Search Results

Search found 63372 results on 2535 pages for 'data center'.

Page 10/2535 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • Excel Help: Data Input Help

    - by B-Ballerl
    Everyday I download data from a site that will have rows each filled with individual data for clients. I'm able to input the data into excel as a whole but after that I'm having trouble figuring out how to put it into a chart. For example Web visits time. So say Client 1 stayed for 5 min increasing his total time on the site to 20 min and Client 2 stayed for 0 min keeping his time of 10 min and they were both registered on new years eve, and R1's last login was today and R2's was yesterday. (R for some reason repersents Client, no idea why...). Client 3 hasn't been on since he registered keeping his total at 4 min So my data would look something like this for Today (20110104) R1,20101231,20110104,20 R2,20101231,20110103,10 R3,20101231,20101231,4 And this for the day before (201101030), R1,20101231,20110102,15 R2,20101231,20110103,10 R3,20101231,20101231,4 I get about 200+ client rows each day where even the names of the Client list are changing. Is it possible to import the data each day and fill it in a excel sheet where the Client number is off on the left hand side in a table, and the amount of time (Whole Number ex. 4) each day it spends on the site extend to the right under it's specific date see Picture? I've manage to create a manual sheet but have been unsucessful at getting excel to do any of it for me. Here are two pictures:

    Read the article

  • Windows Media Center Buffering and Asus MyCinema U3100mini

    - by dsimcha
    I'm running an Asus MyCinema U3100mini ATSC on Windows 7 64-bit. When I play live TV in Windows Media Center, it's very choppy and uses 500+ MB of RAM, I'm guessing due to the hard drive buffering functionality. Is there any way to disable the live TV pause buffer completely? If not, can anyone recommend alternative software that: Works with the MyCinema. Is lightweight and not horribly bloated with features I'll never use like Windows Media Center is.

    Read the article

  • Recover data from hard drive with partitions (but not most data) overwritten

    - by Macha
    I have a 500GB hard drive I've been keeping around to recover data from that I removed from a failing NAS drive that got sort of... erratic at the end. I finally got rid of the NAS when during a firmware update it removed the partition table. Fast forward to a week ago, when I was building a new PC, and a mixup resulted in me placing the hard drive in question in the new PC and installing Windows XP on the first 100GB. I'm presuming any data on that first 100GB is now gone, but for the rest of it, is there any way I can recover it at home, as professional data recovery is currently too expensive? I have a blank 1TB HDD if I can store any images of that hard drive on. The problem was definitely with the NAS and not the hard drive, as the hard drive had a successful install of Windows when mistakenly place in the new PC, and there were capacitors in the NAS's circuitry clearly broken. The data I want to recover (in order of priority) is: High: Some jpgs of family photos. Medium: Some RAW files. (There are also jpg versions of all of these) Low: Some mp3s, avis and ISOs, I can re-rip most of these if need be, but it'd be handy not to have to. (I don't need a backup lecture, and if you can hold it in from nagging Jeff Atwood for it, you can hold it in from nagging me for it) In short: The partition tables are gone and overwritten. The data is not overwritten, except for an amount equal to the size of a Windows XP SP3 installation.

    Read the article

  • Why Oracle Delivers More Value than IBM in Data Integration Solutions

    - by irem.radzik(at)oracle.com
    For data integration projects, IT organization look for a robust but an easy-to-use solution, which simplifies enterprise data architecture while providing exceptional value-- not one that adds complexity and costs. This is a major challenge today for customers who are using IBM InfoSphere products like DataStage or Change Data Capture. Whereas, Oracle consistently delivers higher level value with its data integration products such as Oracle Data Integrator, Oracle GoldenGate. There are many differentiators for Oracle's Data Integration offering in comparison to IBM. Here are the top five: Lower cost of ownership Higher performance in both real-time and bulk data movement Ease of use and flexibility Reliability Complete, Open, and Integrated Middleware Offering Architectural differences between products contribute a great deal to these differences. First of all, Oracle's ETL architecture does not require a middle-tier transformation server, something IBM does require. Not only it costs more to manage an additional transformation server including energy costs, but it adds a performance bottleneck as well. In addition, IBM's data integration products are complex and often require lengthy professional services engagements to integrate. This translates to higher costs and delayed time to market. Then there's the reliability factor. Our customers choose Oracle GoldenGate over IBM's InfoSphere Change Data Capture product because Oracle GoldenGate is designed for mission-critical systems that require guaranteed data delivery and automatic recovery in case of process interruptions. On Thursday we will discuss these key differentiators in detail and provide customer examples that chose Oracle over IBM in data integration projects. Join us on Thursday Feb 10th at 11am PT to learn how Oracle delivers more value than IBM in data integration solutions.

    Read the article

  • Ubuntu Control Center Makes Using Ubuntu Easier

    - by Vivek
    Users who are new to Ubuntu might find it somewhat difficult to configure. Today we take a look at using Ubuntu Control Center which makes managing different aspects of the system easier. About Ubuntu Control Center A lot of utilities and software has been written to work with Ubuntu. Ubuntu Control Center is one such cool utility which makes it easy for configuring Ubuntu. The following is a brief description of Ubuntu Control Center: Ubuntu Control Center or UCC is an application inspired by Mandriva Control Center and aims to centralize and organize in a simple and intuitive form the main configuration tools for Ubuntu distribution. UCC uses all the native applications already bundled with Ubuntu, but it also utilize some third-party apps like “Hardinfo”, “Boot-up Manager”, “GuFW” and “Font-Manager”. Ubuntu Control Center Here we look at installation and use of Ubuntu Control Center in Ubuntu 10.04. First we have to satisfy some dependencies. You will need to install Font-Manager and jstest-gtk (link below)…before installing Ubuntu Control Center (UCC). Click the Install Package button. You’ll be prompted to enter in your admin password for each installation package. Installation is successful…close out of the screen. Download and install Font-Manager…again you’ll need to enter in your password to complete installation.   Once you have installed the two dependencies, you are all set to install Ubuntu Control Center (link below), double click the downloaded Ubuntu Control Center deb file to install it. Once installed you can find it under Applications \ System Tools \ UCC. Once you launch it you can start managing your system, software, hardware, and more.   You can easily control various aspects of your Ubuntu System using Ubuntu Control Center. Here we look at configuring the firewall under Network and Internet.     UCC allows easy access for configuring several aspects of your system. Once you install UCC you’ll see how easy it is to configure your Ubuntu system through an intuitive clean graphical interface. If you’re new to Ubuntu, using UCC can help you in setting up your system how you like in a user friendly way. Home Page of UCC http://code.google.com/p/ucc/ Links Download Font-Manager ManagerDownload jstest-gtkUbuntu Control Center (UCC) Similar Articles Productive Geek Tips Adding extra Repositories on UbuntuAllow Remote Control To Your Desktop On UbuntuAssign a Hotkey to Open a Terminal Window in UbuntuInstall VMware Tools on Ubuntu Edgy EftInstall Monodevelop on Ubuntu Linux TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 How to Forecast Weather, without Gadgets Outlook Tools, one stop tweaking for any Outlook version Zoofs, find the most popular tweeted YouTube videos Video preview of new Windows Live Essentials 21 Cursor Packs for XP, Vista & 7 Map the Stars with Stellarium

    Read the article

  • How can I install Eclipse 4 through Ubuntu Software Center (desktop 12.04 64bit)?

    - by quakkels
    How do I install Eclipse 4 through Ubuntu Software Center on my desktop 12.04 64 bit os? The reason I would like to install through Ubuntu Software Center is because it's easy to uninstall the software, and i want to manage all my installed programs through the Software Center. If I have to install through other means, will Eclipse show up in Ubuntu Software Center? Thanks for any help. Update: Clarification I did find Eclipse but it was version 3.7. I'm looking to install version 4.

    Read the article

  • Big GRC: Turning Data into Actionable GRC Intelligence

    - by Jenna Danko
    While it’s no longer headline news that Governments have carried out large scale data-mining programmes aimed at terrorism detection and identifying other patterns of interest across a wide range of digital data sources, the debate over the ethics and justification over this action, will clearly continue for some time to come. What is becoming clear is that these programmes are a framework for the collation and aggregation of massive amounts of unstructured data and from this, the creation of actionable intelligence from analyses that allowed the analysts to explore and extract a variety of patterns and then direct resources. This data included audio and video chats, phone calls, photographs, e-mails, documents, internet searches, social media posts and mobile phone logs and connections. Although Governance, Risk and Compliance (GRC) professionals are not looking at the implementation of such programmes, there are many similar GRC “Big data” challenges to be faced and potential lessons to be learned from these high profile government programmes that can be applied a lot closer to home. For example, how can GRC professionals collect, manage and analyze an enormous and disparate volume of data to create and manage their own actionable intelligence covering hidden signs and patterns of criminal activity, the early or retrospective, violation of regulations/laws/corporate policies and procedures, emerging risks and weakening controls etc. Not exactly the stuff of James Bond to be sure, but it is certainly more applicable to most GRC professional’s day to day challenges. So what is Big Data and how can it benefit the GRC process? Although it often varies, the definition of Big Data largely refers to the following types of data: Traditional Enterprise Data – includes customer information from CRM systems, transactional ERP data, web store transactions, and general ledger data. Machine-Generated /Sensor Data – includes Call Detail Records (“CDR”), weblogs and trading systems data. Social Data – includes customer feedback streams, micro-blogging sites like Twitter, and social media platforms like Facebook. The McKinsey Global Institute estimates that data volume is growing 40% per year, and will grow 44x between 2009 and 2020. But while it’s often the most visible parameter, volume of data is not the only characteristic that matters. In fact, according to sources such as Forrester there are four key characteristics that define big data: Volume. Machine-generated data is produced in much larger quantities than non-traditional data. This is all the data generated by IT systems that power the enterprise. This includes live data from packaged and custom applications – for example, app servers, Web servers, databases, networks, virtual machines, telecom equipment, and much more. Velocity. Social media data streams – while not as massive as machine-generated data – produce a large influx of opinions and relationships valuable to customer relationship management as well as offering early insight into potential reputational risk issues. Even at 140 characters per tweet, the high velocity (or frequency) of Twitter data ensures large volumes (over 8 TB per day) need to be managed. Variety. Traditional data formats tend to be relatively well defined by a data schema and change slowly. In contrast, non-traditional data formats exhibit a dizzying rate of change. Without question, all GRC professionals work in a dynamic environment and as new services, new products, new business lines are added or new marketing campaigns executed for example, new data types are needed to capture the resultant information.  Value. The economic value of data varies significantly. Typically, there is good information hidden amongst a larger body of non-traditional data that GRC professionals can use to add real value to the organisation; the greater challenge is identifying what is valuable and then transforming and extracting that data for analysis and action. For example, customer service calls and emails have millions of useful data points and have long been a source of information to GRC professionals. Those calls and emails are critical in helping GRC professionals better identify hidden patterns and implement new policies that can reduce the amount of customer complaints.   Now on a scale and depth far beyond those in place today, all that unstructured call and email data can be captured, stored and analyzed to reveal the reasons for the contact, perhaps with the aggregated customer results cross referenced against what is being said about the organization or a similar peer organization on social media. The organization can then take positive actions, communicating to the market in advance of issues reaching the press, strengthening controls, adjusting risk profiles, changing policy and procedures and completely minimizing, if not eliminating, complaints and compensation for that specific reason in the future. In this one example of many similar ones, the GRC team(s) has demonstrated real and tangible business value. Big Challenges - Big Opportunities As pointed out by recent Forrester research, high performing companies (those that are growing 15% or more year-on-year compared to their peers) are taking a selective approach to investing in Big Data.  "Tomorrow's winners understand this, and they are making selective investments aimed at specific opportunities with tangible benefits where big data offers a more economical solution to meet a need." (Forrsights Strategy Spotlight: Business Intelligence and Big Data, Q4 2012) As pointed out earlier, with the ever increasing volume of regulatory demands and fines for getting it wrong, limited resource availability and out of date or inadequate GRC systems all contributing to a higher cost of compliance and/or higher risk profile than desired – a big data investment in GRC clearly falls into this category. However, to make the most of big data organizations must evolve both their business and IT procedures, processes, people and infrastructures to handle these new high-volume, high-velocity, high-variety sources of data and be able integrate them with the pre-existing company data to be analyzed. GRC big data clearly allows the organization access to and management over a huge amount of often very sensitive information that although can help create a more risk intelligent organization, also presents numerous data governance challenges, including regulatory compliance and information security. In addition to client and regulatory demands over better information security and data protection the sheer amount of information organizations deal with the need to quickly access, classify, protect and manage that information can quickly become a key issue  from a legal, as well as technical or operational standpoint. However, by making information governance processes a bigger part of everyday operations, organizations can make sure data remains readily available and protected. The Right GRC & Big Data Partnership Becomes Key  The "getting it right first time" mantra used in so many companies remains essential for any GRC team that is sponsoring, helping kick start, or even overseeing a big data project. To make a big data GRC initiative work and get the desired value, partnerships with companies, who have a long history of success in delivering successful GRC solutions as well as being at the very forefront of technology innovation, becomes key. Clearly solutions can be built in-house more cheaply than through vendor, but as has been proven time and time again, when it comes to self built solutions covering AML and Fraud for example, few have able to scale or adapt appropriately to meet the changing regulations or challenges that the GRC teams face on a daily basis. This has led to the creation of GRC silo’s that are causing so many headaches today. The solutions that stand out and should be explored are the ones that can seamlessly merge the traditional world of well-known data, analytics and visualization with the new world of seemingly innumerable data sources, utilizing Big Data technologies to generate new GRC insights right across the enterprise.Ultimately, Big Data is here to stay, and organizations that embrace its potential and outline a viable strategy, as well as understand and build a solid analytical foundation, will be the ones that are well positioned to make the most of it. A Blueprint and Roadmap Service for Big Data Big data adoption is first and foremost a business decision. As such it is essential that your partner can align your strategies, goals, and objectives with an architecture vision and roadmap to accelerate adoption of big data for your environment, as well as establish practical, effective governance that will maintain a well managed environment going forward. Key Activities: While your initiatives will clearly vary, there are some generic starting points the team and organization will need to complete: Clearly define your drivers, strategies, goals, objectives and requirements as it relates to big data Conduct a big data readiness and Information Architecture maturity assessment Develop future state big data architecture, including views across all relevant architecture domains; business, applications, information, and technology Provide initial guidance on big data candidate selection for migrations or implementation Develop a strategic roadmap and implementation plan that reflects a prioritization of initiatives based on business impact and technology dependency, and an incremental integration approach for evolving your current state to the target future state in a manner that represents the least amount of risk and impact of change on the business Provide recommendations for practical, effective Data Governance, Data Quality Management, and Information Lifecycle Management to maintain a well-managed environment Conduct an executive workshop with recommendations and next steps There is little debate that managing risk and data are the two biggest obstacles encountered by financial institutions.  Big data is here to stay and risk management certainly is not going anywhere, and ultimately financial services industry organizations that embrace its potential and outline a viable strategy, as well as understand and build a solid analytical foundation, will be best positioned to make the most of it. Matthew Long is a Financial Crime Specialist for Oracle Financial Services. He can be reached at matthew.long AT oracle.com.

    Read the article

  • Windows 7 Media Center PC not displaying MKV files properly

    - by David
    Does anyone know why Windows Media Center wouldn't correctly display a 16x9 video? I just upgraded my home-built HTPC from Vista Ultimate (hey, it was a giveaway) to Windows 7 Ultimate - clean install. After that, I installed the Divx7 beta (to get .MKV support) and AC3filter (so I could HEAR the MKV files). Previously, under Vista Ultimate (32 bit), I had Arcsoft's Total Theater Pro for playing Blu-Rays and MKV decoding under Media Center. Now when I play a 720p 16x9 MKV file, I get some 'letterboxing' - like it's halfway between 4x3 and 16x9 - with the aspect ration looking alightly squished as a result. Here's the wierd part. If I use the Media Center connection software in my XBox 360 - it plays perfectly, filling the 16x9 screen edge-to-edge, just like Vista's WMC software USED to. Of course, beats the network up because the XBox goes to the HTPC, the HTPC goes to my WHS machine to fetch the data, it comes back to the HTPC, gets transcoded and streamed back to the Xbox. I'm running the latest drivers for an NVidia card (as fetched by Windows 7). I have no idea WHY this is because if I play "ordinary" (i.s. SD) Divx files that are 16x9, they play just fine, scaled right up to my screen's edges. It puzzles me as to why the same machine that properly converts the bits for the Xbox can't display/scale them properly for the attached display. Mind you, Windows Media Player exhibits the same symptoms. Ideas?

    Read the article

  • Introducing Data Annotations Extensions

    - by srkirkland
    Validation of user input is integral to building a modern web application, and ASP.NET MVC offers us a way to enforce business rules on both the client and server using Model Validation.  The recent release of ASP.NET MVC 3 has improved these offerings on the client side by introducing an unobtrusive validation library built on top of jquery.validation.  Out of the box MVC comes with support for Data Annotations (that is, System.ComponentModel.DataAnnotations) and can be extended to support other frameworks.  Data Annotations Validation is becoming more popular and is being baked in to many other Microsoft offerings, including Entity Framework, though with MVC it only contains four validators: Range, Required, StringLength and Regular Expression.  The Data Annotations Extensions project attempts to augment these validators with additional attributes while maintaining the clean integration Data Annotations provides. A Quick Word About Data Annotations Extensions The Data Annotations Extensions project can be found at http://dataannotationsextensions.org/, and currently provides 11 additional validation attributes (ex: Email, EqualTo, Min/Max) on top of Data Annotations’ original 4.  You can find a current list of the validation attributes on the afore mentioned website. The core library provides server-side validation attributes that can be used in any .NET 4.0 project (no MVC dependency). There is also an easily pluggable client-side validation library which can be used in ASP.NET MVC 3 projects using unobtrusive jquery validation (only MVC3 included javascript files are required). On to the Preview Let’s say you had the following “Customer” domain model (or view model, depending on your project structure) in an MVC 3 project: public class Customer { public string Email { get; set; } public int Age { get; set; } public string ProfilePictureLocation { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When it comes time to create/edit this Customer, you will probably have a CustomerController and a simple form that just uses one of the Html.EditorFor() methods that the ASP.NET MVC tooling generates for you (or you can write yourself).  It should look something like this: With no validation, the customer can enter nonsense for an email address, and then can even report their age as a negative number!  With the built-in Data Annotations validation, I could do a bit better by adding a Range to the age, adding a RegularExpression for email (yuck!), and adding some required attributes.  However, I’d still be able to report my age as 10.75 years old, and my profile picture could still be any string.  Let’s use Data Annotations along with this project, Data Annotations Extensions, and see what we can get: public class Customer { [Email] [Required] public string Email { get; set; }   [Integer] [Min(1, ErrorMessage="Unless you are benjamin button you are lying.")] [Required] public int Age { get; set; }   [FileExtensions("png|jpg|jpeg|gif")] public string ProfilePictureLocation { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now let’s try to put in some invalid values and see what happens: That is very nice validation, all done on the client side (will also be validated on the server).  Also, the Customer class validation attributes are very easy to read and understand. Another bonus: Since Data Annotations Extensions can integrate with MVC 3’s unobtrusive validation, no additional scripts are required! Now that we’ve seen our target, let’s take a look at how to get there within a new MVC 3 project. Adding Data Annotations Extensions To Your Project First we will File->New Project and create an ASP.NET MVC 3 project.  I am going to use Razor for these examples, but any view engine can be used in practice.  Now go into the NuGet Extension Manager (right click on references and select add Library Package Reference) and search for “DataAnnotationsExtensions.”  You should see the following two packages: The first package is for server-side validation scenarios, but since we are using MVC 3 and would like comprehensive sever and client validation support, click on the DataAnnotationsExtensions.MVC3 project and then click Install.  This will install the Data Annotations Extensions server and client validation DLLs along with David Ebbo’s web activator (which enables the validation attributes to be registered with MVC 3). Now that Data Annotations Extensions is installed you have all you need to start doing advanced model validation.  If you are already using Data Annotations in your project, just making use of the additional validation attributes will provide client and server validation automatically.  However, assuming you are starting with a blank project I’ll walk you through setting up a controller and model to test with. Creating Your Model In the Models folder, create a new User.cs file with a User class that you can use as a model.  To start with, I’ll use the following class: public class User { public string Email { get; set; } public string Password { get; set; } public string PasswordConfirm { get; set; } public string HomePage { get; set; } public int Age { get; set; } } Next, create a simple controller with at least a Create method, and then a matching Create view (note, you can do all of this via the MVC built-in tooling).  Your files will look something like this: UserController.cs: public class UserController : Controller { public ActionResult Create() { return View(new User()); }   [HttpPost] public ActionResult Create(User user) { if (!ModelState.IsValid) { return View(user); }   return Content("User valid!"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Create.cshtml: @model NuGetValidationTester.Models.User   @{ ViewBag.Title = "Create"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>User</legend> @Html.EditorForModel() <p> <input type="submit" value="Create" /> </p> </fieldset> } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the Create.cshtml view, note that we are referencing jquery validation and jquery unobtrusive (jquery is referenced in the layout page).  These MVC 3 included scripts are the only ones you need to enjoy both the basic Data Annotations validation as well as the validation additions available in Data Annotations Extensions.  These references are added by default when you use the MVC 3 “Add View” dialog on a modification template type. Now when we go to /User/Create we should see a form for editing a User Since we haven’t yet added any validation attributes, this form is valid as shown (including no password, email and an age of 0).  With the built-in Data Annotations attributes we can make some of the fields required, and we could use a range validator of maybe 1 to 110 on Age (of course we don’t want to leave out supercentenarians) but let’s go further and validate our input comprehensively using Data Annotations Extensions.  The new and improved User.cs model class. { [Required] [Email] public string Email { get; set; }   [Required] public string Password { get; set; }   [Required] [EqualTo("Password")] public string PasswordConfirm { get; set; }   [Url] public string HomePage { get; set; }   [Integer] [Min(1)] public int Age { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now let’s re-run our form and try to use some invalid values: All of the validation errors you see above occurred on the client, without ever even hitting submit.  The validation is also checked on the server, which is a good practice since client validation is easily bypassed. That’s all you need to do to start a new project and include Data Annotations Extensions, and of course you can integrate it into an existing project just as easily. Nitpickers Corner ASP.NET MVC 3 futures defines four new data annotations attributes which this project has as well: CreditCard, Email, Url and EqualTo.  Unfortunately referencing MVC 3 futures necessitates taking an dependency on MVC 3 in your model layer, which may be unadvisable in a multi-tiered project.  Data Annotations Extensions keeps the server and client side libraries separate so using the project’s validation attributes don’t require you to take any additional dependencies in your model layer which still allowing for the rich client validation experience if you are using MVC 3. Custom Error Message and Globalization: Since the Data Annotations Extensions are build on top of Data Annotations, you have the ability to define your own static error messages and even to use resource files for very customizable error messages. Available Validators: Please see the project site at http://dataannotationsextensions.org/ for an up-to-date list of the new validators included in this project.  As of this post, the following validators are available: CreditCard Date Digits Email EqualTo FileExtensions Integer Max Min Numeric Url Conclusion Hopefully I’ve illustrated how easy it is to add server and client validation to your MVC 3 projects, and how to easily you can extend the available validation options to meet real world needs. The Data Annotations Extensions project is fully open source under the BSD license.  Any feedback would be greatly appreciated.  More information than you require, along with links to the source code, is available at http://dataannotationsextensions.org/. Enjoy!

    Read the article

  • Oracle Launches Enterprise Manager Ops Center 12c at OpenWorld Japan

    - by Anand Akela
    Oracle Senior Vice President John Fowler and Oracle Vice President of Systems Management Steve Wilson unveiled Oracle Enterprise Manager Ops Center 12c at Oracle OpenWorld, Tokyo Japan on April 4th morning.  Oracle Enterprise Manager combines management of servers, operating systems, virtualization solution for x86 and SPRC servers, firmware, storage, and network fabrics with Oracle Enterprise Manager Ops Center. Available at no additional cost as part of the Ops Center Anywhere Program, Oracle Enterprise Manager Ops Center 12c allows enterprises to accelerate mission-critical cloud deployment, unleash the power of Solaris 11 — the first cloud OS, and simplify Oracle engineered systems management. Here are some of the resources for you to learn more about the new Oracle Enterprise Manager Ops Center 12c :  Press Release : Introducing Oracle Enterprise Manager Ops Center 12c White paper: Oracle Enterprise Manager Ops Center 12c - Making Infrastructure-as-a-Service in the Enterprise a Reality Oracle Enterprise Manager Ops Center web page at Oracle Technology Network Join Oracle Launch Webcast : Total Cloud Control for Systems on April 12th at 9 AM PST to learn more about  Oracle Enterprise Manager Ops Center 12c from Oracle Senior Vice President John Fowler, Oracle Vice President of Systems Management Steve Wilson and a panel of Oracle executive. Stay connected with  Oracle Enterprise Manager   :  Twitter | Facebook | YouTube | Linkedin | Newsletter

    Read the article

  • Cleaning a dataset of song data - what sort of problem is this?

    - by Rob Lourens
    I have a set of data about songs. Each entry is a line of text which includes the artist name, song title, and some extra text. Some entries are only "extra text". My goal is to resolve as many of these as possible to songs on Spotify using their web API. My strategy so far has been to search for the entry via the API - if there are no results, apply a transformation such as "remove all text between ( )" and search again. I have a list of heuristics and I've had reasonable success with this but as the code gets more and more convoluted I keep thinking there must be a more generic and consistent way. I don't know where to look - any suggestions for what to try, topics to study, buzzwords to google?

    Read the article

  • Augmenting your Social Efforts via Data as a Service (DaaS)

    - by Mike Stiles
    The following is the 3rd in a series of posts on the value of leveraging social data across your enterprise by Oracle VP Product Development Don Springer and Oracle Cloud Data and Insight Service Sr. Director Product Management Niraj Deo. In this post, we will discuss the approach and value of integrating additional “public” data via a cloud-based Data-as-as-Service platform (or DaaS) to augment your Socially Enabled Big Data Analytics and CX Management. Let’s assume you have a functional Social-CRM platform in place. You are now successfully and continuously listening and learning from your customers and key constituents in Social Media, you are identifying relevant posts and following up with direct engagement where warranted (both 1:1, 1:community, 1:all), and you are starting to integrate signals for communication into your appropriate Customer Experience (CX) Management systems as well as insights for analysis in your business intelligence application. What is the next step? Augmenting Social Data with other Public Data for More Advanced Analytics When we say advanced analytics, we are talking about understanding causality and correlation from a wide variety, volume and velocity of data to Key Performance Indicators (KPI) to achieve and optimize business value. And in some cases, to predict future performance to make appropriate course corrections and change the outcome to your advantage while you can. The data to acquire, process and analyze this is very nuanced: It can vary across structured, semi-structured, and unstructured data It can span across content, profile, and communities of profiles data It is increasingly public, curated and user generated The key is not just getting the data, but making it value-added data and using it to help discover the insights to connect to and improve your KPIs. As we spend time working with our larger customers on advanced analytics, we have seen a need arise for more business applications to have the ability to ingest and use “quality” curated, social, transactional reference data and corresponding insights. The challenge for the enterprise has been getting this data inline into an easily accessible system and providing the contextual integration of the underlying data enriched with insights to be exported into the enterprise’s business applications. The following diagram shows the requirements for this next generation data and insights service or (DaaS): Some quick points on these requirements: Public Data, which in this context is about Common Business Entities, such as - Customers, Suppliers, Partners, Competitors (all are organizations) Contacts, Consumers, Employees (all are people) Products, Brands This data can be broadly categorized incrementally as - Base Utility data (address, industry classification) Public Master Reference data (trade style, hierarchy) Social/Web data (News, Feeds, Graph) Transactional Data generated by enterprise process, workflows etc. This Data has traits of high-volume, variety, velocity etc., and the technology needed to efficiently integrate this data for your needs includes - Change management of Public Reference Data across all categories Applied Big Data to extract statics as well as real-time insights Knowledge Diagnostics and Data Mining As you consider how to deploy this solution, many of our customers will be using an online “cloud” service that provides quality data and insights uniformly to all their necessary applications. In addition, they are requesting a service that is: Agile and Easy to Use: Applications integrated with the service can obtain data on-demand, quickly and simply Cost-effective: Pre-integrated into applications so customers don’t have to Has High Data Quality: Single point access to reference data for data quality and linkages to transactional, curated and social data Supports Data Governance: Becomes more manageable and cost-effective since control of data privacy and compliance can be enforced in a centralized place Data-as-a-Service (DaaS) Just as the cloud has transformed and now offers a better path for how an enterprise manages its IT from their infrastructure, platform, and software (IaaS, PaaS, and SaaS), the next step is data (DaaS). Over the last 3 years, we have seen the market begin to offer a cloud-based data service and gain initial traction. On one side of the DaaS continuum, we see an “appliance” type of service that provides a single, reliable source of accurate business data plus social information about accounts, leads, contacts, etc. On the other side of the continuum we see more of an online market “exchange” approach where ISVs and Data Publishers can publish and sell premium datasets within the exchange, with the exchange providing a rich set of web interfaces to improve the ease of data integration. Why the difference? It depends on the provider’s philosophy on how fast the rate of commoditization of certain data types will occur. How do you decide the best approach? Our perspective, as shown in the diagram below, is that the enterprise should develop an elastic schema to support multi-domain applicability. This allows the enterprise to take the most flexible approach to harness the speed and breadth of public data to achieve value. The key tenet of the proposed approach is that an enterprise carefully federates common utility, master reference data end points, mobility considerations and content processing, so that they are pervasively available. One way you may already be familiar with this approach is in how you do Address Verification treatments for accounts, contacts etc. If you design and revise this service in such a way that it is also easily available to social analytic needs, you could extend this to launch geo-location based social use cases (marketing, sales etc.). Our fundamental belief is that value-added data achieved through enrichment with specialized algorithms, as well as applying business “know-how” to weight-factor KPIs based on innovative combinations across an ever-increasing variety, volume and velocity of data, will be where real value is achieved. Essentially, Data-as-a-Service becomes a single entry point for the ever-increasing richness and volume of public data, with enrichment and combined capabilities to extract and integrate the right data from the right sources with the right factoring at the right time for faster decision-making and action within your core business applications. As more data becomes available (and in many cases commoditized), this value-added data processing approach will provide you with ongoing competitive advantage. Let’s look at a quick example of creating a master reference relationship that could be used as an input for a variety of your already existing business applications. In phase 1, a simple master relationship is achieved between a company (e.g. General Motors) and a variety of car brands’ social insights. The reference data allows for easy sort, export and integration into a set of CRM use cases for analytics, sales and marketing CRM. In phase 2, as you create more data relationships (e.g. competitors, contacts, other brands) to have broader and deeper references (social profiles, social meta-data) for more use cases across CRM, HCM, SRM, etc. This is just the tip of the iceberg, as the amount of master reference relationships is constrained only by your imagination and the availability of quality curated data you have to work with. DaaS is just now emerging onto the marketplace as the next step in cloud transformation. For some of you, this may be the first you have heard about it. Let us know if you have questions, or perspectives. In the meantime, we will continue to share insights as we can.Photo: Erik Araujo, stock.xchng

    Read the article

  • Working with data and meta data that are separated on different servers

    - by afuzzyllama
    While developing a product, I've come across a situation where my group wants to store meta data for data entry forms (questions, layout, etc) in a different database then the database where the collected data is stored. This is mostly for security because we want to be able to have our meta data public facing, while keeping collected data as secure as possible. I was thinking about writing a web service that provides the meta information that the data collection program could access. The only issue I see with this approach is the front end is going to have to match the meta data with the collected data, which would be more efficient as a join on the back end. Currently, this system is slated to run on .NET and MSSQL. I haven't played around with .NET libraries running in SQL, but I'm considering trying to create logic that would pull from the web service, convert the meta data into a table that SQL can join on, and return the combined data and meta data that way. Is this solution the wrong way to approach the problem? Is there a pattern or "industry standard" way of bringing together two datasets that don't live in the same database?

    Read the article

  • The Business case for Big Data

    - by jasonw
    The Business Case for Big Data Part 1 What's the Big Deal Okay, so a new buzz word is emerging. It's gone beyond just a buzzword now, and I think it is going to change the landscape of retail, financial services, healthcare....everything. Let me spend a moment to talk about what i'm going to talk about. Massive amounts of data are being collected every second, more than ever imaginable, and the size of this data is more than can be practically managed by today’s current strategies and technologies. There is a revolution at hand centering on this groundswell of data and it will change how we execute our businesses through greater efficiencies, new revenue discovery and even enable innovation. It is the revolution of Big Data. This is more than just a new buzzword is being tossed around technology circles.This blog series for Big Data will explain this new wave of technology and provide a roadmap for businesses to take advantage of this growing trend. Cases for Big Data There is a growing list of use cases for big data. We naturally think of Marketing as the low hanging fruit. Many projects look to analyze twitter feeds to find new ways to do marketing. I think of a great example from a TED speech that I recently saw on data visualization from Facebook from my masters studies at University of Virginia. We can see when the most likely time for breaks-ups occurs by looking at status changes and updates on users Walls. This is the intersection of Big Data, Analytics and traditional structured data. Ted Video Marketers can use this to sell more stuff. I really like the following piece on looking at twitter feeds to measure mood. The following company was bought by a hedge fund. They could predict how the S&P was going to do within three days at an 85% accuracy. Link to the article Here we see a convergence of predictive analytics and Big Data. So, we'll look at a lot of these business cases and start talking about what this means for the business. It's more than just finding ways to use Hadoop + NoSql and we'll talk about that too. How do I start in Big Data? That's what is coming next post.

    Read the article

  • Big Data – Buzz Words: What is NoSQL – Day 5 of 21

    - by Pinal Dave
    In yesterday’s blog post we explored the basic architecture of Big Data . In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – NoSQL. What is NoSQL? NoSQL stands for Not Relational SQL or Not Only SQL. Lots of people think that NoSQL means there is No SQL, which is not true – they both sound same but the meaning is totally different. NoSQL does use SQL but it uses more than SQL to achieve its goal. As per Wikipedia’s NoSQL Database Definition – “A NoSQL database provides a mechanism for storage and retrieval of data that uses looser consistency models than traditional relational databases.“ Why use NoSQL? A traditional relation database usually deals with predictable structured data. Whereas as the world has moved forward with unstructured data we often see the limitations of the traditional relational database in dealing with them. For example, nowadays we have data in format of SMS, wave files, photos and video format. It is a bit difficult to manage them by using a traditional relational database. I often see people using BLOB filed to store such a data. BLOB can store the data but when we have to retrieve them or even process them the same BLOB is extremely slow in processing the unstructured data. A NoSQL database is the type of database that can handle unstructured, unorganized and unpredictable data that our business needs it. Along with the support to unstructured data, the other advantage of NoSQL Database is high performance and high availability. Eventual Consistency Additionally to note that NoSQL Database may not provided 100% ACID (Atomicity, Consistency, Isolation, Durability) compliance.  Though, NoSQL Database does not support ACID they provide eventual consistency. That means over the long period of time all updates can be expected to propagate eventually through the system and data will be consistent. Taxonomy Taxonomy is the practice of classification of things or concepts and the principles. The NoSQL taxonomy supports column store, document store, key-value stores, and graph databases. We will discuss the taxonomy in detail in later blog posts. Here are few of the examples of the each of the No SQL Category. Column: Hbase, Cassandra, Accumulo Document: MongoDB, Couchbase, Raven Key-value : Dynamo, Riak, Azure, Redis, Cache, GT.m Graph: Neo4J, Allegro, Virtuoso, Bigdata As of now there are over 150 NoSQL Database and you can read everything about them in this single link. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – Hadoop. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • BAM Data Control in multiple ADF Faces Components

    - by [email protected]
    As we know Oracle BAM data control instance sharing is not supported.When two or more ADF Faces components must display the same data, and are bound to the same Oracle BAM data control definition, we have to make sure that we wrap each ADF Faces component in an ADF task flow, and set the Data Control Scope to isolated. This blog will show a small sample to demonstrate this. In this sample we will create a Pie and Bar using same BAM DC, such that both components use same Data control but have isolated scope.This sample can be downloaded  fromSample1.zip Set-up: Create a BAM data control using employees DO (sample) Steps: Right click on View Controller project and select "New->ADF Task Flow" Check "Create Bounded Task Flow" and give some meaningful name (ex:EmpPieTF.xml ) to the TaskFlow(TF) and click on "OK"CreateTF.bmpFrom the "Components Palette", drag and drop "View" into the task flow diagram. Give a meaningful name to the view. Double Click and Click "Ok" for  "Create New JSF Page Fragment" From "Data Controls" drag and drop "Employees->Query"  into this jsff page as "Graph->Pie" (Pie: Sales_Number and Slices: Salesperson) Repeat step 1 through 4 for another Task Flow (ex: EmpBarTF). From "Data Controls" drag and drop "Employees->Query"  into this jsff page as "Graph->Bar" (Bars :Sales_Number and X-axis : Salesperson). Open the Taskflow created in step 2. In the Structure Pane, right click on "Task Flow Definition -EmpPieTF" Click "Insert inside Task Flow Definition - EmpPieTF -> ADF Task Flow -> Data Control Scope". Click "OK"TFDCScope.bmpFor the "Data Control Scope", In the Property Inspector ->General section, change data control scope from Shared to Isolated. Repeat step 8 through 11 for the 2nd Task flow created. Now create a new jspx page example: Main.jspxDrag and drop both the Task flows (ex: "EmpPieTF" and "EmpBarTF") as regions. Surround with panel components as needed.Run the page Main.jspxMainPage.bmpNow when the page runs although both components are created using same Data control the bindings are not shared and each component will have a separate instance of the data control.

    Read the article

  • iPhone App to Remotely Control Windows Media Center

    - by Barry-Jon
    Can anyone recommend an iPhone app, for non-jailbroken devices, that can be used to remotely control Windows (7, if it matters) Media Center from outside the home WiFi network? The objective is to be able to connect to the Media Center box during the day when I am not home. For instance, if I realise that the new series of [insert very trendy new show here] is starting tonight and I hadn’t set up a series link I could fire up the app and set my machine to record it. Solutions could include native iPhone apps, iPhone optimised web apps or regular web apps.

    Read the article

  • Windows 7 Media Center suddenly Jerky..

    - by Kris Erickson
    Media Center in Windows 7 has been running great for me for the past few months since I switched to Windows 7. I can watch HD content on my Xbox, and I have had very few issues with it (occasionally it has locked up on the Xbox, but restarting the Xbox usually fixes that). All of a sudden it has gotten jerky, SD content playing on my computer (not even streaming to the Xbox) is Jerky. VLC and Windows Media Player play the same content perfectly, it is just when it is playing in Windows Media Center (whether streaming or not). Any ideas what could be the cause of this? And yes I have reboot several times...

    Read the article

  • how to find a good data center?

    - by drewda
    At my start-up, we're getting to the point where we should be hosting our servers at a data center. I'd appreciate any tips and tricks y'all can offer on finding a reputable place to colocate our racks. Are there any Web sites with customer reviews of data centers or should I just be asking around at techie events? Are unlimited bandwidth plans a gimmick or becoming the norm? Is it worth establishing a redundant set of machines at a second data center from Day One? Or just do offsite back-ups? Thanks for your suggestions.

    Read the article

  • Integrated Graphics and Audio as Media Center?

    - by Will
    I'm considering setting up a PC as a Media Center. Mainly to watch movies (ideally HD quality) and listening to music, but also to perform tasks like e-mail, web browsing, ... I quite like the looks and the price of this barebone: http://www.asus.de/Barebone_PC/S_Series_7L/S2P8H61E However it comes with integrated graphics and audio and only has one free PCI-Express slot. Which would mean in the worst case, where both integrated graphics and audio turn out to be insufficient, I could only upgrade one. So is integrated graphics and audio sufficient for a media center solution? Cheers, Will

    Read the article

  • Wake up and record in Windows Media Center on a Mac Mini

    - by Sir Code-A-Lot
    I'm currently considering buying a Mac Mini to use as a media center. I plan to install Windows 7 (or 8) on it, using Boot Camp. Will it be able to go into standby or hibernate (S3, S4?) and wake up to record TV scheduled in Windows Media Center? I haven't been able to find concrete information on supported standby types when running Windows under boot camp, and if Windows will even be able to wake when a recording should start. I just want to be clear on any limitations in this area before I buy anything.

    Read the article

  • Poor quality when trying to stream a 720p video to XBox 360 using Media Center Extender

    - by MBraedley
    I have my XBox 360 set up as a Media Center Extender for my Windows 7 desktop. SD quality avi videos stream fine to my XBox, either though the video library or through Media Center Extender, but when I try a 720p mkv file, the frame rate plummets and the A/V sync is completely lost. I don't want to transcode or switch container formats (mkv isn't supported by the 360), but still want to stream. Both my desktop and 360 are plugged into the same gigabit switch, which is plugged into my ISP supplied modem/router. The video plays fine on my machine in a number of programs. Considering that I should have more than enough bandwidth to accommodate this video, why won't it play back properly?

    Read the article

  • New Feature in ODI 11.1.1.6: ODI for Big Data

    - by Julien Testut
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} By Ananth Tirupattur Starting with Oracle Data Integrator 11.1.1.6.0, ODI is offering a solution to process Big Data. This post provides an overview of this feature. With all the buzz around Big Data and before getting into the details of ODI for Big Data, I will provide a brief introduction to Big Data and Oracle Solution for Big Data. So, what is Big Data? Big data includes: structured data (this includes data from relation data stores, xml data stores), semi-structured data (this includes data from weblogs) unstructured data (this includes data from text blob, images) Traditionally, business decisions are based on the information gathered from transactional data. For example, transactional Data from CRM applications is fed to a decision system for analysis and decision making. Products such as ODI play a key role in enabling decision systems. However, with the emergence of massive amounts of semi-structured and unstructured data it is important for decision system to include them in the analysis to achieve better decision making capability. While there is an abundance of opportunities for business for gaining competitive advantages, process of Big Data has challenges. The challenges of processing Big Data include: Volume of data Velocity of data - The high Rate at which data is generated Variety of data In order to address these challenges and convert them into opportunities, we would need an appropriate framework, platform and the right set of tools. Hadoop is an open source framework which is highly scalable, fault tolerant system, for storage and processing large amounts of data. Hadoop provides 2 key services, distributed and reliable storage called Hadoop Distributed File System or HDFS and a framework for parallel data processing called Map-Reduce. Innovations in Hadoop and its related technology continue to rapidly evolve, hence therefore, it is highly recommended to follow information on the web to keep up with latest information. Oracle's vision is to provide a comprehensive solution to address the challenges faced by Big Data. Oracle is providing the necessary Hardware, software and tools for processing Big Data Oracle solution includes: Big Data Appliance Oracle NoSQL Database Cloudera distribution for Hadoop Oracle R Enterprise- R is a statistical package which is very popular among data scientists. ODI solution for Big Data Oracle Loader for Hadoop for loading data from Hadoop to Oracle. Further details can be found here: http://www.oracle.com/us/products/database/big-data-appliance/overview/index.html ODI Solution for Big Data: ODI’s goal is to minimize the need to understand the complexity of Hadoop framework and simplify the adoption of processing Big Data seamlessly in an enterprise. ODI is providing the capabilities for an integrated architecture for processing Big Data. This includes capability to load data in to Hadoop, process data in Hadoop and load data from Hadoop into Oracle. ODI is expanding its support for Big Data by providing the following out of the box Knowledge Modules (KMs). IKM File to Hive (LOAD DATA).Load unstructured data from File (Local file system or HDFS ) into Hive IKM Hive Control AppendTransform and validate structured data on Hive IKM Hive TransformTransform unstructured data on Hive IKM File/Hive to Oracle (OLH)Load processed data in Hive to Oracle RKM HiveReverse engineer Hive tables to generate models Using the Loading KM you can map files (local and HDFS files) to the corresponding Hive tables. For example, you can map weblog files categorized by date into a corresponding partitioned Hive table schema. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Hive control Append KM you can validate and transform data in Hive. In the below example, two source Hive tables are joined and mapped to a target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} The Hive Transform KM facilitates processing of semi-structured data in Hive. In the below example, the data from weblog is processed using a Perl script and mapped to target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Oracle Loader for Hadoop (OLH) KM you can load data from Hive table or HDFS to a corresponding table in Oracle. OLH is available as a standalone product. ODI greatly enhances OLH capability by generating the configuration and mapping files for OLH based on the configuration provided in the interface and KM options. ODI seamlessly invokes OLH when executing the scenario. In the below example, a HDFS file is mapped to a table in Oracle. Development and Deployment:The following diagram illustrates the development and deployment of ODI solution for Big Data. Using the ODI Studio on your development machine create and develop ODI solution for processing Big Data by connecting to a MySQL DB or Oracle database on a BDA machine or Hadoop cluster. Schedule the ODI scenarios to be executed on the ODI agent deployed on the BDA machine or Hadoop cluster. ODI Solution for Big Data provides several exciting new capabilities to facilitate the adoption of Big Data in an enterprise. You can find more information about the Oracle Big Data connectors on OTN. You can find an overview of all the new features introduced in ODI 11.1.1.6 in the following document: ODI 11.1.1.6 New Features Overview

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >