabelFor(x => x.Books[i].IsSelected, Model.Books[i].BookName) </div> } </div> <div> <input id="btnSubmit" type="submit" value="Submit" /> </div> </div> }

    Read the article

  • Azure, don't give me multiple VMs, give me one elastic VM

    - by FransBouma
    Yesterday, Microsoft revealed new major features for Windows Azure (see ScottGu's post). It all looks shiny and great, but after reading most of the material describing the new features, I still find the overall idea behind all of it flawed: why should I care on how much VMs my web app runs? Isn't that a problem to solve for the Windows Azure engineers / software? And what if I need the file system, why can't I simply get a virtual filesystem ? To illustrate my point, let's use a real example: a product website with a customer system/database and next to it a support site with accompanying database. Both are written in .NET, using ASP.NET and use a SQL Server database each. The product website offers files to download by customers, very simple. You have a couple of options to host these websites: Buy a server, place it in a rack at an ISP and run the sites on that server Use 'shared hosting' with an ISP, which means your sites' appdomains are running on the same machine, as well as the files stored, and the databases are hosted in the same server as the other shared databases. Hire a VM, install your OS of choice at an ISP, and host the sites on that VM, basically the same as the first option, except you don't have a physical server At some cloud-vendor, either host the sites 'shared' or in a VM. See above. With all of those options, scalability is a problem, even the cloud-based ones, though not due to the same reasons: The physical server solution has the obvious problem that if you need more power, you need to buy a bigger server or more servers which requires you to add replication and other overhead Shared hosting solutions are almost always capped on memory usage / traffic and database size: if your sites get too big, you have to move out of the shared hosting environment and start over with one of the other solutions The VM solution, be it a VM at an ISP or 'in the cloud' at e.g. Windows Azure or Amazon, in theory allows scaling out by simply instantiating more VMs, however that too introduces the same overhead problems as with the physical servers: suddenly more than 1 instance runs your sites. If a cloud vendor offers its services in the form of VMs, you won't gain much over having a VM at some ISP: the main problems you have to work around are still there: when you spin up more than one VM, your application must be completely stateless at any moment, including the DB sub system, because what's in memory in instance 1 might not be in memory in instance 2. This might sounds trivial but it's not. A lot of the websites out there started rather small: they were perfectly runnable on a single machine with normal memory and CPU power. After all, you don't need a big machine to run a website with even thousands of users a day. Moving these sites to a multi-VM environment will cause a problem: all the in-memory state they use, all the multi-page transitions they use while keeping state across the transition, they can't do that anymore like they did that on a single machine: state is something of the past, you have to store every byte of state in either a DB or in a viewstate or in a cookie somewhere so with the next request, all state information is available through the request, as nothing is kept in-memory. Our example uses a bunch of files in a file system. Using multiple VMs will require that these files move to a cloud storage system which is mounted in each VM so we don't have to store the files on each VM. This might require different file paths, but this change should be minor. What's perhaps less minor is the maintenance procedure in place on the new type of cloud storage used: instead of ftp-ing into a VM, you might have to update the files using different ways / tools. All in all this makes moving an existing website which was written for an environment that's based around a VM (namely .NET with its CLR) overly cumbersome and problematic: it forces you to refactor your website system to be able to be used 'in the cloud', which is caused by the limited way how e.g. Windows Azure offers its cloud services: in blocks of VMs. Offer a scalable, flexible VM which extends with my needs Instead, cloud vendors should offer simply one VM to me. On that VM I run the websites, store my DB and my files. As it's a virtual machine, how this machine is actually ran on physical hardware (e.g. partitioned), I don't care, as that's the problem for the cloud vendor to solve. If I need more resources, e.g. I have more traffic to my server, way more visitors per day, the VM stretches, like I bought a bigger box. This frees me from the problem which comes with multiple VMs: I don't have any refactoring to do at all: I can simply build my website as if it runs on my local hardware server, upload it to the VM offered by the cloud vendor, install it on the VM and I'm done. "But that might require changes to windows!" Yes, but Microsoft is Windows. Windows Azure is their service, they can make whatever change to what they offer to make it look like it's windows. Yet, they're stuck, like Amazon, in thinking in VMs, which forces developers to 'think ahead' and gamble whether they would need to migrate to a cloud with multiple VMs in the future or not. Which comes down to: gamble whether they should invest time in code / architecture which they might never need. (YAGNI anyone?) So the VM we're talking about, is that a low-level VM which runs a guest OS, or is that VM a different kind of VM? The flexible VM: .NET's CLR ? My example websites are ASP.NET based, which means they run inside a .NET appdomain, on the .NET CLR, which is a VM. The only physical OS resource the sites need is the file system, however this too is accessed through .NET. In short: all the websites see is what .NET allows the websites to see, the world as the websites know it is what .NET shows them and lets them access. How the .NET appdomain is run physically, that's the concern of .NET, not mine. This begs the question why Windows Azure doesn't offer virtual appdomains? Or better: .NET environments which look like one machine but could be physically multiple machines. In such an environment, no change has to be made to the websites to migrate them from a local machine or own server to the cloud to get proper scaling: the .NET VM will simply scale with the need: more memory needed, more CPU power needed, it stretches. What it offers to the application running inside the appdomain is simply increasing, but not fragmented: all resources are available to the application: this means that the problem of how to scale is back to where it should be: with the cloud vendor. "Yeah, great, but what about the databases?" The .NET application communicates with the database server through a .NET ADO.NET provider. Where the database is located is not a problem of the appdomain: the ADO.NET provider has to solve that. I.o.w.: we can host the databases in an environment which offers itself as a single resource and is accessible through one connection string without replication overhead on the outside, and use that environment inside the .NET VM as if it was a single DB. But what about memory replication and other problems? This environment isn't simple, at least not for the cloud vendor. But it is simple for the customer who wants to run his sites in that cloud: no work needed. No refactoring needed of existing code. Upload it, run it. Perhaps I'm dreaming and what I described above isn't possible. Yet, I think if cloud vendors don't move into that direction, what they're offering isn't interesting: it doesn't solve a problem at all, it simply offers a way to instantiate more VMs with the guest OS of choice at the cost of me needing to refactor my website code so it can run in the straight jacket form factor dictated by the cloud vendor. Let's not kid ourselves here: most of us developers will never build a website which needs a truck load of VMs to run it: almost all websites created by developers can run on just a few VMs at most. Yet, the most expensive change is right at the start: moving from one to two VMs. As soon as you have refactored your website code to run across multiple VMs, adding another one is just as easy as clicking a mouse button. But that first step, that's the problem here and as it's right there at the beginning of scaling the website, it's particularly strange that cloud vendors refuse to solve that problem and leave it to the developers to solve that. Which makes migrating 'to the cloud' particularly expensive.

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • New Bundling and Minification Support (ASP.NET 4.5 Series)

    - by ScottGu
    This is the sixth in a series of blog posts I'm doing on ASP.NET 4.5. The next release of .NET and Visual Studio include a ton of great new features and capabilities.  With ASP.NET 4.5 you'll see a bunch of really nice improvements with both Web Forms and MVC - as well as in the core ASP.NET base foundation that both are built upon. Today’s post covers some of the work we are doing to add built-in support for bundling and minification into ASP.NET - which makes it easy to improve the performance of applications.  This feature can be used by all ASP.NET applications, including both ASP.NET MVC and ASP.NET Web Forms solutions. Basics of Bundling and Minification As more and more people use mobile devices to surf the web, it is becoming increasingly important that the websites and apps we build perform well with them. We’ve all tried loading sites on our smartphones – only to eventually give up in frustration as it loads slowly over a slow cellular network.  If your site/app loads slowly like that, you are likely losing potential customers because of bad performance.  Even with powerful desktop machines, the load time of your site and perceived performance can make an enormous customer perception. Most websites today are made up of multiple JavaScript and CSS files to separate the concerns and keep the code base tight. While this is a good practice from a coding point of view, it often has some unfortunate consequences for the overall performance of the website.  Multiple JavaScript and CSS files require multiple HTTP requests from a browser – which in turn can slow down the performance load time.  Simple Example Below I’ve opened a local website in IE9 and recorded the network traffic using IE’s built-in F12 developer tools. As shown below, the website consists of 5 CSS and 4 JavaScript files which the browser has to download. Each file is currently requested separately by the browser and returned by the server, and the process can take a significant amount of time proportional to the number of files in question. Bundling ASP.NET is adding a feature that makes it easy to “bundle” or “combine” multiple CSS and JavaScript files into fewer HTTP requests. This causes the browser to request a lot fewer files and in turn reduces the time it takes to fetch them.   Below is an updated version of the above sample that takes advantage of this new bundling functionality (making only one request for the JavaScript and one request for the CSS): The browser now has to send fewer requests to the server. The content of the individual files have been bundled/combined into the same response, but the content of the files remains the same - so the overall file size is exactly the same as before the bundling.   But notice how even on a local dev machine (where the network latency between the browser and server is minimal), the act of bundling the CSS and JavaScript files together still manages to reduce the overall page load time by almost 20%.  Over a slow network the performance improvement would be even better. Minification The next release of ASP.NET is also adding a new feature that makes it easy to reduce or “minify” the download size of the content as well.  This is a process that removes whitespace, comments and other unneeded characters from both CSS and JavaScript. The result is smaller files, which will download and load in a browser faster.  The graph below shows the performance gain we are seeing when both bundling and minification are used together: Even on my local dev box (where the network latency is minimal), we now have a 40% performance improvement from where we originally started.  On slow networks (and especially with international customers), the gains would be even more significant. Using Bundling and Minification inside ASP.NET The upcoming release of ASP.NET makes it really easy to take advantage of bundling and minification within projects and see performance gains like in the scenario above. The way it does this allows you to avoid having to run custom tools as part of your build process –  instead ASP.NET has added runtime support to perform the bundling/minification for you dynamically (caching the results to make sure perf is great).  This enables a really clean development experience and makes it super easy to start to take advantage of these new features. Let’s assume that we have a simple project that has 4 JavaScript files and 6 CSS files: Bundling and Minifying the .css files Let’s say you wanted to reference all of the stylesheets in the “Styles” folder above on a page.  Today you’d have to add multiple CSS references to get all of them – which would translate into 6 separate HTTP requests: The new bundling/minification feature now allows you to instead bundle and minify all of the .css files in the Styles folder – simply by sending a URL request to the folder (in this case “styles”) with an appended “/css” path after it.  For example:    This will cause ASP.NET to scan the directory, bundle and minify the .css files within it, and send back a single HTTP response with all of the CSS content to the browser.  You don’t need to run any tools or pre-processor to get this behavior.  This enables you to cleanly separate your CSS into separate logical .css files and maintain a very clean development experience – while not taking a performance hit at runtime for doing so.  The Visual Studio designer will also honor the new bundling/minification logic as well – so you’ll still get a WYSWIYG designer experience inside VS as well. Bundling and Minifying the JavaScript files Like the CSS approach above, if we wanted to bundle and minify all of our JavaScript into a single response we could send a URL request to the folder (in this case “scripts”) with an appended “/js” path after it:   This will cause ASP.NET to scan the directory, bundle and minify the .js files within it, and send back a single HTTP response with all of the JavaScript content to the browser.  Again – no custom tools or builds steps were required in order to get this behavior.  And it works with all browsers. Ordering of Files within a Bundle By default, when files are bundled by ASP.NET they are sorted alphabetically first, just like they are shown in Solution Explorer. Then they are automatically shifted around so that known libraries and their custom extensions such as jQuery, MooTools and Dojo are loaded before anything else. So the default order for the merged bundling of the Scripts folder as shown above will be: Jquery-1.6.2.js Jquery-ui.js Jquery.tools.js a.js By default, CSS files are also sorted alphabetically and then shifted around so that reset.css and normalize.css (if they are there) will go before any other file. So the default sorting of the bundling of the Styles folder as shown above will be: reset.css content.css forms.css globals.css menu.css styles.css The sorting is fully customizable, though, and can easily be changed to accommodate most use cases and any common naming pattern you prefer.  The goal with the out of the box experience, though, is to have smart defaults that you can just use and be successful with. Any number of directories/sub-directories supported In the example above we just had a single “Scripts” and “Styles” folder for our application.  This works for some application types (e.g. single page applications).  Often, though, you’ll want to have multiple CSS/JS bundles within your application – for example: a “common” bundle that has core JS and CSS files that all pages use, and then page specific or section specific files that are not used globally. You can use the bundling/minification support across any number of directories or sub-directories in your project – this makes it easy to structure your code so as to maximize the bunding/minification benefits.  Each directory by default can be accessed as a separate URL addressable bundle.  Bundling/Minification Extensibility ASP.NET’s bundling and minification support is built with extensibility in mind and every part of the process can be extended or replaced. Custom Rules In addition to enabling the out of the box - directory-based - bundling approach, ASP.NET also supports the ability to register custom bundles using a new programmatic API we are exposing.  The below code demonstrates how you can register a “customscript” bundle using code within an application’s Global.asax class.  The API allows you to add/remove/filter files that go into the bundle on a very granular level:     The above custom bundle can then be referenced anywhere within the application using the below <script> reference:     Custom Processing You can also override the default CSS and JavaScript bundles to support your own custom processing of the bundled files (for example: custom minification rules, support for Saas, LESS or Coffeescript syntax, etc). In the example below we are indicating that we want to replace the built-in minification transforms with a custom MyJsTransform and MyCssTransform class. They both subclass the CSS and JavaScript minifier respectively and can add extra functionality:     The end result of this extensibility is that you can plug-into the bundling/minification logic at a deep level and do some pretty cool things with it. 2 Minute Video of Bundling and Minification in Action Mads Kristensen has a great 90 second video that shows off using the new Bundling and Minification feature.  You can watch the 90 second video here. Summary The new bundling and minification support within the next release of ASP.NET will make it easier to build fast web applications.  It is really easy to use, and doesn’t require major changes to your existing dev workflow.  It is also supports a rich extensibility API that enables you to customize it however you want. You can easily take advantage of this new support within ASP.NET MVC, ASP.NET Web Forms and ASP.NET Web Pages based applications. Hope this helps, Scott P.S. In addition to blogging, I use Twitter to-do quick posts and share links. My Twitter handle is: @scottgu

    Read the article

  • Is it Asp.Net or Ajax or can both technologies be used together when developing web sites?

    - by AspOnMyNet
    1) A while ago I’ve started learning Asp.Net, but then I’ve heard that Ajax is “the new thing”. Since I don’t want to throw away the time I’ve invested into Asp.Net, I’d like to know if it is a common/recommended practice to use both technologies ( Asp.Net and Ajax) when creating websites and web apps in general? 2) If it indeed is a common practice to use the two technologies together, is that only true for server-side Ajax and Asp.Net or can client-side Ajax also be used in conjunction with Asp.Net? thanx

    Read the article

  • GLOBAL loading inside each single button with Jquery in ajax calls of asp.net mvc

    - by Ricky
    I have the following scenario: I have a button\link with a image inside like this: <button type="submit" id="myButton" class="button"><img src="../../Content/images/check.png" id="defaultImage" /> SaveData!!!</button> We are OK here! Now what I need to do is: I want on the click that the image change for a loading element that is previously loaded in the page like this: <img id="loadingImage" src="../../Content/images/loader.gif" style="display: none;" alt="loading"/> And then when the load complete turn back the old button image, I ended with this code: function loader() { var $button = $('#myButton'); if (btnState == '1') { $button.find('img').hide(); $button.prepend($('#loadingImage')); $('#loadingImage').css({ 'display': 'inherit' }); btnState = '0'; } else { $button.find('img').hide(); $button.prepend($('#defaultImage')); $('#defaultImage').show(); btnState = '1'; } } This does the trick for ONE SINGLE button(since I pass its ID in the function) but, when I have for example a grid with a button on each line, I found inviable when managing a screen with many buttons do this for each of then. The main question is: How can I make this method general for all buttons/links on one specific class in the page? The goal is: Click a button, get the image and change it and stop(can be manual). I just don't wanna have to Hook ALL buttons.

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >