Search Results

Search found 10688 results on 428 pages for 'dynamic pdf'.

Page 10/428 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • C# Proposal: Compile Time Static Checking Of Dynamic Objects

    - by Paulo Morgado
    C# 4.0 introduces a new type: dynamic. dynamic is a static type that bypasses static type checking. This new type comes in very handy to work with: The new languages from the dynamic language runtime. HTML Document Object Model (DOM). COM objects. Duck typing … Because static type checking is bypassed, this: dynamic dynamicValue = GetValue(); dynamicValue.Method(); is equivalent to this: object objectValue = GetValue(); objectValue .GetType() .InvokeMember( "Method", BindingFlags.InvokeMethod, null, objectValue, null); Apart from caching the call site behind the scenes and some dynamic resolution, dynamic only looks better. Any typing error will only be caught at run time. In fact, if I’m writing the code, I know the contract of what I’m calling. Wouldn’t it be nice to have the compiler do some static type checking on the interactions with these dynamic objects? Imagine that the dynamic object that I’m retrieving from the GetValue method, besides the parameterless method Method also has a string read-only Property property. This means that, from the point of view of the code I’m writing, the contract that the dynamic object returned by GetValue implements is: string Property { get; } void Method(); Since it’s a well defined contract, I could write an interface to represent it: interface IValue { string Property { get; } void Method(); } If dynamic allowed to specify the contract in the form of dynamic(contract), I could write this: dynamic(IValue) dynamicValue = GetValue(); dynamicValue.Method(); This doesn’t mean that the value returned by GetValue has to implement the IValue interface. It just enables the compiler to verify that dynamicValue.Method() is a valid use of dynamicValue and dynamicValue.OtherMethod() isn’t. If the IValue interface already existed for any other reason, this would be fine. But having a type added to an assembly just for compile time usage doesn’t seem right. So, dynamic could be another type construct. Something like this: dynamic DValue { string Property { get; } void Method(); } The code could now be written like this; DValue dynamicValue = GetValue(); dynamicValue.Method(); The compiler would never generate any IL or metadata for this new type construct. It would only thee used for compile type static checking of dynamic objects. As a consequence, it makes no sense to have public accessibility, so it would not be allowed. Once again, if the IValue interface (or any other type definition) already exists, it can be used in the dynamic type definition: dynamic DValue : IValue, IEnumerable, SomeClass { string Property { get; } void Method(); } Another added benefit would be IntelliSense. I’ve been getting mixed reactions to this proposal. What do you think? Would this be useful?

    Read the article

  • Batch OCR for many PDF files (not already OCRed) ?

    - by David
    Hello, I use Google Desktop Search (I am on Vista) and not all my PDF files are recognized in my archive folder. It is normal as "PDF files that contain scanned images" are not indexed (http://desktop.google.com/support/bin/answer.py?hl=en&answer=90651) So I would like to OCR many of my PDF files that are not already OCRed. My goal : I give the program a folder and it search alone in the subfolders the PDF files that need to be converted into PDF-OCRed files. Note: In the past, if a PDF file was password protected, I removed the password with another batch (paying) tool: verypdf.com "pwdremover" Any (not too much expensive) idea ? I already tried : Finereader 6 pro on xp at the time, but there was no batch processor included... Paperfile paperfile.net which uses Tesseract code.google.com/p/tesseract-ocr/. But the OCR is only PDF to text, not PDF to PDF! There is also another project code.google.com/p/ocropus Thanks in advance ;)

    Read the article

  • Simple Merging Of PDF Documents with iTextSharp 5.4.5.0

    - by Mladen Prajdic
    As we were working on our first SQL Saturday in Slovenia, we came to a point when we had to print out the so-called SpeedPASS's for attendees. This SpeedPASS file is a PDF and contains thier raffle, lunch and admission tickets. The problem is we have to download one PDF per attendee and print that out. And printing more than 10 docs at once is a pain. So I decided to make a little console app that would merge multiple PDF files into a single file that would be much easier to print. I used an open source PDF manipulation library called iTextSharp version 5.4.5.0 This is a console program I used. It’s brilliantly named MergeSpeedPASS. It only has two methods and is really short. Don't let the name fool you It can be used to merge any PDF files. The first parameter is the name of the target PDF file that will be created. The second parameter is the directory containing PDF files to be merged into a single file. using iTextSharp.text; using iTextSharp.text.pdf; using System; using System.IO; namespace MergeSpeedPASS { class Program { static void Main(string[] args) { if (args.Length == 0 || args[0] == "-h" || args[0] == "/h") { Console.WriteLine("Welcome to MergeSpeedPASS. Created by Mladen Prajdic. Uses iTextSharp 5.4.5.0."); Console.WriteLine("Tool to create a single SpeedPASS PDF from all downloaded generated PDFs."); Console.WriteLine(""); Console.WriteLine("Example: MergeSpeedPASS.exe targetFileName sourceDir"); Console.WriteLine(" targetFileName = name of the new merged PDF file. Must include .pdf extension."); Console.WriteLine(" sourceDir = path to the dir containing downloaded attendee SpeedPASS PDFs"); Console.WriteLine(""); Console.WriteLine(@"Example: MergeSpeedPASS.exe MergedSpeedPASS.pdf d:\Downloads\SQLSaturdaySpeedPASSFiles"); } else if (args.Length == 2) CreateMergedPDF(args[0], args[1]); Console.WriteLine(""); Console.WriteLine("Press any key to exit..."); Console.Read(); } static void CreateMergedPDF(string targetPDF, string sourceDir) { using (FileStream stream = new FileStream(targetPDF, FileMode.Create)) { Document pdfDoc = new Document(PageSize.A4); PdfCopy pdf = new PdfCopy(pdfDoc, stream); pdfDoc.Open(); var files = Directory.GetFiles(sourceDir); Console.WriteLine("Merging files count: " + files.Length); int i = 1; foreach (string file in files) { Console.WriteLine(i + ". Adding: " + file); pdf.AddDocument(new PdfReader(file)); i++; } if (pdfDoc != null) pdfDoc.Close(); Console.WriteLine("SpeedPASS PDF merge complete."); } } } } Hope it helps you and have fun.

    Read the article

  • Rails PDF Generation with Prawn in IE7

    - by fluid_chelsea
    I'm using Prawn and Prawnto to generate a PDF in a Ruby on Rails app (Rails version 2.2.2) which works great and generates PDFs happily and sends them to the user to download in Firefox. The problem is in IE7. I have a route set up like so: map.invoice_pdf '/invoices.pdf', :controller => 'invoices', :action => 'index', :format => 'pdf' Which I then have a link like so to call: invoice_pdf_path(:year => params[:year], :month => params[:month], :unpaid_only => params[:unpaid_only]) And the following in my controller: def index params[:year] = default params[:year] params[:month] = default params[:month] params[:page] ||= 1 @invoices = Arobl.find_invoices_for_customer(current_customer.strCustomerID, params) respond_to do |format| format.html{ render :action => 'index' } format.pdf{ prawnto :inline => false, :filename => "#{current_customer.strCustomerID}_invoice.pdf" end In FF this works as expected, when the link is clicked the show action is invoked with a format of .pdf, and responds with the correctly named PDF. When it's hit with IE7 it says that the file or website could not be found, and references "invoices.pdf" instead of the expected customer_id_invoice.pdf filename. Any idea what could be causing this behaviour? Thanks!

    Read the article

  • Rendering PDF on WebPage

    - by Priyank
    Hi. We are trying to load a pdf file in web browser using pdfobject javascript api. Currently the size of the pdf's that we are trying to display is close to 10MBs. This creates a long delay in displaying a PDF on web page; while the complete PDF gets downloaded. We need to remove this lag by achieving either of the alternatives: Show a progress bar until the PDF is actually displayed. We couldn't find an event which is triggered and can be used to find out if pdf is visible now. This lacking doesn't let us decide when to stop showing progress bar/spinner OR lazy load the PDF such that it gets displayed as soon as first page gets loaded. With that ateast user will have a visual indication as to something is happening. We couldn'find anything in pdf object that lets us do a lazy load. User alternative pdf rendering api; this is a low priority as we already have complete code in place; but in an event of first 2 alternatives not being met; we'd have to consider this option. So please feel free to suggest. Any other ideas as to how user interaction can be made more intuitive or pleasant; would be welcome. Cheers

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • 24 Hours of PASS: 15 Powerful Dynamic Management Objects - Deck and Demos

    - by Adam Machanic
    Thank you to everyone who attended today's 24 Hours of PASS webcast on Dynamic Management Objects! I was shocked, awed, and somewhat scared when I saw the attendee number peak at over 800. I really appreciate your taking time out of your day to listen to me talk. It's always interesting presenting to people I can't see or hear, so I relied on Twitter for a form of nearly real-time feedback. I would like to especially thank everyone who left me tweets both during and after the presentation. Your feedback...(read more)

    Read the article

  • 24 Hours of PASS: 15 Powerful Dynamic Management Objects - Deck and Demos

    - by Adam Machanic
    Thank you to everyone who attended today's 24 Hours of PASS webcast on Dynamic Management Objects! I was shocked, awed, and somewhat scared when I saw the attendee number peak at over 800. I really appreciate your taking time out of your day to listen to me talk. It's always interesting presenting to people I can't see or hear, so I relied on Twitter for a form of nearly real-time feedback. I would like to especially thank everyone who left me tweets both during and after the presentation. Your feedback...(read more)

    Read the article

  • Dynamic vs Statically typed languages for websites

    - by Bradford
    Wanted to hear what others thought about this statement: I’ll contrast that with building a website. When rendering web pages, often you have very many components interacting on a web page. You have buttons over here and little widgets over there and there are dozens of them on a webpage, as well as possibly dozens or hundreds of web pages on your website that are all dynamic. With a system with a really large surface area like that, using a statically typed language is actually quite inflexible. I would find it painful probably to program in Scala and render a web page with it, when I want to interactively push around buttons and what-not. If the whole system has to be coherent, like the whole system has to type check just to be able to move a button around, I think that can be really inflexible. Source: http://www.infoq.com/interviews/kallen-scala-twitter

    Read the article

  • Looking for a dynamic programming solution

    - by krammer
    Given a sequence of integers in range 1 to n. Each number can appear at most once. Let there be a symbol X in the sequence which means remove the minimum element from the list. There can be an arbitrarily number of X in the sequence. Example: 1,3,4,X,5,2,X The output is 1,2. We need to find the best way to perform this operation. The solution I have been thinking is: Scan the sequence from left to right and count number of X which takes O(n) time. Perform partial sorting and find the k smallest elements (k = number of X) which takes O(n+klogk) time using median of medians. Is there a better way to solve this problem using dynamic programming or any other way ?

    Read the article

  • Creating a multi-page PDF doc

    - by codemercenary
    Hi, has anyone already created a PDF document in an iPad app. i see that there are new functions in the UIKit to do this, but I can't find any code example for this. BOOL UIGraphicsBeginPDFContextToFile ( NSString *path, CGRect bounds, NSDictionary *documentInfo ); void UIGraphicsBeginPDFPage ( void ); I found an example that is supposed to work on the iPhone, but this gives me errors: Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: CGFont/Freetype: The function `create_subset' is currently unimplemented. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: invalid Type1 font: unable to stream font. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: FT_Load_Glyph failed: error 6. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: FT_Load_Glyph failed: error 6. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: FT_Load_Glyph failed: error 6. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: FT_Load_Glyph failed: error 6.

    Read the article

  • PDF form submission

    - by Jeff
    I have a PDF form (made in Acrobat) that has button to submit via HTTP. What I want to do it have a PHP script that will take the PDF form and e-mail it to me via attachment. What I don't want: --PDF Submit via e-mail button. This requires webmail users to save the pdf and attach it, and is just too confusing for most users. I want one-click and done. --Submit via mailto:[email protected]. Does the same thing as above. If there's a pdf on the server, I know how to use PHP's mail() function to e-mail it to someone. What I don't know how to do is process the PDF once someone hits Submit within the PDF. Does that make sense? Thanks, Jeff

    Read the article

  • PostScript versus PDF as an output format

    - by Brecht Machiels
    I'm currently writing a typesetting application and I'm using PSG as the backend for producing postscript files. I'm now wondering whether that choice makes sense. It seems the ReportLab Toolkit offers all the features PSG offers, and more. ReportLab outputs PDF however. Advantages PDF offers: transparancy better support for character encodings (Unicode, for example) ability to embed TrueType and even OpenType fonts hyperlinks and bookmarks Is there any reason to use Postscript instead of directly outputting to PDF? While Postscript is a full programming language as opposed to PDF, as a basic output format for documents, that doesn't seem to offer any advantage. I assume a PDF can be readily converted to PostScript for printing? Some useful links: Wikipedia: PDF Adobe: PostScript vs. PDF

    Read the article

  • What is a good PDF report generator tool for python?

    - by jlouis
    What is a good tool for PDF report generation in Python? I've checked out ReportLab, but it seems to be awfully low-level for what I want to do. My current hunch is to call TeX on the command-line and let it produce the PDF, but if there is something that is easier to work with (and looks professional - We'll send this to customers) I'd very much like a prod in the right direction.

    Read the article

  • How to embed evince in firefox 4?

    - by Alaukik
    I installed mozplugger and created the file mozpluggerrc with the following content according to this post But whenever I open a .pdf it opens in a separate evince windows is there a way I can truly embed it in Firefox like the chrome pdf reader? application/pdf: pdf: PDF file application/x-pdf: pdf: PDF file text/pdf: pdf: PDF file text/x-pdf: pdf: PDF file application/x-postscript: ps: PostScript file application/postscript: ps: PostScript file application/x-dvi: dvi: DVI file : evince $file

    Read the article

  • Reason for perpetual dynamic DNS updates?

    - by mad_vs
    I'm using dynamic DNS (the "adult" version from RFC 2136, not à la DynDNS), and for a while now I've been seeing my laptops with MacOS 10.6.x churning out updates about every 10 seconds. And seemingly redundant updates at that, as the IP is more or less stable (consumer broadband). I don't remember seeing that frequency in the (distant...) past. The lowest time-to-live that MacOS pushes on the entries is 2 minutes, so I have no clue what's going on. ... Jan 12 13:17:18 lambda named[18683]: info: client 84.208.X.X#48715: updating zone 'dynamic.foldr.org/IN': deleting rrset at 'rCosinus._afpovertcp._tcp.dynamic.foldr.org' SRV Jan 12 13:17:18 lambda named[18683]: info: client 84.208.X.X#48715: updating zone 'dynamic.foldr.org/IN': adding an RR at 'rCosinus._afpovertcp._tcp.dynamic.foldr.org' SRV Jan 12 13:17:26 lambda named[18683]: info: client 84.208.X.X#48715: updating zone 'dynamic.foldr.org/IN': deleting rrset at 'rcosinus.dynamic.foldr.org' AAAA ... Additionally, I can't find out what triggers the updates on the laptop-side. Is this a known problem, and how would I go about debugging it? One of the machines is freshly purchased and installed. The only "major" change was installation of the Miredo client for IPv6/Teredo, but even disabling it didn't make a change (except that AAAA records are no longer published).

    Read the article

  • Implements EAN13 and UPC-A barcode in PDF using fpdf in classic ASP

    - by Jeremy N
    /* FPDF library for ASP can be downloaded from: http://www.aspxnet.it/public/default.asp INFORMATIONS: Translated by: Jeremy Author: Olivier License: Freeware DESCRIPTION: This script implements EAN13 and UPC-A barcodes (the second being a particular case of the first one). Bars are drawn directly in the PDF (no image is generated) function EAN13(x,y,barcode,h,w) -x = x coordinate to start drawing the barcode -y = y coordinate to start drawing the barcode -barcode = code to write (must be all numeric) -h = height of the bar -w = the minimum width of individual bar function UPC_A(x,y,barcode,h,w) Same parameters An EAN13 barcode is made up of 13 digits, UPC-A of 12 (leading zeroes are added if necessary). The last digit is a check digit; if it's not supplied or if it is incorrect, it will be automatically computed. USAGE: Copy all of this text and save it in a file called barcode.ext file under fpdf/extends folder EXAMPLE: Set pdf=CreateJsObject("FPDF") pdf.CreatePDF "P","mm","letter" pdf.SetPath("fpdf/") pdf.LoadExtension("barcode") pdf.Open() pdf.AddPage() 'set the fill color to black pdf.setfillcolor 0,0,0 pdf.UPC_A 80,40,"123456789012",16,0.35 pdf.Close() pdf.NewOutput "" , true, "test.pdf" */ this.EAN13=function (x,y,barcode,h,w) { return this.Barcode(x,y,barcode,h,w,13); }; this.UPC_A=function (x,y,barcode,h,w) { return this.Barcode(x,y,barcode,h,w,12); }; function GetCheckDigit(barCode) { bc = barCode.replace(/[^0-9]+/g,''); total = 0; //Get Odd Numbers for (i=bc.length-1; i=0; i=i-2) { total = total + parseInt(bc.substr(i,1)); } //Get Even Numbers for (i=bc.length-2; i=0; i=i-2) { temp = parseInt(bc.substr(i,1)) * 2; if (temp 9) { tens = Math.floor(temp/10); ones = temp - (tens*10); temp = tens + ones; } total = total + temp; } //Determine the checksum modDigit = (10 - total % 10) % 10; return modDigit.toString(); } //Test validity of check digit function TestCheckDigit(barcode) { var cd=GetCheckDigit(barcode.substring(0,barcode.length-1)); return cd==parseInt(barcode.substring(barcode.length-1,1)); } this.Barcode=function Barcode(x,y,barcode,h,w,len) { //Padding while(barcode.length < len-1) { barcode = '0' + barcode; } if(len==12) {barcode='0' + barcode;} //Add or control the check digit if(barcode.length==12) { barcode += GetCheckDigit(barcode); } else { //if the check digit is incorrect, fix the check digit. if(!TestCheckDigit(barcode)) { barcode = barcode.substring(0,barcode.length-1) + GetCheckDigit(barcode.substring(0,barcode.length-1)); } } //Convert digits to bars var codes=[['0001101','0011001','0010011','0111101','0100011','0110001','0101111','0111011','0110111','0001011'], ['0100111','0110011','0011011','0100001','0011101','0111001','0000101','0010001','0001001','0010111'], ['1110010','1100110','1101100','1000010','1011100','1001110','1010000','1000100','1001000','1110100'] ]; var parities=[[0,0,0,0,0,0], [0,0,1,0,1,1], [0,0,1,1,0,1], [0,0,1,1,1,0], [0,1,0,0,1,1], [0,1,1,0,0,1], [0,1,1,1,0,0], [0,1,0,1,0,1], [0,1,0,1,1,0], [0,1,1,0,1,0] ]; var code='101'; var p=parities[parseInt(barcode.substr(0,1))]; var i; for(i=1;i<=6;i++) { code+= codes[p[i-1]][parseInt(barcode.substr(i,1))]; } code+='01010'; for(i=7;i<=12;i++) { code+= codes[2][parseInt(barcode.substr(i,1))]; } code+='101'; //Draw bars for(i=0;i<code.length;i++) { if(code.substr(i,1)=='1') { this.Rect(x+i*w,y,w,h,'F'); } } //Print text uder barcode. this.SetFont('Arial','',12); //Set the x so that the font is centered under the barcode this.Text(x+parseInt(0.5*barcode.length)*w,y+h+11/this.k,barcode.substr(barcode.length-len,len)); }

    Read the article

  • Does Google use any “Language” flags / tags set within a PDF file when determining its language?

    - by Ally Ak
    When determining the language of a HTML page, I understand that Google looks at any language declarations that the page owner has set, and then also applies its own language detection algorithms. But does Google similarly look at language meta data set in PDF files when determining a PDF file's language? (Authors of PDF files can set document-wide properties describing the language (or languages) contained within it.) Or does Google rely exclusively on language detection algorithms and disregard the language flag set within the PDF file? Can anyone shed any light?

    Read the article

  • How to convert a .pdf file into a folder of images?

    - by Shawn
    I have some .pdf files that I would like to convert to my preferred reading format of .cbr or .cbz or, if this isn't directly possible, I need to extract all pages from the .pdf as images and then compress them into my format of choice. I have only been able to save pages one at a time with Document Viewer. Obviously, I'd like to do it a little quicker. I have tried pdfsam, pdf shuffler, and pdfmod all with no luck. I am using Ubuntu 11.10.

    Read the article

  • How to import a pdf in libreoffice? under ubuntu, all pages are blank

    - by Daniele
    I have some .pdf generated by a scanner, that I want to import in LibreOffice and do some small editing. The PDF has only one object per page, a page-size image. If I open it in LibreOffice under Ubuntu 12.10, it imports "successfully" but all pages are blank. I have the libreoffice-pdfimport package installed. That is true with both LibreOffice 3.6 (part of Ubuntu 12.10) and with 4.0.2, from libreoffice ppa. The same .pdf files open perfectly fine on both LibreOffice for Windows and LibreOffice for Mac (yes, I have three computers with all three OSes), but on Ubuntu 12.10, all pages are blank, so I can only conclude this is an issue with Ubuntu packaging, or something really weird prevents it from working under linux. How can I import these kinds of .pdf into LibreOffice for editing?

    Read the article

  • How to reduce the size of a pdf file?

    - by Nicole
    I'm looking for a way in Ubuntu to reduce the size of a pdf (by reducing the quality of the images). I know that this can be done in Ghostscript by typing the following command in terminal: gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dPDFSETTINGS=/screen -dNOPAUSE -dQUIET -dBATCH -sOutputFile=output.pdf input.pdf The problem is that I can't specify the quality with any accuracy. The parameter -dPDFSETTINGS=/screen is the one that decides the quality; but the alternatives are quite rigid (for example it is possible to do -dPDFSETTINGS=/ebook for slightly better quality). I'm looking for a way to reduce the size of a pdf in a way that allows me to specify the desired quality numerically. I know that this is possible in a Mac, so it must be possible in Linux -- right? Any help would be well appreciated.

    Read the article

  • How to print a pdf in a new tab? [migrated]

    - by TheDuke777
    I need to print a pdf by opening it in a new window. I've looked at tutorials for days, but nothing is working. I've tried many approaches, but this is the most recent: <!DOCTYPE html> <html> <head> <script type="text/javascript"> function print() { window.getElementById("pdf").focus(); window.getElementById("pdf").print(); } </script> </head> <body onload="print()"> <embed id="pdf" src="http://path/to/file" /> </body> </html> The page loads fine, with the pdf embedded. But it won't print, and I feel like I've been beating my head against a brick wall trying to figure this out. How can I get this to work? I'm willing to try anything at this point.

    Read the article

  • How to convert an html page to pdf using javascript? [closed]

    - by user1439891
    I am developing a project, In that I have a receipt page (this is the html page that I want to convert it into pdf) and I've to print it. While printing that page alignments are not coming properly. If I convert it into pdf, then pdf only will take care of that alignments thus my work will become easy and effective. I was restricted to use either JavaScript or js libraries only to complete this task. Could any of you please help me?

    Read the article

  • Lightweight, dynamic, fully JavaScript web UI library recommendations

    - by Matt Greer
    I am looking for recommendations for a lightweight, dynamic, fully JavaScript UI library for websites. Doesn't have to be amazing visually, the end result is for simple demos I create. What I want can be summed up as "Ext-like, but not GPL'ed, and a much smaller footprint". I want to be able to construct UIs dynamically and fully through code. My need for this is currently driven by this particle designer. Depending on what query parameters you give it, the UI components change, example 1, example2. Currently this is written in Ext, but Ext's license and footprint are turn offs for me. I like UKI a lot, but it's not very good for dynamically building UIs since everything is absolutely positioned. Extending Uki to support that is something I am considering. Ideally the library would let me make UIs with a pattern along the lines of: var container = new SomeUI.Container(); container.add(new SomeUI.Label('Color Components')); container.add(new SomeUI.NumberField('R')); container.add(new SomeUI.NumberField('G')); container.add(new SomeUI.NumberField('B')); container.add(new SomeUI.CheckBox('Enable Alpha')); container.renderTo(someDiv);

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >