Search Results

Search found 21008 results on 841 pages for 'chuzein part ii'.

Page 10/841 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • Google Python Class Day 2 Part 1

    Google Python Class Day 2 Part 1 Google Python Class Day 2 Part 1: Regular Expressions. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 18 0 ratings Time: 42:00 More in Science & Technology

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 3: ADFS Setup

    - by Your DisplayName here!
    In part 1 of this series I briefly gave an overview of the ADFS / WS-Trust infrastructure. In part 2 we created a basic WCF service that uses ADFS for authentication. This part will walk you through the steps to register the service in ADFS 2. I could provide screenshots for all the wizard pages here – but since this is really easy – I just go through the necessary steps in textual form. Step 1 – Select Data Source Here you can decide if you want to import a federation metadata file that describes the service you want to register. In that case all necessary information is inside the metadata document and you are done. FedUtil (a tool that ships with WIF) can generate such metadata for the most simple cases. Another tool to create metadata can be found here. We choose ‘Manual’ here. Step 2 – Specify Display Name I guess that’s self explaining. Step 3 – Choose Profile Choose ‘ADFS 2 Profile’ here. Step 4 – Configure Certificate Remember that we specified a certificate (or rather a private key) to be used to decrypting incoming tokens in the previous post. Here you specify the corresponding public key that ADFS 2 should use for encrypting the token. Step 5 – Configure URL This page is used to configure WS-Federation and SAML 2.0p support. Since we are using WS-Trust you can leave both boxes unchecked. Step 6 – Configure Identifier Here you specify the identifier (aka the realm, aka the appliesTo) that will be used to request tokens for the service. This value will be used in the token request and is used by ADFS 2 to make a connection to the relying party configuration and claim rules. Step 7 – Configure Issuance Authorization Rules Here you can configure who is allowed to request token for the service. I won’t go into details here how these rules exactly work – that’s for a separate blog post. For now simply use the “Permit all users” option. OK – that’s it. The service is now registered at ADFS 2. In the next part we will finally look at the service client. Stay tuned…

    Read the article

  • Part 4, Getting the conversion tables ready for CS to DNN

    - by Chris Hammond
    This is the fourth post in a series of blog posts about converting from CommunityServer to DotNetNuke. A brief background: I had a number of websites running on CommunityServer 2.1, I decided it was finally time to ditch CommunityServer due to the change in their licensing model and pricing that made it not good for the small guy. This series of blog posts is about how to convert your CommunityServer based sites to DotNetNuke . Previous Posts: Part 1: An Introduction Part 2: DotNetNuke Installation...(read more)

    Read the article

  • Google Python Class Day 1 Part 3

    Google Python Class Day 1 Part 3 Google Python Class Day 1 Part 3: Dicts and Files. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 7 0 ratings Time: 28:59 More in Science & Technology

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service

    - by Elton Stoneman
    We're in the process of delivering an enabling project to expose on-premise WCF services securely to Internet consumers. The Azure Service Bus Relay is doing the clever stuff, we register our on-premise service with Azure, consumers call into our .servicebus.windows.net namespace, and their requests are relayed and serviced on-premise. In theory it's all wonderfully simple; by using the relay we get lots of protocol options, free HTTPS and load balancing, and by integrating to ACS we get plenty of security options. Part of our delivery is a suite of sample consumers for the service - .NET, jQuery, PHP - and this set of posts will cover setting up the service and the consumers. Part 1: Exposing the on-premise service In theory, this is ultra-straightforward. In practice, and on a dev laptop it is - but in a corporate network with firewalls and proxies, it isn't, so we'll walkthrough some of the pitfalls. Note that I'm using the "old" Azure portal which will soon be out of date, but the new shiny portal should have the same steps available and be easier to use. We start with a simple WCF service which takes a string as input, reverses the string and returns it. The Part 1 version of the code is on GitHub here: on GitHub here: IPASBR Part 1. Configuring Azure Service Bus Start by logging into the Azure portal and registering a Service Bus namespace which will be our endpoint in the cloud. Give it a globally unique name, set it up somewhere near you (if you’re in Europe, remember Europe (North) is Ireland, and Europe (West) is the Netherlands), and  enable ACS integration by ticking "Access Control" as a service: Authenticating and authorizing to ACS When we try to register our on-premise service as a listener for the Service Bus endpoint, we need to supply credentials, which means only trusted service providers can act as listeners. We can use the default "owner" credentials, but that has admin permissions so a dedicated service account is better (Neil Mackenzie has a good post On Not Using owner with the Azure AppFabric Service Bus with lots of permission details). Click on "Access Control Service" for the namespace, navigate to Service Identities and add a new one. Give the new account a sensible name and description: Let ACS generate a symmetric key for you (this will be the shared secret we use in the on-premise service to authenticate as a listener), but be sure to set the expiration date to something usable. The portal defaults to expiring new identities after 1 year - but when your year is up *your identity will expire without warning* and everything will stop working. In production, you'll need governance to manage identity expiration and a process to make sure you renew identities and roll new keys regularly. The new service identity needs to be authorized to listen on the service bus endpoint. This is done through claim mapping in ACS - we'll set up a rule that says if the nameidentifier in the input claims has the value serviceProvider, in the output we'll have an action claim with the value Listen. In the ACS portal you'll see that there is already a Relying Party Application set up for ServiceBus, which has a Default rule group. Edit the rule group and click Add to add this new rule: The values to use are: Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: serviceProvider Output claim type: net.windows.servicebus.action Output claim value: Listen When your service namespace and identity are set up, open the Part 1 solution and put your own namespace, service identity name and secret key into the file AzureConnectionDetails.xml in Solution Items, e.g: <azure namespace="sixeyed-ipasbr">    <!-- ACS credentials for the listening service (Part1):-->   <service identityName="serviceProvider"            symmetricKey="nuR2tHhlrTCqf4YwjT2RA2BZ/+xa23euaRJNLh1a/V4="/>  </azure> Build the solution, and the T4 template will generate the Web.config for the service project with your Azure details in the transportClientEndpointBehavior:           <behavior name="SharedSecret">             <transportClientEndpointBehavior credentialType="SharedSecret">               <clientCredentials>                 <sharedSecret issuerName="serviceProvider"                               issuerSecret="nuR2tHhlrTCqf4YwjT2RA2BZ/+xa23euaRJNLh1a/V4="/>               </clientCredentials>             </transportClientEndpointBehavior>           </behavior> , and your service namespace in the Azure endpoint:         <!-- Azure Service Bus endpoints -->          <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                   binding="netTcpRelayBinding"                   contract="Sixeyed.Ipasbr.Services.IFormatService"                   behaviorConfiguration="SharedSecret">         </endpoint> The sample project is hosted in IIS, but it won't register with Azure until the service is activated. Typically you'd install AppFabric 1.1 for Widnows Server and set the service to auto-start in IIS, but for dev just navigate to the local REST URL, which will activate the service and register it with Azure. Testing the service locally As well as an Azure endpoint, the service has a WebHttpBinding for local REST access:         <!-- local REST endpoint for internal use -->         <endpoint address="rest"                   binding="webHttpBinding"                   behaviorConfiguration="RESTBehavior"                   contract="Sixeyed.Ipasbr.Services.IFormatService" /> Build the service, then navigate to: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/reverse?string=abc123 - and you should see the reversed string response: If your network allows it, you'll get the expected response as before, but in the background your service will also be listening in the cloud. Good stuff! Who needs network security? Onto the next post for consuming the service with the netTcpRelayBinding.  Setting up network access to Azure But, if you get an error, it's because your network is secured and it's doing something to stop the relay working. The Service Bus relay bindings try to use direct TCP connections to Azure, so if ports 9350-9354 are available *outbound*, then the relay will run through them. If not, the binding steps down to standard HTTP, and issues a CONNECT across port 443 or 80 to set up a tunnel for the relay. If your network security guys are doing their job, the first option will be blocked by the firewall, and the second option will be blocked by the proxy, so you'll get this error: System.ServiceModel.CommunicationException: Unable to reach sixeyed-ipasbr.servicebus.windows.net via TCP (9351, 9352) or HTTP (80, 443) - and that will probably be the start of lots of discussions. Network guys don't really like giving servers special permissions for the web proxy, and they really don't like opening ports, so they'll need to be convinced about this. The resolution in our case was to put up a dedicated box in a DMZ, tinker with the firewall and the proxy until we got a relay connection working, then run some traffic which the the network guys monitored to do a security assessment afterwards. Along the way we hit a few more issues, diagnosed mainly with Fiddler and Wireshark: System.Net.ProtocolViolationException: Chunked encoding upload is not supported on the HTTP/1.0 protocol - this means the TCP ports are not available, so Azure tries to relay messaging traffic across HTTP. The service can access the endpoint, but the proxy is downgrading traffic to HTTP 1.0, which does not support tunneling, so Azure can’t make its connection. We were using the Squid proxy, version 2.6. The Squid project is incrementally adding HTTP 1.1 support, but there's no definitive list of what's supported in what version (here are some hints). System.ServiceModel.Security.SecurityNegotiationException: The X.509 certificate CN=servicebus.windows.net chain building failed. The certificate that was used has a trust chain that cannot be verified. Replace the certificate or change the certificateValidationMode. The evocation function was unable to check revocation because the revocation server was offline. - by this point we'd given up on the HTTP proxy and opened the TCP ports. We got this error when the relay binding does it's authentication hop to ACS. The messaging traffic is TCP, but the control traffic still goes over HTTP, and as part of the ACS authentication the process checks with a revocation server to see if Microsoft’s ACS cert is still valid, so the proxy still needs some clearance. The service account (the IIS app pool identity) needs access to: www.public-trust.com mscrl.microsoft.com We still got this error periodically with different accounts running the app pool. We fixed that by ensuring the machine-wide proxy settings are set up, so every account uses the correct proxy: netsh winhttp set proxy proxy-server="http://proxy.x.y.z" - and you might need to run this to clear out your credential cache: certutil -urlcache * delete If your network guys end up grudgingly opening ports, they can restrict connections to the IP address range for your chosen Azure datacentre, which might make them happier - see Windows Azure Datacenter IP Ranges. After all that you've hopefully got an on-premise service listening in the cloud, which you can consume from pretty much any technology.

    Read the article

  • Google Python Class Day 2 Part 2

    Google Python Class Day 2 Part 2 Google Python Class Day 2 Part 2: Utilities: OS and Commands. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 11 1 ratings Time: 20:20 More in Science & Technology

    Read the article

  • Google Python Class Day 1 Part 1

    Google Python Class Day 1 Part 1 Google Python Class Day 1 Part 1: Introduction and Strings. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 137 1 ratings Time: 51:37 More in Science & Technology

    Read the article

  • Bin packing part 6: Further improvements

    - by Hugo Kornelis
    In part 5 of my series on the bin packing problem, I presented a method that sits somewhere in between the true row-by-row iterative characteristics of the first three parts and the truly set-based approach of the fourth part. I did use iteration, but each pass through the loop would use a set-based statement to process a lot of rows at once. Since that statement is fairly complex, I am sure that a single execution of it is far from cheap – but the algorithm used is efficient enough that the entire...(read more)

    Read the article

  • Google Python Class Day 1 Part 2

    Google Python Class Day 1 Part 2 Google Python Class Day 1 Part 2: Lists, Sorting, and Tuples. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 13 0 ratings Time: 35:12 More in Science & Technology

    Read the article

  • Google Chrome Extensions: Launch Event (part 1)

    Google Chrome Extensions: Launch Event (part 1) Video Footage from the Google Chrome Extensions launch event on 12/09/09. In this part, Brian Rakowski, product management director, provides an update on Google Chrome and explains why extensions are important for the Google Chrome team. From: GoogleDevelopers Views: 5167 17 ratings Time: 04:39 More in Science & Technology

    Read the article

  • Google Python Class Day 2 Part 3

    Google Python Class Day 2 Part 3 Google Python Class Day 2 Part 3: Utilities: urls and HTTP, Exceptions. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 29 1 ratings Time: 25:51 More in Science & Technology

    Read the article

  • Google Python Class Day 2 Part 4

    Google Python Class Day 2 Part 4 Google Python Class Day 1 Part 1: Closing Thoughts. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 129 1 ratings Time: 11:16 More in Science & Technology

    Read the article

  • To SYNC or not to SYNC – Part 3

    - by AshishRay
    I can't believe it has been almost a year since my last blog post. I know, that's an absolute no-no in the blogosphere. And I know that "I have been busy" is not a good excuse. So - without trying to come up with an excuse - let me state this - my apologies for taking such a long time to write the next Part. Without further ado, here goes. This is Part 3 of a multi-part blog article where we are discussing various aspects of setting up Data Guard synchronous redo transport (SYNC). In Part 1 of this article, I debunked the myth that Data Guard SYNC is similar to a two-phase commit operation. In Part 2, I discussed the various ways that network latency may or may not impact a Data Guard SYNC configuration. In this article, I will talk in details regarding why Data Guard SYNC is a good thing. I will also talk about distance implications for setting up such a configuration. So, Why Good? Why is Data Guard SYNC a good thing? Because, at the end of the day, this gives you the assurance of zero data loss - it doesn’t matter what outage may befall your primary system. Befall! Boy, that sounds theatrical. But seriously - think about this - it minimizes your data risks. That’s a big deal. Whether you have an outage due to bad disks, faulty hardware components, hardware / software bugs, physical data corruptions, power failures, lightning that takes out significant part of your data center, fire that melts your assets, water leakage from the cooling system, human errors such as accidental deletion of online redo log files - it doesn’t matter - you can have that “Om - peace” look on your face and then you can failover to the standby system, without losing a single bit of data in your Oracle database. You will be a hero, as shown in this not so imaginary conversation: IT Manager: Well, what’s the status? You: John is doing the trace analysis on the storage array. IT Manager: So? How long is that gonna take? You: Well, he is stuck, waiting for a response from <insert your not-so-favorite storage vendor here>. IT Manager: So, no root cause yet? You: I told you, he is stuck. We have escalated with their Support, but you know how long these things take. IT Manager: Darn it - the site is down! You: Not really … IT Manager: What do you mean? You: John is stuck, but Sreeni has already done a failover to the Data Guard standby. IT Manager: Whoa, whoa - wait! Failover means we lost some data, why did you do this without letting the Business group know? You: We didn’t lose any data. Remember, we had set up Data Guard with SYNC? So now, any problems on the production – we just failover. No data loss, and we are up and running in minutes. The Business guys don’t need to know. IT Manager: Wow! Are we great or what!! You: I guess … Ok, so you get it - SYNC is good. But as my dear friend Larry Carpenter says, “TANSTAAFL”, or "There ain't no such thing as a free lunch". Yes, of course - investing in Data Guard SYNC means that you have to invest in a low-latency network, you have to monitor your applications and database especially in peak load conditions, and you cannot under-provision your standby systems. But all these are good and necessary things, if you are supporting mission-critical apps that are supposed to be running 24x7. The peace of mind that this investment will give you is priceless, especially if you are serious about HA. How Far Can We Go? Someone may say at this point - well, I can’t use Data Guard SYNC over my coast-to-coast deployment. Most likely - true. So how far can you go? Well, we have customers who have deployed Data Guard SYNC over 300+ miles! Does this mean that you can also deploy over similar distances? Duh - no! I am going to say something here that most IT managers don’t like to hear - “It depends!” It depends on your application design, application response time / throughput requirements, network topology, etc. However, because of the optimal way we do SYNC, customers have been able to stretch Data Guard SYNC deployments over longer distances compared to traditional, storage-centric ways of doing this. The MAA Database 10.2 best practices paper Data Guard Redo Transport & Network Configuration, and Oracle Database 11.2 High Availability Best Practices Manual talk about some of these SYNC-related metrics. For example, a test deployment of Data Guard SYNC over 330 miles with 10ms latency showed an impact less than 5% for a busy OLTP application. Even if you can’t deploy Data Guard SYNC over your WAN distance, or if you already have an ASYNC standby located 1000-s of miles away, here’s another nifty way to boost your HA. Have a local standby, configured SYNC. How local is “local”? Again - it depends. One customer runs a local SYNC standby across the campus. Another customer runs it across 15 miles in another data center. Both of these customers are running Data Guard SYNC as their HA standard. If a localized outage affects their primary system, no problem! They have all the data available on the standby, to which they can failover. Very fast. In seconds. Wait - did I say “seconds”? Yes, Virginia, there is a Santa Claus. But you have to wait till the next blog article to find out more. I assure you tho’ that this time you won’t have to wait for another year for this.

    Read the article

  • OTN Article: The Enterprise Side of JavaFX (part 1 of 2)

    - by terrencebarr
    OTN just published part 1 of a series by Adam Bien on “The Enterprise Side of JavaFX”. In this article, learn how to use LightView to convert REST services into a bindable set of properties, using JavaFX, Glassfish, LightFish, and Maven. Sample code included. Part 2 will discuss the integration of a JavaServer Faces 2 UI with WebView. Cheers, – Terrence Filed under: Mobile & Embedded Tagged: glassfish, JavaFX

    Read the article

  • Repeat a part of spritesheet as background

    - by Moiblpadde
    So I'm trying to repeat a part of my spritesheet as a background (js, canvas). My code so far: var canvas = $("#board")[0], ctx = canvas.getContext("2d"), sprite = new Image(); sprite.src = "spritesheet.png"; sprite.onload = function(){ ctx.fillStyle = ctx.createPattern(spriteBg, "repeat"); ctx.fillRect(0, 25, 500, 500); } This is fine, but as you can see, it repeat the whole sprite, not just a part of it, and I just can't figure out how to do it D:

    Read the article

  • Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 4)

    - by hinkmond
    And now here's the Java code that you'll need to read your ghost sensor on your Raspberry Pi The general idea is that you are using Java code to access the GPIO pin on your Raspberry Pi where the ghost sensor (JFET trasistor) detects minute changes in the electromagnetic field near the Raspberry Pi and will change the GPIO pin to high (+3 volts) when something is detected, otherwise there is no value (ground). Here's that Java code: try { /*** Init GPIO port(s) for input ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); for (String gpioChannel : GpioChannels) { System.out.println(gpioChannel); // Reset the port File exportFileCheck = new File("/sys/class/gpio/gpio"+gpioChannel); if (exportFileCheck.exists()) { unexportFile.write(gpioChannel); unexportFile.flush(); } // Set the port for use exportFile.write(gpioChannel); exportFile.flush(); // Open file handle to input/output direction control of port FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio" + gpioChannel + "/direction"); // Set port for input directionFile.write(GPIO_IN); } /*** Read data from each GPIO port ***/ RandomAccessFile[] raf = new RandomAccessFile[GpioChannels.length]; int sleepPeriod = 10; final int MAXBUF = 256; byte[] inBytes = new byte[MAXBUF]; String inLine; int zeroCounter = 0; // Get current timestamp with Calendar() Calendar cal; DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss.SSS"); String dateStr; // Open RandomAccessFile handle to each GPIO port for (int channum=0; channum And, then we just load up our Java SE Embedded app, place each Raspberry Pi with a ghost sensor attached in strategic locations around our Santa Clara office (which apparently is very haunted by ghosts from the Agnews Insane Asylum 1906 earthquake), and watch our analytics for any ghosts. Easy peazy. See the previous posts for the full series on the steps to this cool demo: Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 1) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 2) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 3) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 4) Hinkmond

    Read the article

  • Microsoft Azure Storage Queues Part 1: Getting Started

    Microsoft Azure Queues are a ready-to-use service that loosely connects components or applications through the cloud. This article is the first part in a five-part series about Microsoft Azure Cloud Services by Roman Schacherl. "A real time saver" Andy Doyle, Head of IT ServicesAndy and his team saved time by automating backup and restores with SQL Backup Pro. Find out how much time you could save. Download a free trial now.

    Read the article

  • Multi-Part Map Troubleshooting

    - by Michael Stephenson
    Scenario I came across a nice little one with multi-part maps the other day. I had an orchestration where I needed to combine 4 input messages into one output message like in the below table:   Input Messages Output Messages Company Details Member Details Event Message Member Search Member Import   I thought my orchestration was working fine but for some reason when I was trying to send my message it had no content under the root node like below <ns0:ImportMemberChange xmlns:ns0="http://---------------/"></ns0:ImportMemberChange>   My map is displayed in the below picture. I knew that the member search message may not have any elements under it but its root element would always exist. The rest of the messages were expected to be fully populated. I tried a number of different things and testing my map outside of the orchestration it always worked fine. The Eureka Moment The eureka moment came when I was looking at the xslt produced by the map. Even though I'd tried swapping the order of the messages in the input of the map you can see in the below picture that the first part of the processing of the message (with the red circle around it) is doing a for-each over the GetCompanyDetailsResult element within the GetCompanyDetailsResponse message. This is because the processing is driven by the output message format and the first element to output is the OrganisationID which comes from the GetCompanyDetailsResponse message. At this point I could focus my attention on this message as the xslt shows that if this xpath statement doesn’t return the an element from the GetCompanyDetailsResponse message then the whole body of the output message will not be produced and the output from the map would look like the message I was getting. <ns0:ImportMemberChange xmlns:ns0="http://---------------/"></ns0:ImportMemberChange> I was quickly able to prove this in my map test which proved this was a likely candidate for the problem. I revisited the orchestration focusing on the creation of the GetCompanyDetailsResponse message and there was actually a bug in the orchestration which resulted in the message being incorrectly created, once this was fixed everything worked as expected. Conclusion Originally I thought it was a problem with the map itself, and looking online there wasn’t really much in the way of content around troubleshooting for multi-part map problems so I thought I'd write this up. I guess technically it isn't a multi-part map problem, but I spend a good couple of hours the other day thinking it was.

    Read the article

  • Google Chrome Extensions: Launch Event (part 1)

    Google Chrome Extensions: Launch Event (part 1) Video Footage from the Google Chrome Extensions launch event on 12/09/09. In this part, Brian Rakowski, product management director, provides an update on Google Chrome and explains why extensions are important for the Google Chrome team. From: GoogleDevelopers Views: 5175 17 ratings Time: 04:39 More in Science & Technology

    Read the article

  • Why is my machine unable to mount my SMB drives ("CIFS VFS: Error connecting to socket. Aborting operation", return code -115)?

    - by downbeat
    I have a machine running Precise (12.04 x64), and I cannot mount my SMB drives (I have 3, we'll call them public, private and download). It used to work (a week or two ago) and I didn't touch fstab! The machine hosting the shares is a commercial NAS, and I'm not seeing anything that would indicate it's an issue with the NAS. I have an older machine which I updated to Precise at the same time (both fresh installed, not dist-upgrade), so should have a very similar configuration. It is not having any problems. I am not having problems on windows machines/partitions either, only one of my Precise machines. The two machines are using identical entries in fstab and identical /etc/samba/smb.conf files. I don't think I've ever changed smb.conf (has never mattered before). My fstab entries all basically look like this: //10.1.1.111/public /media/public cifs credentials=/home/downbeat/.credentials,iocharset=utf8,uid=downbeat,gid=downbeat,file_mode=0644,dir_mode=0755 0 0 Here's the dmesg output on boot: [ 51.162198] CIFS VFS: Error connecting to socket. Aborting operation [ 51.162369] CIFS VFS: cifs_mount failed w/return code = -115 [ 51.194106] CIFS VFS: Error connecting to socket. Aborting operation [ 51.194250] CIFS VFS: cifs_mount failed w/return code = -115 [ 51.198120] CIFS VFS: Error connecting to socket. Aborting operation [ 51.198243] CIFS VFS: cifs_mount failed w/return code = -115 There are no other errors I see in the dmesg output. Originally when I ran 'testparm -s', the output contained these lines ERROR: lock directory /var/run/samba does not exist ERROR: pid directory /var/run/samba does not exist Here's the samba related programs I have installed: $ dpkg --list|grep -i samba ii libpam-winbind 2:3.6.3-2ubuntu2.3 Samba nameservice and authentication integration plugins ii libwbclient0 2:3.6.3-2ubuntu2.3 Samba winbind client library ii nautilus-share 0.7.3-1ubuntu2 Nautilus extension to share folder using Samba ii python-smbc 1.0.13-0ubuntu1 Python bindings for Samba clients (libsmbclient) ii samba-common 2:3.6.3-2ubuntu2.3 common files used by both the Samba server and client ii samba-common-bin 2:3.6.3-2ubuntu2.3 common files used by both the Samba server and client ii winbind 2:3.6.3-2ubuntu2.3 Samba nameservice integration server $ dpkg --list|grep -i smb ii dmidecode 2.11-4 SMBIOS/DMI table decoder ii libsmbclient 2:3.6.3-2ubuntu2.3 shared library for communication with SMB/CIFS servers ii python-smbc 1.0.13-0ubuntu1 Python bindings for Samba clients (libsmbclient) ii smbclient 2:3.6.3-2ubuntu2.3 command-line SMB/CIFS clients for Unix ii smbfs 2:5.1-1ubuntu1 Common Internet File System utilities - compatibility package $ dpkg --list|grep -i cifs ii cifs-utils 2:5.1-1ubuntu1 Common Internet File System utilities ii libsmbclient 2:3.6.3-2ubuntu2.3 shared library for communication with SMB/CIFS servers ii smbclient 2:3.6.3-2ubuntu2.3 command-line SMB/CIFS clients for Unix I originally noticed that my other machine had "libpam-winbind" and "nautilus-share" installed and the machine with the issue did not. Installing those two packages solved my errors with 'testparm -s', but did not fix my issue. Finally, I tried to purge and reinstall these packages smbclient smbfs cifs-utils samba-common samba-common-bin Still no luck. Again, it used to work; now it doesn't. Very similarly configured machine works (but some packages are out of date on the working machine). The NAS has only one interface/IP address, nmblookup works to find it's IP from it's hostname (from the machine with the issue) and it responds to a ping. Please any help would be great. I've been searching on AskUbuntu, SuperUser, ubuntuforums and plain old search engines for a week now and it's driving me crazy!

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >