Search Results

Search found 570 results on 23 pages for 'bounty castle'.

Page 10/23 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • How to avoid double construction of proxy with DynamicProxy::CreateClassProxyWithTarget?

    - by Belvasis
    I am decorating an existing object using the CreateClassProxyWithTarget method. However, the constructor and therefore, initialization code, is being called twice. I already have a "constructed" instance (the target). I understand why this happens, but is there a way to avoid it, other than using an empty constructor? Edit: Here is some code: First the proxy creation: public static T Create<T>(T i_pEntity) where T : class { object pResult = m_pGenerator.CreateClassProxyWithTarget(typeof(T), new[] { typeof(IEditableObject), typeof(INotifyPropertyChanged) , typeof(IMarkerInterface), typeof(IDataErrorInfo) }, i_pEntity, ProxyGenerationOptions.Default, new BindingEntityInterceptor<T>(i_pEntity)); return (T)pResult; } I use this for example with an object of the following class: public class KatalogBase : AuditableBaseEntity { public KatalogBase() { Values = new HashedSet<Values>(); Attributes = new HashedSet<Attributes>(); } ... } If i now call BindingFactory.Create(someKatalogBaseObject); the Values and Attributes properties are beeing initialized again.

    Read the article

  • How to programmatically register a component that depends on a list of already registered components

    - by Chris Carter
    I'm programmatically registering a group of services that all implement the same interface, IRule. I have another service that looks like this: public class MyService { private IEnumerable<IRule> _rules; public MyService(IEnumerable<IRule> rules){ _rules = rules; } } Hammett posted something that looked like what I wanted, http://hammett.castleproject.org/?p=257. I changed the signature to IRule[] and tried the ArrayResolver trick in the post but that didn't work for me(note, it didn't break anything either). Anyone know how to programmatically register a component like the code I posted above?

    Read the article

  • Windsor + NHibernate + ISession + MVC

    - by dbones
    Hi I am trying to get Windsor to give me an instance ISession for each request, which should be injected into all the repositories Here is my container setup container.AddFacility<FactorySupportFacility>().Register( Component.For<ISessionFactory>().Instance(NHibernateHelper.GetSessionFactory()).LifeStyle.Singleton, Component.For<ISession>().LifeStyle.Transient .UsingFactoryMethod(kernel => kernel.Resolve<ISessionFactory>().OpenSession()) ); //add to the container container.Register( Component.For<IActionInvoker>().ImplementedBy<WindsorActionInvoker>(), Component.For(typeof(IRepository<>)).ImplementedBy(typeof(NHibernateRepository<>)) ); Its based upon a StructureMap post here http://www.kevinwilliampang.com/2010/04/06/setting-up-asp-net-mvc-with-fluent-nhibernate-and-structuremap/ however, when this is run, a new Session is created for every object it is injected too. what am I missing? thanks in advanced (FYI the NHibernateHelper, sets up the config for Nhib)

    Read the article

  • Batch save in CastleProject ActiveRecord

    - by Alex
    I need to save thousand of records in a database. I am using CastleProject ActiveRecord. The cycle which stores that amount of objects works too long. Is it possible to run saving in a batch using ActiveRecord? What is recommended way to improve performance?

    Read the article

  • NHibernate.Bytecode.UnableToLoadProxyFactoryFactoryException

    - by Shane
    I have the following code set up in my Startup IDictionary properties = new Dictionary(); properties.Add("connection.driver_class", "NHibernate.Driver.SqlClientDriver"); properties.Add("dialect", "NHibernate.Dialect.MsSql2005Dialect"); properties.Add("proxyfactory.factory_class", "NNHibernate.ByteCode.Castle.ProxyFactoryFactory, NHibernate.ByteCode.Castle"); properties.Add("connection.provider", "NHibernate.Connection.DriverConnectionProvider"); properties.Add("connection.connection_string", "Data Source=ZEUS;Initial Catalog=mydb;Persist Security Info=True;User ID=sa;Password=xxxxxxxx"); InPlaceConfigurationSource source = new InPlaceConfigurationSource(); source.Add(typeof(ActiveRecordBase), (IDictionary<string, string>) properties); Assembly asm = Assembly.Load("Repository"); Castle.ActiveRecord.ActiveRecordStarter.Initialize(asm, source); I am getting the following error: failed: NHibernate.Bytecode.UnableToLoadProxyFactoryFactoryException : Unable to load type 'NNHibernate.ByteCode.Castle.ProxyFactoryFactory, NHibernate.ByteCode.Castle' during configuration of proxy factory class. Possible causes are: - The NHibernate.Bytecode provider assembly was not deployed. - The typeName used to initialize the 'proxyfactory.factory_class' property of the session-factory section is not well formed. I have read and read I am referecning the All the assemblies listed and I am at a total loss as what to try next. Castle.ActiveRecord.dll Castle.DynamicProxy2.dll Iesi.Collections.dll log4net.dll NHibernate.dll NHibernate.ByteCode.Castle.dll I am 100% sure the assembly is in the bin. Anyone have any ideas?

    Read the article

  • IBatis: "Unable to cast object of type 'Castle.Proxies.IDaoProxy' to type 'SysProt.Dao.ICustomerDao'."

    - by j_maly
    I am trying to set up IBatis.NET. I have downloaded the sources from http://mybatisnet.googlecode.com/svn/branches/ibatis-1-maintenance/src. This is my initialization DomDaoManagerBuilder builder = new DomDaoManagerBuilder(); builder.Configure("dao.config"); IDaoManager daoManager = DaoManager.GetInstance("SqlMapDao"); customerDao = daoManager[typeof(ICustomerDao)]; ICustomerDao cd = (ICustomerDao) customerDao; The last line throws InvalidCastException "Unable to cast object of type 'Castle.Proxies.IDaoProxy' to type 'SysProt.Dao.ICustomerDao'." I am not sure, what I did wrong, my dao.config files contains Here are the definitions of the classes/interfaces: public interface ICustomerDao { Customer Load(long id); } public class CustomerDao: BaseDao, ICustomerDao { public Customer Load(long id) { throw new NotImplementedException(); } } public class BaseDao : IDao { protected DaoSession GetContext() { IDaoManager daoManager = DaoManager.GetInstance(this); return (daoManager.LocalDaoSession as DaoSession); } }

    Read the article

  • Define the base class or base functionality of a dynamic proxy (e.g. Castle, LinFu)

    - by Graham
    Hi, I've asked this in the NHibernate forumns but I think this is more of a general question. NHibernate uses proxy generators (e.g. Castle) to create its proxy. What I'd like to do is to extend the proxy generated so that it implements some of my own custom behaviour (i.e. a comparer). I need this because the following standard .NET behaviour fails to produce the correct results: //object AC is a concrete class collection.Contains(AC) = true //object AP is a proxy with the SAME id and therefore represents the same instance as concrete AC collection.Contains(AP) = false If my comparer was implemented by AP (i.e. do id's match) then collection.Contains(AP) would return true, as I'd expect if proxies were implicit. (NB: For those who say NH inherits from your base class, then yes it does, but NH can also inherit from an interface - which is what we're doing) I'm not at all sure this is possible or where to start. Is this something that can be done in any of the common proxy generators that NH uses?

    Read the article

  • Using different versions of the same assembly in the same folder

    - by Hemanshu Bhojak
    I have the following situation Project A - Uses Castle Windsor v2.2 - Uses Project B via WindsorContainer Project B - Uses NHibernate - Uses Castle Windsor v2.1 In the bin folder of Project A I have the dll Castle.DynamicProxy2.dll v2.2 and NHibernate dlls. Now the problem is that NHibernate is dependent on Castle.DynamicProxy2.dll v2.1 which is not there. How do I resolve this situation.

    Read the article

  • How do encrypt a long or int using the Bouncy Castle crypto routines for BlackBerry?

    - by DanG
    How do encrypt/decrypt a long or int using the Bouncy Castle crypto routines for BlackBerry? I know how to encrypt/decrypt a String. I can encrypt a long but can't get a long to decrypt properly. Some of this is poorly done, but I'm just trying stuff out at the moment. I've included my entire crypto engine here: import org.bouncycastle.crypto.BufferedBlockCipher; import org.bouncycastle.crypto.DataLengthException; import org.bouncycastle.crypto.InvalidCipherTextException; import org.bouncycastle.crypto.engines.AESFastEngine; import org.bouncycastle.crypto.paddings.PaddedBufferedBlockCipher; import org.bouncycastle.crypto.params.KeyParameter; public class CryptoEngine { // Global Variables // Global Objects private static AESFastEngine engine; private static BufferedBlockCipher cipher; private static KeyParameter key; public static boolean setEncryptionKey(String keyText) { // adding in spaces to force a proper key keyText += " "; // cutting off at 128 bits (16 characters) keyText = keyText.substring(0, 16); keyText = HelperMethods.cleanUpNullString(keyText); byte[] keyBytes = keyText.getBytes(); key = new KeyParameter(keyBytes); engine = new AESFastEngine(); cipher = new PaddedBufferedBlockCipher(engine); // just for now return true; } public static String encryptString(String plainText) { try { byte[] plainArray = plainText.getBytes(); cipher.init(true, key); byte[] cipherBytes = new byte[cipher.getOutputSize(plainArray.length)]; int cipherLength = cipher.processBytes(plainArray, 0, plainArray.length, cipherBytes, 0); cipher.doFinal(cipherBytes, cipherLength); String cipherString = new String(cipherBytes); return cipherString; } catch (DataLengthException e) { Logger.logToConsole(e); } catch (IllegalArgumentException e) { Logger.logToConsole(e); } catch (IllegalStateException e) { Logger.logToConsole(e); } catch (InvalidCipherTextException e) { Logger.logToConsole(e); } catch (Exception ex) { Logger.logToConsole(ex); } // else return "";// default bad value } public static String decryptString(String encryptedText) { try { byte[] cipherBytes = encryptedText.getBytes(); cipher.init(false, key); byte[] decryptedBytes = new byte[cipher.getOutputSize(cipherBytes.length)]; int decryptedLength = cipher.processBytes(cipherBytes, 0, cipherBytes.length, decryptedBytes, 0); cipher.doFinal(decryptedBytes, decryptedLength); String decryptedString = new String(decryptedBytes); // crop accordingly int index = decryptedString.indexOf("\u0000"); if (index >= 0) { decryptedString = decryptedString.substring(0, index); } return decryptedString; } catch (DataLengthException e) { Logger.logToConsole(e); } catch (IllegalArgumentException e) { Logger.logToConsole(e); } catch (IllegalStateException e) { Logger.logToConsole(e); } catch (InvalidCipherTextException e) { Logger.logToConsole(e); } catch (Exception ex) { Logger.logToConsole(ex); } // else return "";// default bad value } private static byte[] convertLongToByteArray(long longToConvert) { return new byte[] { (byte) (longToConvert >>> 56), (byte) (longToConvert >>> 48), (byte) (longToConvert >>> 40), (byte) (longToConvert >>> 32), (byte) (longToConvert >>> 24), (byte) (longToConvert >>> 16), (byte) (longToConvert >>> 8), (byte) (longToConvert) }; } private static long convertByteArrayToLong(byte[] byteArrayToConvert) { long returnable = 0; for (int counter = 0; counter < byteArrayToConvert.length; counter++) { returnable += ((byteArrayToConvert[byteArrayToConvert.length - counter - 1] & 0xFF) << counter * 8); } if (returnable < 0) { returnable++; } return returnable; } public static long encryptLong(long plainLong) { try { String plainString = String.valueOf(plainLong); String cipherString = encryptString(plainString); byte[] cipherBytes = cipherString.getBytes(); long returnable = convertByteArrayToLong(cipherBytes); return returnable; } catch (Exception e) { Logger.logToConsole(e); } // else return Integer.MIN_VALUE;// default bad value } public static long decryptLong(long encryptedLong) { byte[] cipherBytes = convertLongToByteArray(encryptedLong); cipher.init(false, key); byte[] decryptedBytes = new byte[cipher.getOutputSize(cipherBytes.length)]; int decryptedLength = cipherBytes.length; try { cipher.doFinal(decryptedBytes, decryptedLength); } catch (DataLengthException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IllegalStateException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (InvalidCipherTextException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } long plainLong = convertByteArrayToLong(decryptedBytes); return plainLong; } public static boolean encryptBoolean(int plainBoolean) { return false; } public static boolean decryptBoolean(int encryptedBoolean) { return false; } public static boolean testLongToByteArrayConversion() { boolean returnable = true; // fails out of the bounds of an integer, the conversion to long from byte // array does not hold, need to figure out a better solution for (long counter = -1000000; counter < 1000000; counter++) { long test = counter; byte[] bytes = convertLongToByteArray(test); long result = convertByteArrayToLong(bytes); if (result != test) { returnable = false; Logger.logToConsole("long conversion failed"); Logger.logToConsole("test = " + test + "\n result = " + result); } // regardless } // the end Logger.logToConsole("final returnable result = " + returnable); return returnable; } }

    Read the article

  • "The name 'WithTable' does not exist in the current context" using Fluent NHibernate

    - by Byron Sommardahl
    Might be a really easy problem to fix, but it the solution is eluding me! I'm using Fluent NHibernate 1.0 RTM (and using NHibernate bins that ships with it). I'm trying to map my entities and cannot use the WithTable() method. It's not available in Intelligence and VS doesn't suggest any namespaces to reference. Here's my code: using System; using System.Collections.Generic; using System.Linq; using System.Text; using GeoCodeThe.Net.Domain.Entities; using FluentNHibernate.Mapping; namespace GeoCodeThe.Net.Domain.Mappings { class CategoryMap: ClassMap<ICategory> { public CategoryMap() { WithTable("Categories"); // <----- Compile error: The name 'WithTable' does not exist in the current context Id(x => x.Id); Map(x => x.Name); Map(x => x.Tags); } } My bin folder has: Antlr3.Runtime.dll Castle.Core.dll Castle.DynamicProxy2.dll FluentNHibernate.dll Iesi.Collections.dll log4net.dll NHibernate.ByteCode.Castle.dll NHibernate.dll FluentNHibernate.pdb Castle.Core.xml Castle.DynamicProxy2.xml FluentNHibernate.xml Iesi.Collections.xml log4net.xml NHibernate.ByteCode.Castle.xml NHibernate.xml Any clue what I'm missing? Let me know if you need any more clarification.

    Read the article

  • How can I test blades in MVC Turbine with Rhino Mocks?

    - by Brandon Linton
    I'm trying to set up blade unit tests in an MVC Turbine-derived site. The problem is that I can't seem to mock the IServiceLocator interface without hitting the following exception: System.BadImageFormatException: An attempt was made to load a program with an incorrect format. (Exception from HRESULT: 0x8007000B) at System.Reflection.Emit.TypeBuilder._TermCreateClass(Int32 handle, Module module) at System.Reflection.Emit.TypeBuilder.CreateTypeNoLock() at System.Reflection.Emit.TypeBuilder.CreateType() at Castle.DynamicProxy.Generators.Emitters.AbstractTypeEmitter.BuildType() at Castle.DynamicProxy.Generators.Emitters.AbstractTypeEmitter.BuildType() at Castle.DynamicProxy.Generators.InterfaceProxyWithTargetGenerator.GenerateCode(Type proxyTargetType, Type[] interfaces, ProxyGenerationOptions options) at Castle.DynamicProxy.DefaultProxyBuilder.CreateInterfaceProxyTypeWithoutTarget(Type interfaceToProxy, Type[] additionalInterfacesToProxy, ProxyGenerationOptions options) at Castle.DynamicProxy.ProxyGenerator.CreateInterfaceProxyTypeWithoutTarget(Type interfaceToProxy, Type[] additionalInterfacesToProxy, ProxyGenerationOptions options) at Castle.DynamicProxy.ProxyGenerator.CreateInterfaceProxyWithoutTarget(Type interfaceToProxy, Type[] additionalInterfacesToProxy, ProxyGenerationOptions options, IInterceptor[] interceptors) at Rhino.Mocks.MockRepository.MockInterface(CreateMockState mockStateFactory, Type type, Type[] extras) at Rhino.Mocks.MockRepository.CreateMockObject(Type type, CreateMockState factory, Type[] extras, Object[] argumentsForConstructor) at Rhino.Mocks.MockRepository.Stub(Type type, Object[] argumentsForConstructor) at Rhino.Mocks.MockRepository.<>c__DisplayClass1`1.<GenerateStub>b__0(MockRepository repo) at Rhino.Mocks.MockRepository.CreateMockInReplay<T>(Func`2 createMock) at Rhino.Mocks.MockRepository.GenerateStub<T>(Object[] argumentsForConstructor) at XXX.BladeTest.SetUp() Everything I search for regarding this error leads me to 32-bit vs. 64-bit DLL compilation issues, but MVC Turbine uses the service locator facade everywhere and we haven't had any other issues, just with using Rhino Mocks to attempt mocking it. It blows up on the second line of this NUnit set up method: IRotorContext _context; IServiceLocator _locator; [SetUp] public void SetUp() { _context = MockRepository.GenerateStub<IRotorContext>(); _locator = MockRepository.GenerateStub<IServiceLocator>(); _context.Expect(x => x.ServiceLocator).Return(_locator); } Just a quick aside; I've tried implementing a fake implementing IServiceLocator, thinking that I could just keep track of calls to the type registration methods. This won't work in our setup, because we extend the service locator's interface in such a way that if the type isn't Unity-based, the registration logic is not invoked.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Adding SQL Cache Dependencies to the Loosely coupled .NET Cache Provider

    - by Rhames
    This post adds SQL Cache Dependency support to the loosely coupled .NET Cache Provider that I described in the previous post (http://geekswithblogs.net/Rhames/archive/2012/09/11/loosely-coupled-.net-cache-provider-using-dependency-injection.aspx). The sample code is available on github at https://github.com/RobinHames/CacheProvider.git. Each time we want to apply a cache dependency to a call to fetch or cache a data item we need to supply an instance of the relevant dependency implementation. This suggests an Abstract Factory will be useful to create cache dependencies as needed. We can then use Dependency Injection to inject the factory into the relevant consumer. Castle Windsor provides a typed factory facility that will be utilised to implement the cache dependency abstract factory (see http://docs.castleproject.org/Windsor.Typed-Factory-Facility-interface-based-factories.ashx). Cache Dependency Interfaces First I created a set of cache dependency interfaces in the domain layer, which can be used to pass a cache dependency into the cache provider. ICacheDependency The ICacheDependency interface is simply an empty interface that is used as a parent for the specific cache dependency interfaces. This will allow us to place a generic constraint on the Cache Dependency Factory, and will give us a type that can be passed into the relevant Cache Provider methods. namespace CacheDiSample.Domain.CacheInterfaces { public interface ICacheDependency { } }   ISqlCacheDependency.cs The ISqlCacheDependency interface provides specific SQL caching details, such as a Sql Command or a database connection and table. It is the concrete implementation of this interface that will be created by the factory in passed into the Cache Provider. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace CacheDiSample.Domain.CacheInterfaces { public interface ISqlCacheDependency : ICacheDependency { ISqlCacheDependency Initialise(string databaseConnectionName, string tableName); ISqlCacheDependency Initialise(System.Data.SqlClient.SqlCommand sqlCommand); } } If we want other types of cache dependencies, such as by key or file, interfaces may be created to support these (the sample code includes an IKeyCacheDependency interface). Modifying ICacheProvider to accept Cache Dependencies Next I modified the exisitng ICacheProvider<T> interface so that cache dependencies may be passed into a Fetch method call. I did this by adding two overloads to the existing Fetch methods, which take an IEnumerable<ICacheDependency> parameter (the IEnumerable allows more than one cache dependency to be included). I also added a method to create cache dependencies. This means that the implementation of the Cache Provider will require a dependency on the Cache Dependency Factory. It is pretty much down to personal choice as to whether this approach is taken, or whether the Cache Dependency Factory is injected directly into the repository or other consumer of Cache Provider. I think, because the cache dependency cannot be used without the Cache Provider, placing the dependency on the factory into the Cache Provider implementation is cleaner. ICacheProvider.cs using System; using System.Collections.Generic;   namespace CacheDiSample.Domain.CacheInterfaces { public interface ICacheProvider<T> { T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies);   IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies);   U CreateCacheDependency<U>() where U : ICacheDependency; } }   Cache Dependency Factory Next I created the interface for the Cache Dependency Factory in the domain layer. ICacheDependencyFactory.cs namespace CacheDiSample.Domain.CacheInterfaces { public interface ICacheDependencyFactory { T Create<T>() where T : ICacheDependency;   void Release<T>(T cacheDependency) where T : ICacheDependency; } }   I used the ICacheDependency parent interface as a generic constraint on the create and release methods in the factory interface. Now the interfaces are in place, I moved on to the concrete implementations. ISqlCacheDependency Concrete Implementation The concrete implementation of ISqlCacheDependency will need to provide an instance of System.Web.Caching.SqlCacheDependency to the Cache Provider implementation. Unfortunately this class is sealed, so I cannot simply inherit from this. Instead, I created an interface called IAspNetCacheDependency that will provide a Create method to create an instance of the relevant System.Web.Caching Cache Dependency type. This interface is specific to the ASP.NET implementation of the Cache Provider, so it should be defined in the same layer as the concrete implementation of the Cache Provider (the MVC UI layer in the sample code). IAspNetCacheDependency.cs using System.Web.Caching;   namespace CacheDiSample.CacheProviders { public interface IAspNetCacheDependency { CacheDependency CreateAspNetCacheDependency(); } }   Next, I created the concrete implementation of the ISqlCacheDependency interface. This class also implements the IAspNetCacheDependency interface. This concrete implementation also is defined in the same layer as the Cache Provider implementation. AspNetSqlCacheDependency.cs using System.Web.Caching; using CacheDiSample.Domain.CacheInterfaces;   namespace CacheDiSample.CacheProviders { public class AspNetSqlCacheDependency : ISqlCacheDependency, IAspNetCacheDependency { private string databaseConnectionName;   private string tableName;   private System.Data.SqlClient.SqlCommand sqlCommand;   #region ISqlCacheDependency Members   public ISqlCacheDependency Initialise(string databaseConnectionName, string tableName) { this.databaseConnectionName = databaseConnectionName; this.tableName = tableName; return this; }   public ISqlCacheDependency Initialise(System.Data.SqlClient.SqlCommand sqlCommand) { this.sqlCommand = sqlCommand; return this; }   #endregion   #region IAspNetCacheDependency Members   public System.Web.Caching.CacheDependency CreateAspNetCacheDependency() { if (sqlCommand != null) return new SqlCacheDependency(sqlCommand); else return new SqlCacheDependency(databaseConnectionName, tableName); }   #endregion   } }   ICacheProvider Concrete Implementation The ICacheProvider interface is implemented by the CacheProvider class. This implementation is modified to include the changes to the ICacheProvider interface. First I needed to inject the Cache Dependency Factory into the Cache Provider: private ICacheDependencyFactory cacheDependencyFactory;   public CacheProvider(ICacheDependencyFactory cacheDependencyFactory) { if (cacheDependencyFactory == null) throw new ArgumentNullException("cacheDependencyFactory");   this.cacheDependencyFactory = cacheDependencyFactory; }   Next I implemented the CreateCacheDependency method, which simply passes on the create request to the factory: public U CreateCacheDependency<U>() where U : ICacheDependency { return this.cacheDependencyFactory.Create<U>(); }   The signature of the FetchAndCache helper method was modified to take an additional IEnumerable<ICacheDependency> parameter:   private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies) and the following code added to create the relevant System.Web.Caching.CacheDependency object for any dependencies and pass them to the HttpContext Cache: CacheDependency aspNetCacheDependencies = null;   if (cacheDependencies != null) { if (cacheDependencies.Count() == 1) // We know that the implementations of ICacheDependency will also implement IAspNetCacheDependency // so we can use a cast here and call the CreateAspNetCacheDependency() method aspNetCacheDependencies = ((IAspNetCacheDependency)cacheDependencies.ElementAt(0)).CreateAspNetCacheDependency(); else if (cacheDependencies.Count() > 1) { AggregateCacheDependency aggregateCacheDependency = new AggregateCacheDependency(); foreach (ICacheDependency cacheDependency in cacheDependencies) { // We know that the implementations of ICacheDependency will also implement IAspNetCacheDependency // so we can use a cast here and call the CreateAspNetCacheDependency() method aggregateCacheDependency.Add(((IAspNetCacheDependency)cacheDependency).CreateAspNetCacheDependency()); } aspNetCacheDependencies = aggregateCacheDependency; } }   HttpContext.Current.Cache.Insert(key, value, aspNetCacheDependencies, absoluteExpiry.Value, relativeExpiry.Value);   The full code listing for the modified CacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching; using CacheDiSample.Domain.CacheInterfaces;   namespace CacheDiSample.CacheProviders { public class CacheProvider<T> : ICacheProvider<T> { private ICacheDependencyFactory cacheDependencyFactory;   public CacheProvider(ICacheDependencyFactory cacheDependencyFactory) { if (cacheDependencyFactory == null) throw new ArgumentNullException("cacheDependencyFactory");   this.cacheDependencyFactory = cacheDependencyFactory; }   public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) { return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry, null); }   public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies) { return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry, cacheDependencies); }   public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) { return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry, null); }   public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies) { return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry, cacheDependencies); }   public U CreateCacheDependency<U>() where U : ICacheDependency { return this.cacheDependencyFactory.Create<U>(); }   #region Helper Methods   private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies) { U value; if (!TryGetValue<U>(key, out value)) { value = retrieveData(); if (!absoluteExpiry.HasValue) absoluteExpiry = Cache.NoAbsoluteExpiration;   if (!relativeExpiry.HasValue) relativeExpiry = Cache.NoSlidingExpiration;   CacheDependency aspNetCacheDependencies = null;   if (cacheDependencies != null) { if (cacheDependencies.Count() == 1) // We know that the implementations of ICacheDependency will also implement IAspNetCacheDependency // so we can use a cast here and call the CreateAspNetCacheDependency() method aspNetCacheDependencies = ((IAspNetCacheDependency)cacheDependencies.ElementAt(0)).CreateAspNetCacheDependency(); else if (cacheDependencies.Count() > 1) { AggregateCacheDependency aggregateCacheDependency = new AggregateCacheDependency(); foreach (ICacheDependency cacheDependency in cacheDependencies) { // We know that the implementations of ICacheDependency will also implement IAspNetCacheDependency // so we can use a cast here and call the CreateAspNetCacheDependency() method aggregateCacheDependency.Add( ((IAspNetCacheDependency)cacheDependency).CreateAspNetCacheDependency()); } aspNetCacheDependencies = aggregateCacheDependency; } }   HttpContext.Current.Cache.Insert(key, value, aspNetCacheDependencies, absoluteExpiry.Value, relativeExpiry.Value);   } return value; }   private bool TryGetValue<U>(string key, out U value) { object cachedValue = HttpContext.Current.Cache.Get(key); if (cachedValue == null) { value = default(U); return false; } else { try { value = (U)cachedValue; return true; } catch { value = default(U); return false; } } }   #endregion } }   Wiring up the DI Container Now the implementations for the Cache Dependency are in place, I wired them up in the existing Windsor CacheInstaller. First I needed to register the implementation of the ISqlCacheDependency interface: container.Register( Component.For<ISqlCacheDependency>() .ImplementedBy<AspNetSqlCacheDependency>() .LifestyleTransient());   Next I registered the Cache Dependency Factory. Notice that I have not implemented the ICacheDependencyFactory interface. Castle Windsor will do this for me by using the Type Factory Facility. I do need to bring the Castle.Facilities.TypedFacility namespace into scope: using Castle.Facilities.TypedFactory;   Then I registered the factory: container.AddFacility<TypedFactoryFacility>();   container.Register( Component.For<ICacheDependencyFactory>() .AsFactory()); The full code for the CacheInstaller class is: using Castle.MicroKernel.Registration; using Castle.MicroKernel.SubSystems.Configuration; using Castle.Windsor; using Castle.Facilities.TypedFactory;   using CacheDiSample.Domain.CacheInterfaces; using CacheDiSample.CacheProviders;   namespace CacheDiSample.WindsorInstallers { public class CacheInstaller : IWindsorInstaller { public void Install(IWindsorContainer container, IConfigurationStore store) { container.Register( Component.For(typeof(ICacheProvider<>)) .ImplementedBy(typeof(CacheProvider<>)) .LifestyleTransient());   container.Register( Component.For<ISqlCacheDependency>() .ImplementedBy<AspNetSqlCacheDependency>() .LifestyleTransient());   container.AddFacility<TypedFactoryFacility>();   container.Register( Component.For<ICacheDependencyFactory>() .AsFactory()); } } }   Configuring the ASP.NET SQL Cache Dependency There are a couple of configuration steps required to enable SQL Cache Dependency for the application and database. From the Visual Studio Command Prompt, the following commands should be used to enable the Cache Polling of the relevant database tables: aspnet_regsql -S <servername> -E -d <databasename> –ed aspnet_regsql -S <servername> -E -d CacheSample –et –t <tablename>   (The –t option should be repeated for each table that is to be made available for cache dependencies). Finally the SQL Cache Polling needs to be enabled by adding the following configuration to the <system.web> section of web.config: <caching> <sqlCacheDependency pollTime="10000" enabled="true"> <databases> <add name="BloggingContext" connectionStringName="BloggingContext"/> </databases> </sqlCacheDependency> </caching>   (obviously the name and connection string name should be altered as required). Using a SQL Cache Dependency Now all the coding is complete. To specify a SQL Cache Dependency, I can modify my BlogRepositoryWithCaching decorator class (see the earlier post) as follows: public IList<Blog> GetAll() { var sqlCacheDependency = cacheProvider.CreateCacheDependency<ISqlCacheDependency>() .Initialise("BloggingContext", "Blogs");   ICacheDependency[] cacheDependencies = new ICacheDependency[] { sqlCacheDependency };   string key = string.Format("CacheDiSample.DataAccess.GetAll");   return cacheProvider.Fetch(key, () => { return parentBlogRepository.GetAll(); }, null, null, cacheDependencies) .ToList(); }   This will add a dependency of the “Blogs” table in the database. The data will remain in the cache until the contents of this table change, then the cache item will be invalidated, and the next call to the GetAll() repository method will be routed to the parent repository to refresh the data from the database.

    Read the article

  • How to mock ISerializable classes with Moq?

    - by asmois
    Hi there, I'm completly new to Moq and now trying to create a mock for System.Assembly class. I'm using this code: var mockAssembly = new Mock<Assembly>(); mockAssembly.Setup( x => x.GetTypes() ).Returns( new Type[] { typeof( Type1 ), typeof( Type2 ) } ); But when I run tests I get next exception: System.ArgumentException : The type System.Reflection.Assembly implements ISerializable, but failed to provide a deserialization constructor Stack Trace: at Castle.DynamicProxy.Generators.BaseProxyGenerator.VerifyIfBaseImplementsGet­ObjectData(Type baseType) at Castle.DynamicProxy.Generators.ClassProxyGenerator.GenerateCode(Type[] interfaces, ProxyGenerationOptions options) at Castle.DynamicProxy.DefaultProxyBuilder.CreateClassProxy(Type classToProxy, Type[] additionalInterfacesToProxy, ProxyGenerationOptions options) at Castle.DynamicProxy.ProxyGenerator.CreateClassProxy(Type classToProxy, Type[] additionalInterfacesToProxy, ProxyGenerationOptions options, Object[] constructorArguments, IInterceptor[] interceptors) at Moq.Proxy.CastleProxyFactory.CreateProxy[T](ICallInterceptor interceptor, Type[] interfaces, Object[] arguments) at Moq.Mock`1.<InitializeInstance>b__0() at Moq.PexProtector.Invoke(Action action) at Moq.Mock`1.InitializeInstance() at Moq.Mock`1.OnGetObject() at Moq.Mock`1.get_Object() Could you reccomend me the right way to mock ISerializable classes (like System.Assembly) with Moq. Thanks in advance!

    Read the article

  • nhibernate activerecord linq Contains problem

    - by Robert Ivanc
    Hi, I am having problems with the following query in Castle ActiveRecord 2.12: var q = from o in SodisceFMClientVAR.Queryable where taxnos2.Contains(o.TaxFileNo) select o; taxNos2 is an array of strings. When run I get an exception: + InnerException {"Index was out of range. Must be non-negative and less than the size of the collection.\r\nParameter name: index"} System.Exception {System.ArgumentOutOfRangeException} StackTrace " at Castle.ActiveRecord.ActiveRecordBase.ExecuteQuery(IActiveRecordQuery query)\r\n at Castle.ActiveRecord.Linq.LinqResultWrapper`1.Populate()\r\n at Castle.ActiveRecord.Linq.LinqResultWrapper`1.GetEnumerator()\r\n at NHibernate.Linq.Query`1.GetEnumerator()\r\n at System.Linq.Buffer`1..ctor(IEnumerable`1 source)\r\n at System.Linq.Enumerable.ToArray[TSource](IEnumerable`1 source)\r\n at prosoft.skb.insolventnostDataAccess.InsolventnostDataAccAR.GetOurUsersListLS(ICollection`1 taxNos) in C:\\svn\\skb\\insolventnostWithAR\\prosoft.skb.insolventnostDataAccess\\InsolventnostDataAR.cs:line 214\r\n at prosoft.skb.insolventnostDataFromWS.InsolventnostFromWS.filterByOurUsers(IEnumerable`1 odprtiPostopki) in C:\\svn\\skb\\insolventnostWithAR\\prosoft.skb.insolventnostDataFromWS\\InsolventnostFromWS.cs:line 237\r\n at prosoft.skb.insolventnostDataFromWS.InsolventnostFromWS.SyncData() in C:\\svn\\skb\\insolventnostWithAR\\prosoft.skb.insolventnostDataFromWS\\InsolventnostFromWS.cs:line 53" string Does Contains even work in linq for nhibernate? I couldn't find anything via google... Is there a workaround? Thanks!

    Read the article

  • Referenced assembly won't load in new thread on IIS 7

    - by DanielC
    I have a process in which a user uploads a file to a web site where the file is then processed and uploaded into the database. The process of validating the file could take several minutes so as soon as the file is uploaded I create a new thread and I do my processing on this second thread. This works great on my local machine but doesn't work at all on my IIS 7 test server. After some investigating I found the problem is that the process is trying to load a reference to Castle and it can't find the DLL. I have a copy of Castle DLLs in my bin and it works elsewhere in my app. I ran Fuslog and discovered that it is trying to load castle from the wrong location. It is trying to load from c:/windows/system32/inetsrv/. It appears that under IIS 7 the second thread is executing in a different context or something. So the question is what can I do to get it to find Castle in the application BIN folder?

    Read the article

  • Do any well-known CAs issue Elliptic Curve certificates?

    - by erickson
    Background I've seen that Comodo has an elliptic curve root ("COMODO ECC Certification Authority"), but I don't see mention of EC certificates on their web site. Does Certicom have intellectual property rights that prevent other issuers from offering EC certificates? Does a widely-used browser fail to support ECC? Is ECC a bad fit for traditional PKI use like web server authentication? Or is there just no demand for it? I'm interested in switching to elliptic curve because of the NSA Suite B recommendation. But it doesn't seem practical for many applications. Bounty Criteria To claim the bounty, an answer must provide a link to a page or pages at a well-known CA's website that describes the ECC certificate options they offer, prices, and how to purchase one. In this context, "well-known" means that the proper root certificate must be included by default in Firefox 3.5 and IE 8. If multiple qualifying answers are provided (one can hope!), the one with the cheapest certificate from a ubiquitous CA will win the bounty. If that doesn't eliminate any ties (still hoping!), I'll have to choose an answer at my discretion. Remember, someone always claims at least half of the bounty, so please give it a shot even if you don't have all the answers.

    Read the article

  • mysql with DRBD on rackspace

    - by Richard Castle
    I am trying to set up a failover secondary MySQL server that is a mirror of my primary MySQL server using DRBD. The problem is that I am on a rackspace cloud server and I need a second partition on both the primary and secondary servers that I will replicate with DRBD. Rackspace does not allow me to create a second partition. I am left with the default single partition. How can I mirror using DRBD?

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • Term for releasing software with time dependant portions still unfinished.

    - by Jeremy French
    I remember a while a go on a SO podcast Jeff was talking about the bounty system and he said that they released the bounty offering code before the bounty awarding code was written as the code would not be needed for a couple of weeks. Is there a standard term for this? Agile can work in this way but it doesn’t have to. I am thinking of suggesting it to a client for something and would like to use the correct terminology along with any information backing it up as a method. Essentially the method is to release code with some functionality incomplete as the time until the incomplete functionality is needed is less that the time it will take to develop.

    Read the article

  • Obtaining FontMetrics before getting a Graphics instance

    - by Tom Castle
    Typically, I'd obtain a graphics instance something like this: BufferedImage img = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB); Graphics2D g = img.createGraphics(); However, in the current project I'm working on, the width and height variables above are dependent upon the size of a number of text fragments that will later be drawn onto the graphics instance. But, to obtain the dimensions of the font being used I would usually use the FontMetrics that I get from the graphics object. FontMetrics metrics = g.getFontMetrics(); So, I have a nasty little dependency cycle. I cannot create the graphics object until I know the size of the text, and I cannot know the size of the text until I have a graphics object. One solution is just to create another BufferedImage/Graphics pair first in order to get the FontMetrics instance I need, but this seems unnecessary. So, is there a nicer way? Or is it the case that the width, height etc. properties for a Font are somehow dependent upon what (graphics, component...) the text is to be drawn on?

    Read the article

  • Parsing XML with Ruby and Nokogiri

    - by Chip Castle
    I have the following XML structure: <charsets> <charset> <name>ANSI_X3.4-1968</name> <aliases> <alias>iso-ir-6</alias> <alias>ANSI_X3.4-1986</alias> <alias>ISO_646.irv:1991</alias> <alias>ASCII</alias> <alias>ISO646-US</alias> <alias>US-ASCII</alias> <alias>us</alias> <alias>IBM367</alias> <alias>cp367</alias> <alias>csASCII</alias> </aliases> </charset> <charset> <name>ISO-10646-UTF-1</name> <aliases> <alias>csISO10646UTF1</alias> </aliases> </charset> </charsets> I can grab the text contents of the the name nodes using Ruby and Nokogiri using: require 'nokogiri' require 'open-uri' doc = Nokogiri::XML(File.open("StandardCharsets.xml")) @charsets = doc.css("charsets name").map {|node| node.children.text } But, what I want is the text contents of all name and alias nodes in the order as they are shown in the source document. Everything I try fails. Does anyone have a good example of how to do this?

    Read the article

  • How to set connection string dynamically in NHibernate

    - by jcreddy
    Hi I want assign connection string for NHibernate using following code and getting exception (bold). log4net.Config.DOMConfigurator.Configure(); Configuration config = new Configuration(); IDictionary props = new Hashtable(); props["hibernate.connection.provider"] = "NHibernate.Connection.DriverConnectionProvider"; props["hibernate.dialect"] = "NHibernate.Dialect.MsSql2000Dialect"; props["hibernate.connection.driver_class"] = "NHibernate.Driver.SqlClientDriver"; props["hibernate.connection.connection_string"] = @"Integrated Security=SSPI;Persist Security Info=False;Initial Catalog=Sample;Data Source=HYDHTC92318D\SQLEXPRESS"; props["hibernate.connection.current_session_context_class"] = "web"; props["hibernate.connection.show_sql"] = "true"; props["hibernate.connection.proxyfactoryfactory.factory_class"] = "NHibernate.ByteCode.Castle.ProxyFactoryFactory, NHibernate.ByteCode.Castle"; foreach (DictionaryEntry de in props) { config.SetProperty(de.Key.ToString(), de.Value.ToString()); } config.AddAssembly("nhibernator"); factory = config.BuildSessionFactory(); session = factory.OpenSession(); The ProxyFactoryFactory was not configured. Initialize 'proxyfactory.factory_class' property of the session-factory configuration section with one of the available NHibernate.ByteCode providers. Example: NHibernate.ByteCode.LinFu.ProxyFactoryFactory, NHibernate.ByteCode.LinFu Example: NHibernate.ByteCode.Castle.ProxyFactoryFactory, NHibernate.ByteCode.Castle Please let me know the solution. Regards JCReddy

    Read the article

  • Where to find clients?

    - by Zenph
    My main area: web development. Of course, I don't expect anybody give away their 'gold mine' or whatever but I am struggling to see where I should be advertising my services. I have one other developer I work with and we have a lot of happy clients - on freelance websites. Thing is, freelance websites just seem to suck the life out of you when you're being out-bidded by ridiculous rates. I want to attract customers who are more concerned about quality and accountability than price. Any suggestions at all? I'm so lost with this. EDIT: Added bounty of 200 - all of my 'reputation'. EDIT: Added second bounty of 50 I did hear of a novel idea. Do work for an opensource project and get featured in their 'trusted developers' section, if they have one. Input?

    Read the article

  • Using Fluent NHibernate in commercial application

    - by Paja
    I want to use Fluent NHibernate in commercial desktop application, and I'm little concerned about the licensing. I've downloaded Fluent NHibernate precompiled binaries, and it contains this list of files: Antlr3.Runtime.dll Castle.Core.dll Castle.DynamicProxy2.dll FluentNHibernate.dll Iesi.Collections.dll log4net.dll NHibernate.dll NHibernate.ByteCode.Castle.dll I guess I will have to add all of these files to my Inno Setup script, which will install them on user's computer. But what should I do to comply to all of the licenses associated with each file? I'm sure I'm not the first who wants to use Fluent NHibernate in commercial application, so I hope I won't have to study each of the licenses. I'm not a lawyer.

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >