Search Results

Search found 25946 results on 1038 pages for 'cost based optimizer'.

Page 10/1038 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • Java and .NET cost of use [on hold]

    - by 1110
    I work with .NET technology stack for about 4 years. I am learning and enjoy working with ASP MVC framework and I never did anything serious in other languages. This is not the question like what is better (I read all similar questions). What interest me is the cost of switching. For example: If you are about to start a start-up company today and you are in my situation not too much money, some good idea that you think others will use and have a knowledge of .NET. In my head I have a few questions that I can't answer and I know that somebody with experience can: 1) Java & .NET hosting. Suppose shared hosting is not good enough anymore, your site has grown and you need more resources. How much Java services is cheaper compared to .NET? 2) I didn't follow hype about ORACLE will kill java long time. Does oracle show interest in investing in java. I mean is is safe to bet on java as a technology when starting start-up (basically did oracle show some will to destroy java platform)? 3) I am not sure what I am asking here. When you use Java you can use JEEE stack or Java with third party stack (spring, hibernate, maven etc.). I saw a lot of project that work with second option if web application is not enterprise level but social networking site for example which stack is best pick? Summary of this question is is it safe to jump in to Java learn it and build product based on it. It's not too hard for me to learn it. But how much can I get from it.

    Read the article

  • How can I use multiple meshes per entity without breaking one component of a single type per entity?

    - by Mathias Hölzl
    We are just switching from a hierarchy based game engine to a component based game engine. My problem is that when I load a model which has has a hierarchy of meshes and the way I understand is that a entity in a component based system can not have multiple components of the same type, but I need a "meshComponent" for each mesh in a model. So how could I solve this problem. On this side they implemented a Component based game engine: http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

    Read the article

  • Best method to do A B testing across to subdomains

    - by Lior
    I want to do an A B test of an entire site for a new design and UX with only slight changes in content (a big brand site that has good Google rankings for many generic keywords. My idea of implementation is doing a 302 redirect to the new version (placing it on www1 subdomain) and allowing only user agents of known browsers to pass. The test version will have disallow all in the robots text. Will Google treat this favorably or do I have to use Google Website Optimizer (which will give me tracking headaches)?

    Read the article

  • Will multivariate (A/B) testing applied with 302 redirects to a subdomain affect my Google ranking?

    - by Lior
    I want to do an A B test of an entire site for a new design and UX with only slight changes in content (a big brand site that has good Google rankings for many generic keywords. My idea of implementation is doing a 302 redirect to the new version (placing it on www1 subdomain) and allowing only user agents of known browsers to pass. The test version will have disallow all in the robots text. Will Google treat this favorably or do I have to use Google Website Optimizer (which will give me tracking headaches)?

    Read the article

  • Oracle OpenWorld 2011 Call For Papers

    - by Maria Colgan
    The Oracle OpenWorld 2011 call for papers is now open. Oracle customers and partners are encouraged to submit proposals to present at this year's Oracle OpenWorld conference, which will be held October 2-6, 2011 at the Moscone Center in San Francisco. Details and submission guidelines are available on the Oracle OpenWorld Call for Papers web site. The deadline for submissions is Sunday, March 27 2011 at 11:59 pm PDT. We look forward to checking out your sessions on the Optimizer, SQL Plan Management, and statistics!

    Read the article

  • Help for choosing a cost effective game server for Flash client

    - by Sapots Thomas
    I am developing a flash-based game primarily for desktops, to be hosted on facebook platform (like cityville, sims social etc). The gameplay doesn't involve real-time communication between players unlike an mmorpg. Here each player plays in his own world without any knowledge of other online players. I've written almost 95% of the game logic in actionscript on the client side. I used Smartfox Server pro on the server side (mostly used for getting data from the DB) and the entire server code is an extension written in java. I'm using json as the protocol for communication. Although I love smartfox server, as an indie, its tough for me to afford the unlimited users license. Morever its limited just to one machine. So I'm looking for an alternative to smartfox server now. The reason for choosing smartfox server earlier was to use the server properties supported by it. Server properties on smartfox server take advantage of the socket connection and are essentially server side objects in java which store some data for the player which he can change frequently during the game. And when he logs out of the game, the extension can write out the final state in the DB (I'm using MySQL). This significantly reduces the number of DB UPDATE/INSERT calls made during the game. I love the way this works since the data is secure as its on the server side and smartfox server is known to be scalable. (although I'm not sure whether this approach is used widely by gaming industry or not, since this is not an mmorpg, I'm putting all player in the lobby). So my question is whether any of the free and community supported servers like reddwarf, firebase, BlazeDS etc can provide a similar architecture so that I can use server properties without many code changes? EDIT : I am not insisting on the exact same feature (thats asking too much!), but atleast a viable messaging system on the server so that I can send actionscript objects from the client using json/binary so that its fast. OR maybe some completely different way to implement what I need here. Thanks in advance.

    Read the article

  • High-Powered Sites for low Cost

    - by HighAltitudeCoder
    Ahh, I am experiencing the intimidation of my very first post - visible by the whole world. Ok, here goes.   This first post is nothing exceptional.  It is simply a recommendation based (fittingly, I suppose) upon the job search you may be gearing up for.  I find myself in this very situation right now.  And, I will take my own recommendation after posting this entry. Job-Seekers: To the left you will notice two links under "Recommended Learning".  I have found these links to be invaluable when it comes to re-tooling, re-familiarizing, or otherwise resharping my skills when looking for that next job. Often, you will find job-postings with the text, usually posted after a laborious list of qualifications indicating the company's desire to hire candidates who know what they are doing: "...Looking for a candidate who can hit the ground running...".  The interesting thing about this post to me is I've encountered many individuals who, after speaking and working with them for some time, I've realized are perfectly capable of hitting the ground running - and FAST.  But what if they speed off in the wrong direction? The next time you spearhead a major task in your job, ask yourself: Am I headed in the wrong direction?  There are many ways to do this.  In fact, I've found in this new field there are more tempting ways to steer your project in the wrong direction than there are good ones.  I don't want to suggest that every one of my posts will fall into the "right direction" category, however I do think a healthy dose of introspection of the pros and cons will always be beneficial before you set off. That said, allow me to expound on the previously mentioned links. These web sites are invaluable.  They demonstrate the capabilities of existing as well as new and upcoming tools available in several IDE's.  I've viewed many tutorials in LearnVisualStudio.NET, and only one or two so far in TrainingSpot, however I've been delighted in their simplicity and straightforward approach to proper usage of the particular tool or concept being discussed.  They have not (so far in my experience) demonstrated ways in which to use the tools that become cumbersome, impractical, or error-prone. Each website has step-by-step videos that can be paused, replayed, and most importantly, they are done in real time.  As the author is typing, the viewer gets to experience the coding experience from a first-person perspective, including syntax errors, unexpected behaviors, IDE setup idiosyncracies, everything.  A subtle value I've gained from these videos is that a certain degree of confusion and introspection is normal when working with new tools and exploring new paths.  They (as well as your own experience) are not to be feared, but enjoyed.  I highly recommend them. Good work, guys!

    Read the article

  • Gomoku array-based AI-algorithm?

    - by Lasse V. Karlsen
    Way way back (think 20+ years) I encountered a Gomoku game source code in a magazine that I typed in for my computer and had a lot of fun with. The game was difficult to win against, but the core algorithm for the computer AI was really simply and didn't account for a lot of code. I wonder if anyone knows this algorithm and has some links to some source or theory about it. The things I remember was that it basically allocated an array that covered the entire board. Then, whenever I, or it, placed a piece, it would add a number of weights to all locations on the board that the piece would possibly impact. For instance (note that the weights are definitely wrong as I don't remember those): 1 1 1 2 2 2 3 3 3 444 1234X4321 3 3 3 2 2 2 1 1 1 Then it simply scanned the array for an open location with the lowest or highest value. Things I'm fuzzy on: Perhaps it had two arrays, one for me and one for itself and there was a min/max weighting? There might've been more to the algorithm, but at its core it was basically an array and weighted numbers Does this ring a bell with anyone at all? Anyone got anything that would help?

    Read the article

  • agent-based simulation: performance issue: Python vs NetLogo & Repast

    - by max
    I'm replicating a small piece of Sugarscape agent simulation model in Python 3. I found the performance of my code is ~3 times slower than that of NetLogo. Is it likely the problem with my code, or can it be the inherent limitation of Python? Obviously, this is just a fragment of the code, but that's where Python spends two-thirds of the run-time. I hope if I wrote something really inefficient it might show up in this fragment: UP = (0, -1) RIGHT = (1, 0) DOWN = (0, 1) LEFT = (-1, 0) all_directions = [UP, DOWN, RIGHT, LEFT] # point is just a tuple (x, y) def look_around(self): max_sugar_point = self.point max_sugar = self.world.sugar_map[self.point].level min_range = 0 random.shuffle(self.all_directions) for r in range(1, self.vision+1): for d in self.all_directions: p = ((self.point[0] + r * d[0]) % self.world.surface.length, (self.point[1] + r * d[1]) % self.world.surface.height) if self.world.occupied(p): # checks if p is in a lookup table (dict) continue if self.world.sugar_map[p].level > max_sugar: max_sugar = self.world.sugar_map[p].level max_sugar_point = p if max_sugar_point is not self.point: self.move(max_sugar_point) Roughly equivalent code in NetLogo (this fragment does a bit more than the Python function above): ; -- The SugarScape growth and motion procedures. -- to M ; Motion rule (page 25) locals [ps p v d] set ps (patches at-points neighborhood) with [count turtles-here = 0] if (count ps > 0) [ set v psugar-of max-one-of ps [psugar] ; v is max sugar w/in vision set ps ps with [psugar = v] ; ps is legal sites w/ v sugar set d distance min-one-of ps [distance myself] ; d is min dist from me to ps agents set p random-one-of ps with [distance myself = d] ; p is one of the min dist patches if (psugar >= v and includeMyPatch?) [set p patch-here] setxy pxcor-of p pycor-of p ; jump to p set sugar sugar + psugar-of p ; consume its sugar ask p [setpsugar 0] ; .. setting its sugar to 0 ] set sugar sugar - metabolism ; eat sugar (metabolism) set age age + 1 end On my computer, the Python code takes 15.5 sec to run 1000 steps; on the same laptop, the NetLogo simulation running in Java inside the browser finishes 1000 steps in less than 6 sec. EDIT: Just checked Repast, using Java implementation. And it's also about the same as NetLogo at 5.4 sec. Recent comparisons between Java and Python suggest no advantage to Java, so I guess it's just my code that's to blame? EDIT: I understand MASON is supposed to be even faster than Repast, and yet it still runs Java in the end.

    Read the article

  • Custom fine-grained claims based authorization system in ASP.NET MVC - wheres and hows

    - by BuzzBubba
    So, I'd like to implement my own custom authorization system in MVC2. If I'd have to create a global class, where do I instantiate it? Can HttpContext be extended with my own additions and where do I do that? Should I use Authorization filters for rights validation or ActionFilters or do it within an action? Can ActionFilter pass any data to the action itself? Previously (in WebForms) I was using a Session object where I would put a serialized object containing essential user data (account id and a list of roles and rights) and I'd extend my own Page class.

    Read the article

  • SiteMap control based on user roles doesn't works

    - by nCdy
    <siteMapNode roles="*"> <siteMapNode url="~/Default.aspx" title=" Main" description="Main" roles="*"/> <siteMapNode url="~/Items.aspx" title=" Adv" description="Adv" roles="Administrator"/> .... any user can see Adv page. That is a trouble and a qustion : why and how to hide out of role sitenodes. but if I do HttpContext.Current.User.IsInRole("Administrator") it shows me if user in Administrator role or not. web config : <authentication mode="Forms"/> <membership defaultProvider="SqlProvider" userIsOnlineTimeWindow="20"> <providers> <add connectionStringName="FlowWebSQL" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="true" passwordFormat="Hashed" applicationName="/" name="SqlProvider" type="System.Web.Security.SqlMembershipProvider"/> </providers> </membership> <roleManager enabled="true" defaultProvider="SqlProvider"> <providers> <add connectionStringName="FlowWebSQL" name="SqlProvider" type="System.Web.Security.SqlRoleProvider" /> </providers> </roleManager>

    Read the article

  • Document Based Application, preinitialize window (enter serial, buy, trial)

    - by Remizorrr
    I need to create several windows before NSDocument is loaded, or create a window that blocks NSDocument window and top menu. I tried several solutions - but they didn't work right. modal window, one after another. there were some problems with Async URLConnection, and some other problems with my NSDocument content. I created custom MainMenu.xib with no menu, that opens my preinitialize windows. here i found some other problems, when a file(associated with my application) is opened - the Document Window initializes. Here i tried to subclass NSDocumentController, but i found no way to pause the "open document". (i want the document to be opened anyway, but only after the preinitalize windows would be closed). So what is the right way to do this?

    Read the article

  • Guide need to build a JSP based webapplication

    - by Nick
    I want do a web-application that consists of the following pages: Main, Inventory, Shopping, Login, and Report. All will be JSPs and all will be called using the MVC pattern where one of two servlets uses the RequestDispatcher to call the appropriate JSP. This uses server-side forwarding and not redirection. I have ER diagram: http://tinypic.com/r/155oxlt/5 if u can guide I can do it successfully.

    Read the article

  • Centralized Project Management Brings Needed Cost Controls to Growing Brazilian Firm

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Fast growth and a significant increase in business activities were creating project management challenges for CPqD, a developer of innovative information and communication technologies for large Brazilian organizations. To bring greater efficiency and centralized project management capabilities to its operations, CPqD chose Oracle’s Primavera P6 Enterprise Project Portfolio Management. “Oracle Primavera is an essential tool for our day-to-day business, and I notice the effort Oracle makes to constantly innovate and to add more functionality in an increasingly shorter period of time,” says Márcio Alexandre da Silva, IT department project coordinator, CPqD. He explains that before CPqD implemented the Oracle solution, the company did not have a corporate view of projects. “Our project monitoring was decentralized and restricted to each coordinator,” the project coordinator says. “With the Oracle solution, we achieved actual shared management, more control, and budgets that stay within projections.” Among the benefits that CPqD now enjoys are The ability to more effectively identify how employees are allocated, enabling managers to increase or reduce resources based on project scope, as well as secure the resources required for unexpected projects and demands A 75 percent reduction in the time it takes to collect project data and indicators—automated and centralized collection means project coordinators no longer have to manually compile information that was spread among various systems Read the complete CPqD company snapshot Read more in the October Edition of the quarterly Information InDepth EPPM Newsletter Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Web Based Project Management System

    We are very well aware about the software development life cycle and project management system. But many of the developers assume that it is available only as desktop application. But now a days there are many online web based project management tools are available in market. In this article I am providing information about what is web based project management system, the available open source web based PMS and the benefits of using web based project management system for business owners.

    Read the article

  • MERGE Bug with Filtered Indexes

    - by Paul White
    A MERGE statement can fail, and incorrectly report a unique key violation when: The target table uses a unique filtered index; and No key column of the filtered index is updated; and A column from the filtering condition is updated; and Transient key violations are possible Example Tables Say we have two tables, one that is the target of a MERGE statement, and another that contains updates to be applied to the target.  The target table contains three columns, an integer primary key, a single character alternate key, and a status code column.  A filtered unique index exists on the alternate key, but is only enforced where the status code is ‘a’: CREATE TABLE #Target ( pk integer NOT NULL, ak character(1) NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) );   CREATE UNIQUE INDEX uq1 ON #Target (ak) INCLUDE (status_code) WHERE status_code = 'a'; The changes table contains just an integer primary key (to identify the target row to change) and the new status code: CREATE TABLE #Changes ( pk integer NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) ); Sample Data The sample data for the example is: INSERT #Target (pk, ak, status_code) VALUES (1, 'A', 'a'), (2, 'B', 'a'), (3, 'C', 'a'), (4, 'A', 'd');   INSERT #Changes (pk, status_code) VALUES (1, 'd'), (4, 'a');          Target                     Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ a           ¦    ¦  1 ¦ d           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ d           ¦ +-----------------------+ The target table’s alternate key (ak) column is unique, for rows where status_code = ‘a’.  Applying the changes to the target will change row 1 from status ‘a’ to status ‘d’, and row 4 from status ‘d’ to status ‘a’.  The result of applying all the changes will still satisfy the filtered unique index, because the ‘A’ in row 1 will be deleted from the index and the ‘A’ in row 4 will be added. Merge Test One Let’s now execute a MERGE statement to apply the changes: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; The MERGE changes the two target rows as expected.  The updated target table now contains: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦ <—changed from ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦ <—changed from ‘d’ +-----------------------+ Merge Test Two Now let’s repopulate the changes table to reverse the updates we just performed: TRUNCATE TABLE #Changes;   INSERT #Changes (pk, status_code) VALUES (1, 'a'), (4, 'd'); This will change row 1 back to status ‘a’ and row 4 back to status ‘d’.  As a reminder, the current state of the tables is:          Target                        Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ d           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ a           ¦ +-----------------------+ We execute the same MERGE statement: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; However this time we receive the following message: Msg 2601, Level 14, State 1, Line 1 Cannot insert duplicate key row in object 'dbo.#Target' with unique index 'uq1'. The duplicate key value is (A). The statement has been terminated. Applying the changes using UPDATE Let’s now rewrite the MERGE to use UPDATE instead: UPDATE t SET status_code = c.status_code FROM #Target AS t JOIN #Changes AS c ON t.pk = c.pk WHERE c.status_code <> t.status_code; This query succeeds where the MERGE failed.  The two rows are updated as expected: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ a           ¦ <—changed back to ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ d           ¦ <—changed back to ‘d’ +-----------------------+ What went wrong with the MERGE? In this test, the MERGE query execution happens to apply the changes in the order of the ‘pk’ column. In test one, this was not a problem: row 1 is removed from the unique filtered index by changing status_code from ‘a’ to ‘d’ before row 4 is added.  At no point does the table contain two rows where ak = ‘A’ and status_code = ‘a’. In test two, however, the first change was to change row 1 from status ‘d’ to status ‘a’.  This change means there would be two rows in the filtered unique index where ak = ‘A’ (both row 1 and row 4 meet the index filtering criteria ‘status_code = a’). The storage engine does not allow the query processor to violate a unique key (unless IGNORE_DUP_KEY is ON, but that is a different story, and doesn’t apply to MERGE in any case).  This strict rule applies regardless of the fact that if all changes were applied, there would be no unique key violation (row 4 would eventually be changed from ‘a’ to ‘d’, removing it from the filtered unique index, and resolving the key violation). Why it went wrong The query optimizer usually detects when this sort of temporary uniqueness violation could occur, and builds a plan that avoids the issue.  I wrote about this a couple of years ago in my post Beware Sneaky Reads with Unique Indexes (you can read more about the details on pages 495-497 of Microsoft SQL Server 2008 Internals or in Craig Freedman’s blog post on maintaining unique indexes).  To summarize though, the optimizer introduces Split, Filter, Sort, and Collapse operators into the query plan to: Split each row update into delete followed by an inserts Filter out rows that would not change the index (due to the filter on the index, or a non-updating update) Sort the resulting stream by index key, with deletes before inserts Collapse delete/insert pairs on the same index key back into an update The effect of all this is that only net changes are applied to an index (as one or more insert, update, and/or delete operations).  In this case, the net effect is a single update of the filtered unique index: changing the row for ak = ‘A’ from pk = 4 to pk = 1.  In case that is less than 100% clear, let’s look at the operation in test two again:          Target                     Changes                   Result +-----------------------+    +------------------+    +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦    ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦    ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ d           ¦    ¦  1 ¦ A  ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦    ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+    ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦                            ¦  4 ¦ A  ¦ d           ¦ +-----------------------+                            +-----------------------+ From the filtered index’s point of view (filtered for status_code = ‘a’ and shown in nonclustered index key order) the overall effect of the query is:   Before           After +---------+    +---------+ ¦ pk ¦ ak ¦    ¦ pk ¦ ak ¦ ¦----+----¦    ¦----+----¦ ¦  4 ¦ A  ¦    ¦  1 ¦ A  ¦ ¦  2 ¦ B  ¦    ¦  2 ¦ B  ¦ ¦  3 ¦ C  ¦    ¦  3 ¦ C  ¦ +---------+    +---------+ The single net change there is a change of pk from 4 to 1 for the nonclustered index entry ak = ‘A’.  This is the magic performed by the split, sort, and collapse.  Notice in particular how the original changes to the index key (on the ‘ak’ column) have been transformed into an update of a non-key column (pk is included in the nonclustered index).  By not updating any nonclustered index keys, we are guaranteed to avoid transient key violations. The Execution Plans The estimated MERGE execution plan that produces the incorrect key-violation error looks like this (click to enlarge in a new window): The successful UPDATE execution plan is (click to enlarge in a new window): The MERGE execution plan is a narrow (per-row) update.  The single Clustered Index Merge operator maintains both the clustered index and the filtered nonclustered index.  The UPDATE plan is a wide (per-index) update.  The clustered index is maintained first, then the Split, Filter, Sort, Collapse sequence is applied before the nonclustered index is separately maintained. There is always a wide update plan for any query that modifies the database. The narrow form is a performance optimization where the number of rows is expected to be relatively small, and is not available for all operations.  One of the operations that should disallow a narrow plan is maintaining a unique index where intermediate key violations could occur. Workarounds The MERGE can be made to work (producing a wide update plan with split, sort, and collapse) by: Adding all columns referenced in the filtered index’s WHERE clause to the index key (INCLUDE is not sufficient); or Executing the query with trace flag 8790 set e.g. OPTION (QUERYTRACEON 8790). Undocumented trace flag 8790 forces a wide update plan for any data-changing query (remember that a wide update plan is always possible).  Either change will produce a successfully-executing wide update plan for the MERGE that failed previously. Conclusion The optimizer fails to spot the possibility of transient unique key violations with MERGE under the conditions listed at the start of this post.  It incorrectly chooses a narrow plan for the MERGE, which cannot provide the protection of a split/sort/collapse sequence for the nonclustered index maintenance. The MERGE plan may fail at execution time depending on the order in which rows are processed, and the distribution of data in the database.  Worse, a previously solid MERGE query may suddenly start to fail unpredictably if a filtered unique index is added to the merge target table at any point. Connect bug filed here Tests performed on SQL Server 2012 SP1 CUI (build 11.0.3321) x64 Developer Edition © 2012 Paul White – All Rights Reserved Twitter: @SQL_Kiwi Email: [email protected]

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Reformatting a table based photo gallery to a UL based gallery

    - by mmsa
    I have the following code: var table = $('.photogalleryTable').before('<ul class="photogallery"></ul>') table.find('td a').wrap('<li>').parent().appendTo('ul.photogallery'); table.remove(); This code finds a table with a list of photos and re-codes it to use a unordered list instead. The script works perfectly except for one issue. If there are 2 galleries on a page, the script will grab all of the images and reformat them into one list. Because the CMS I'm using tags each gallery table with .photogalleryTable, I'm not sure how to keep the script from touching the other galleries. What I would like to have happen is have the script re-format the first instance and then move on to the next instance, keeping the list of photos separate Is that possible?

    Read the article

  • Google Website Optimizer not tracking conversions any more.

    - by Pickledegg
    In a nutshell my split tests aren't tracking conversions at all. My A/B pages are on http://www.mydomain.com, and my conversion page is the last stage of my shopping cart on https://secure.mydomain.com. I thought the most concise way of explaining this would be to post my page source code: http://pastebin.com/ru7dCDqD To summarize, the pages are being displayed correctly in my test report, but no conversions are being tracked.

    Read the article

  • How to write program to do file transfer based on based omniORBpy

    - by cofthew7
    I'm now writing a Corba project to do file transfering between client and server. But I face trouble when I want to upload file from the client to the server. The IDL I defined is: interface SecretMessage { string send_file(in string file_name, in string file_obj); }; And I implemented the uploading function in the client code: f = open('SB.docx', 'rb') data = '' for piece in read_in_chunks(f): data += piece result = mo.send_file('2.docx', data) If the file is a plain txt file, there is no problem. But if the file is a, like jpg, doc, or others except txt, then it does work. It gives me the error: omniORB.CORBA.BAD_PARAM: CORBA.BAD_PARAM(omniORB.BAD_PARAM_WrongPythonType, CORBA.COMPLETED_NO) Where is the problem?

    Read the article

  • Code optimizer extension for Dreamweaver?

    - by Vercas
    Due to my neat coding style, my pages take up like 30% more space on both my server and the output HTML. Is there any free extension for Dreamweaver to automatically optimize my pages when uploading them? I mean not only HTML, but also PHP, CSS and JS... Actually, removing unnecessary tabs, spaces and new lines will just do the trick. After removing the unnecessary spaces, tabs and new lines from my PHP code, the page loaded three times faster so this is important...

    Read the article

  • Speaking at SQLSaturday #44 in Huntington Beach, CA (Los Angeles Area)

    - by Ben Nevarez
      I'll be presenting a session at SQLSaturday #44 in Huntington Beach, the first SQLSaturday on Southern California. The event takes place on Saturday, April 24 at the Golden West College on 15744 Goldenwest St, Huntington Beach, CA 92647.. For more information visit the following link   http://sqlsaturday.com/44/eventhome.aspx   My session is “How the Query Optimizer Works”. I hope to see you there. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Why make JavaScript class based?

    - by Carnotaurus
    JavaScript is a prototype language. To turn it into a class based language adds little value? I am not talking about best-practice here. I remember reading an article from way back, which claimed that the class-based worldview is perceivably more flawed than the one of prototypes. My summary can be found here: http://carnotaurus.tumblr.com/post/3248631891/class-based-javascript-or-not. I am resisting to use the class-based jQuery add-on and other attempts at faciliating class-based JavaScript. Peer pressure is strong but is there a stronger theoretical or practical reason why I stop resisting?

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >