Search Results

Search found 227 results on 10 pages for 'e lease'.

Page 10/10 | < Previous Page | 6 7 8 9 10 

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • IPsec tunnel to Android device not created even though there is an IKE SA

    - by Quentin Swain
    I'm trying to configure a VPN tunnel between an Android device running 4.1 and a Fedora 17 Linux box running strongSwan 5.0. The device reports that it is connected and strongSwan statusall returns that there is an IKE SA, but doesn't display a tunnel. I used the instructions for iOS in the wiki to generate certificates and configure strongSwan. Since Android uses a modified version of racoon this should work and since the connection is partly established I think I am on the right track. I don't see any errors about not being able to create the tunnel. This is the configuration for the strongSwan connection conn android2 keyexchange=ikev1 authby=xauthrsasig xauth=server left=96.244.142.28 leftsubnet=0.0.0.0/0 leftfirewall=yes leftcert=serverCert.pem right=%any rightsubnet=10.0.0.0/24 rightsourceip=10.0.0.2 rightcert=clientCert.pem ike=aes256-sha1-modp1024 auto=add This is the output of strongswan statusall Status of IKE charon daemon (strongSwan 5.0.0, Linux 3.3.4-5.fc17.x86_64, x86_64): uptime: 20 minutes, since Oct 31 10:27:31 2012 malloc: sbrk 270336, mmap 0, used 198144, free 72192 worker threads: 8 of 16 idle, 7/1/0/0 working, job queue: 0/0/0/0, scheduled: 7 loaded plugins: charon aes des sha1 sha2 md5 random nonce x509 revocation constraints pubkey pkcs1 pkcs8 pgp dnskey pem openssl fips-prf gmp xcbc cmac hmac attr kernel-netlink resolve socket-default stroke updown xauth-generic Virtual IP pools (size/online/offline): android-hybrid: 1/0/0 android2: 1/1/0 Listening IP addresses: 96.244.142.28 Connections: android-hybrid: %any...%any IKEv1 android-hybrid: local: [C=CH, O=strongSwan, CN=vpn.strongswan.org] uses public key authentication android-hybrid: cert: "C=CH, O=strongSwan, CN=vpn.strongswan.org" android-hybrid: remote: [%any] uses XAuth authentication: any android-hybrid: child: dynamic === dynamic TUNNEL android2: 96.244.142.28...%any IKEv1 android2: local: [C=CH, O=strongSwan, CN=vpn.strongswan.org] uses public key authentication android2: cert: "C=CH, O=strongSwan, CN=vpn.strongswan.org" android2: remote: [C=CH, O=strongSwan, CN=client] uses public key authentication android2: cert: "C=CH, O=strongSwan, CN=client" android2: remote: [%any] uses XAuth authentication: any android2: child: 0.0.0.0/0 === 10.0.0.0/24 TUNNEL Security Associations (1 up, 0 connecting): android2[3]: ESTABLISHED 10 seconds ago, 96.244.142.28[C=CH, O=strongSwan, CN=vpn.strongswan.org]...208.54.35.241[C=CH, O=strongSwan, CN=client] android2[3]: Remote XAuth identity: android android2[3]: IKEv1 SPIs: 4151e371ad46b20d_i 59a56390d74792d2_r*, public key reauthentication in 56 minutes android2[3]: IKE proposal: AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024 The output of ip -s xfrm policy src ::/0 dst ::/0 uid 0 socket in action allow index 3851 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use - src ::/0 dst ::/0 uid 0 socket out action allow index 3844 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use - src ::/0 dst ::/0 uid 0 socket in action allow index 3835 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use - src ::/0 dst ::/0 uid 0 socket out action allow index 3828 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use - src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 socket in action allow index 3819 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use 2012-10-31 13:29:39 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 socket out action allow index 3812 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use 2012-10-31 13:29:22 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 socket in action allow index 3803 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use 2012-10-31 13:29:20 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 socket out action allow index 3796 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use 2012-10-31 13:29:20 So a xfrm policy isn't being created for the connection, even though there is an SA between device and strongswan. Executing ip -s xfrm policy on the android device results in the following output: src 0.0.0.0/0 dst 10.0.0.2/32 uid 0 dir in action allow index 40 priority 2147483648 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:08 use - tmpl src 96.244.142.28 dst 25.239.33.30 proto esp spi 0x00000000(0) reqid 0(0x00000000) mode tunnel level required share any enc-mask 00000000 auth-mask 00000000 comp-mask 00000000 src 10.0.0.2/32 dst 0.0.0.0/0 uid 0 dir out action allow index 33 priority 2147483648 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:08 use - tmpl src 25.239.33.30 dst 96.244.142.28 proto esp spi 0x00000000(0) reqid 0(0x00000000) mode tunnel level required share any enc-mask 00000000 auth-mask 00000000 comp-mask 00000000 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 dir 4 action allow index 28 priority 0 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:04 use 2012-10-31 13:42:08 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 dir 3 action allow index 19 priority 0 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:04 use 2012-10-31 13:42:08 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 dir 4 action allow index 12 priority 0 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:04 use 2012-10-31 13:42:06 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 dir 3 action allow index 3 priority 0 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:04 use 2012-10-31 13:42:07 Logs from charon: 00[DMN] Starting IKE charon daemon (strongSwan 5.0.0, Linux 3.3.4-5.fc17.x86_64, x86_64) 00[KNL] listening on interfaces: 00[KNL] em1 00[KNL] 96.244.142.28 00[KNL] fe80::224:e8ff:fed2:18b2 00[CFG] loading ca certificates from '/etc/strongswan/ipsec.d/cacerts' 00[CFG] loaded ca certificate "C=CH, O=strongSwan, CN=strongSwan CA" from '/etc/strongswan/ipsec.d/cacerts/caCert.pem' 00[CFG] loading aa certificates from '/etc/strongswan/ipsec.d/aacerts' 00[CFG] loading ocsp signer certificates from '/etc/strongswan/ipsec.d/ocspcerts' 00[CFG] loading attribute certificates from '/etc/strongswan/ipsec.d/acerts' 00[CFG] loading crls from '/etc/strongswan/ipsec.d/crls' 00[CFG] loading secrets from '/etc/strongswan/ipsec.secrets' 00[CFG] loaded RSA private key from '/etc/strongswan/ipsec.d/private/clientKey.pem' 00[CFG] loaded IKE secret for %any 00[CFG] loaded EAP secret for android 00[CFG] loaded EAP secret for android 00[DMN] loaded plugins: charon aes des sha1 sha2 md5 random nonce x509 revocation constraints pubkey pkcs1 pkcs8 pgp dnskey pem openssl fips-prf gmp xcbc cmac hmac attr kernel-netlink resolve socket-default stroke updown xauth-generic 08[NET] waiting for data on sockets 16[LIB] created thread 16 [15338] 16[JOB] started worker thread 16 11[CFG] received stroke: add connection 'android-hybrid' 11[CFG] conn android-hybrid 11[CFG] left=%any 11[CFG] leftsubnet=(null) 11[CFG] leftsourceip=(null) 11[CFG] leftauth=pubkey 11[CFG] leftauth2=(null) 11[CFG] leftid=(null) 11[CFG] leftid2=(null) 11[CFG] leftrsakey=(null) 11[CFG] leftcert=serverCert.pem 11[CFG] leftcert2=(null) 11[CFG] leftca=(null) 11[CFG] leftca2=(null) 11[CFG] leftgroups=(null) 11[CFG] leftupdown=ipsec _updown iptables 11[CFG] right=%any 11[CFG] rightsubnet=(null) 11[CFG] rightsourceip=96.244.142.3 11[CFG] rightauth=xauth 11[CFG] rightauth2=(null) 11[CFG] rightid=%any 11[CFG] rightid2=(null) 11[CFG] rightrsakey=(null) 11[CFG] rightcert=(null) 11[CFG] rightcert2=(null) 11[CFG] rightca=(null) 11[CFG] rightca2=(null) 11[CFG] rightgroups=(null) 11[CFG] rightupdown=(null) 11[CFG] eap_identity=(null) 11[CFG] aaa_identity=(null) 11[CFG] xauth_identity=(null) 11[CFG] ike=aes256-sha1-modp1024 11[CFG] esp=aes128-sha1-modp2048,3des-sha1-modp1536 11[CFG] dpddelay=30 11[CFG] dpdtimeout=150 11[CFG] dpdaction=0 11[CFG] closeaction=0 11[CFG] mediation=no 11[CFG] mediated_by=(null) 11[CFG] me_peerid=(null) 11[CFG] keyexchange=ikev1 11[KNL] getting interface name for %any 11[KNL] %any is not a local address 11[KNL] getting interface name for %any 11[KNL] %any is not a local address 11[CFG] left nor right host is our side, assuming left=local 11[CFG] loaded certificate "C=CH, O=strongSwan, CN=vpn.strongswan.org" from 'serverCert.pem' 11[CFG] id '%any' not confirmed by certificate, defaulting to 'C=CH, O=strongSwan, CN=vpn.strongswan.org' 11[CFG] added configuration 'android-hybrid' 11[CFG] adding virtual IP address pool 'android-hybrid': 96.244.142.3/32 13[CFG] received stroke: add connection 'android2' 13[CFG] conn android2 13[CFG] left=96.244.142.28 13[CFG] leftsubnet=0.0.0.0/0 13[CFG] leftsourceip=(null) 13[CFG] leftauth=pubkey 13[CFG] leftauth2=(null) 13[CFG] leftid=(null) 13[CFG] leftid2=(null) 13[CFG] leftrsakey=(null) 13[CFG] leftcert=serverCert.pem 13[CFG] leftcert2=(null) 13[CFG] leftca=(null) 13[CFG] leftca2=(null) 13[CFG] leftgroups=(null) 13[CFG] leftupdown=ipsec _updown iptables 13[CFG] right=%any 13[CFG] rightsubnet=10.0.0.0/24 13[CFG] rightsourceip=10.0.0.2 13[CFG] rightauth=pubkey 13[CFG] rightauth2=xauth 13[CFG] rightid=(null) 13[CFG] rightid2=(null) 13[CFG] rightrsakey=(null) 13[CFG] rightcert=clientCert.pem 13[CFG] rightcert2=(null) 13[CFG] rightca=(null) 13[CFG] rightca2=(null) 13[CFG] rightgroups=(null) 13[CFG] rightupdown=(null) 13[CFG] eap_identity=(null) 13[CFG] aaa_identity=(null) 13[CFG] xauth_identity=(null) 13[CFG] ike=aes256-sha1-modp1024 13[CFG] esp=aes128-sha1-modp2048,3des-sha1-modp1536 13[CFG] dpddelay=30 13[CFG] dpdtimeout=150 13[CFG] dpdaction=0 13[CFG] closeaction=0 13[CFG] mediation=no 13[CFG] mediated_by=(null) 13[CFG] me_peerid=(null) 13[CFG] keyexchange=ikev0 13[KNL] getting interface name for %any 13[KNL] %any is not a local address 13[KNL] getting interface name for 96.244.142.28 13[KNL] 96.244.142.28 is on interface em1 13[CFG] loaded certificate "C=CH, O=strongSwan, CN=vpn.strongswan.org" from 'serverCert.pem' 13[CFG] id '96.244.142.28' not confirmed by certificate, defaulting to 'C=CH, O=strongSwan, CN=vpn.strongswan.org' 13[CFG] loaded certificate "C=CH, O=strongSwan, CN=client" from 'clientCert.pem' 13[CFG] id '%any' not confirmed by certificate, defaulting to 'C=CH, O=strongSwan, CN=client' 13[CFG] added configuration 'android2' 13[CFG] adding virtual IP address pool 'android2': 10.0.0.2/32 08[NET] received packet: from 208.54.35.241[32235] to 96.244.142.28[500] 15[CFG] looking for an ike config for 96.244.142.28...208.54.35.241 15[CFG] candidate: %any...%any, prio 2 15[CFG] candidate: 96.244.142.28...%any, prio 5 15[CFG] found matching ike config: 96.244.142.28...%any with prio 5 01[JOB] next event in 29s 999ms, waiting 15[IKE] received NAT-T (RFC 3947) vendor ID 15[IKE] received draft-ietf-ipsec-nat-t-ike-02 vendor ID 15[IKE] received draft-ietf-ipsec-nat-t-ike-02\n vendor ID 15[IKE] received draft-ietf-ipsec-nat-t-ike-00 vendor ID 15[IKE] received XAuth vendor ID 15[IKE] received Cisco Unity vendor ID 15[IKE] received DPD vendor ID 15[IKE] 208.54.35.241 is initiating a Main Mode IKE_SA 15[IKE] IKE_SA (unnamed)[1] state change: CREATED => CONNECTING 15[CFG] selecting proposal: 15[CFG] proposal matches 15[CFG] received proposals: IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_256/HMAC_MD5_96/PRF_HMAC_MD5/MODP_1024, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_128/HMAC_MD5_96/PRF_HMAC_MD5/MODP_1024, IKE:3DES_CBC/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:3DES_CBC/HMAC_MD5_96/PRF_HMAC_MD5/MODP_1024, IKE:DES_CBC/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:DES_CBC/HMAC_MD5_96/PRF_HMAC_MD5/MODP_1024 15[CFG] configured proposals: IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_128/AES_CBC_192/AES_CBC_256/3DES_CBC/CAMELLIA_CBC_128/CAMELLIA_CBC_192/CAMELLIA_CBC_256/HMAC_MD5_96/HMAC_SHA1_96/HMAC_SHA2_256_128/HMAC_SHA2_384_192/HMAC_SHA2_512_256/AES_XCBC_96/AES_CMAC_96/PRF_HMAC_MD5/PRF_HMAC_SHA1/PRF_HMAC_SHA2_256/PRF_HMAC_SHA2_384/PRF_HMAC_SHA2_512/PRF_AES128_XCBC/PRF_AES128_CMAC/MODP_2048/MODP_2048_224/MODP_2048_256/MODP_1536/MODP_4096/MODP_8192/MODP_1024/MODP_1024_160 15[CFG] selected proposal: IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024 15[NET] sending packet: from 96.244.142.28[500] to 208.54.35.241[32235] 04[NET] sending packet: from 96.244.142.28[500] to 208.54.35.241[32235] 15[MGR] checkin IKE_SA (unnamed)[1] 15[MGR] check-in of IKE_SA successful. 08[NET] received packet: from 208.54.35.241[32235] to 96.244.142.28[500] 08[NET] waiting for data on sockets 07[MGR] checkout IKE_SA by message 07[MGR] IKE_SA (unnamed)[1] successfully checked out 07[NET] received packet: from 208.54.35.241[32235] to 96.244.142.28[500] 07[LIB] size of DH secret exponent: 1023 bits 07[IKE] remote host is behind NAT 07[IKE] sending cert request for "C=CH, O=strongSwan, CN=strongSwan CA" 07[ENC] generating NAT_D_V1 payload finished 07[NET] sending packet: from 96.244.142.28[500] to 208.54.35.241[32235] 07[MGR] checkin IKE_SA (unnamed)[1] 07[MGR] check-in of IKE_SA successful. 04[NET] sending packet: from 96.244.142.28[500] to 208.54.35.241[32235] 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 10[IKE] ignoring certificate request without data 10[IKE] received end entity cert "C=CH, O=strongSwan, CN=client" 10[CFG] looking for XAuthInitRSA peer configs matching 96.244.142.28...208.54.35.241[C=CH, O=strongSwan, CN=client] 10[CFG] candidate "android-hybrid", match: 1/1/2/2 (me/other/ike/version) 10[CFG] candidate "android2", match: 1/20/5/1 (me/other/ike/version) 10[CFG] selected peer config "android2" 10[CFG] certificate "C=CH, O=strongSwan, CN=client" key: 2048 bit RSA 10[CFG] using trusted ca certificate "C=CH, O=strongSwan, CN=strongSwan CA" 10[CFG] checking certificate status of "C=CH, O=strongSwan, CN=client" 10[CFG] ocsp check skipped, no ocsp found 10[CFG] certificate status is not available 10[CFG] certificate "C=CH, O=strongSwan, CN=strongSwan CA" key: 2048 bit RSA 10[CFG] reached self-signed root ca with a path length of 0 10[CFG] using trusted certificate "C=CH, O=strongSwan, CN=client" 10[IKE] authentication of 'C=CH, O=strongSwan, CN=client' with RSA successful 10[ENC] added payload of type ID_V1 to message 10[ENC] added payload of type SIGNATURE_V1 to message 10[IKE] authentication of 'C=CH, O=strongSwan, CN=vpn.strongswan.org' (myself) successful 10[IKE] queueing XAUTH task 10[IKE] sending end entity cert "C=CH, O=strongSwan, CN=vpn.strongswan.org" 10[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 04[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 10[IKE] activating new tasks 10[IKE] activating XAUTH task 10[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 04[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 01[JOB] next event in 3s 999ms, waiting 10[MGR] checkin IKE_SA android2[1] 10[MGR] check-in of IKE_SA successful. 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 08[NET] waiting for data on sockets 12[MGR] checkout IKE_SA by message 12[MGR] IKE_SA android2[1] successfully checked out 12[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 12[MGR] checkin IKE_SA android2[1] 12[MGR] check-in of IKE_SA successful. 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 16[MGR] checkout IKE_SA by message 16[MGR] IKE_SA android2[1] successfully checked out 16[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 08[NET] waiting for data on sockets 16[IKE] XAuth authentication of 'android' successful 16[IKE] reinitiating already active tasks 16[IKE] XAUTH task 16[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 04[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 16[MGR] checkin IKE_SA android2[1] 01[JOB] next event in 3s 907ms, waiting 16[MGR] check-in of IKE_SA successful. 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 09[MGR] checkout IKE_SA by message 09[MGR] IKE_SA android2[1] successfully checked out 09[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] .8rS 09[IKE] IKE_SA android2[1] established between 96.244.142.28[C=CH, O=strongSwan, CN=vpn.strongswan.org]...208.54.35.241[C=CH, O=strongSwan, CN=client] 09[IKE] IKE_SA android2[1] state change: CONNECTING => ESTABLISHED 09[IKE] scheduling reauthentication in 3409s 09[IKE] maximum IKE_SA lifetime 3589s 09[IKE] activating new tasks 09[IKE] nothing to initiate 09[MGR] checkin IKE_SA android2[1] 09[MGR] check-in of IKE_SA successful. 09[MGR] checkout IKE_SA 09[MGR] IKE_SA android2[1] successfully checked out 09[MGR] checkin IKE_SA android2[1] 09[MGR] check-in of IKE_SA successful. 01[JOB] next event in 3s 854ms, waiting 08[NET] waiting for data on sockets 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 14[MGR] checkout IKE_SA by message 14[MGR] IKE_SA android2[1] successfully checked out 14[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 14[IKE] processing INTERNAL_IP4_ADDRESS attribute 14[IKE] processing INTERNAL_IP4_NETMASK attribute 14[IKE] processing INTERNAL_IP4_DNS attribute 14[IKE] processing INTERNAL_IP4_NBNS attribute 14[IKE] processing UNITY_BANNER attribute 14[IKE] processing UNITY_DEF_DOMAIN attribute 14[IKE] processing UNITY_SPLITDNS_NAME attribute 14[IKE] processing UNITY_SPLIT_INCLUDE attribute 14[IKE] processing UNITY_LOCAL_LAN attribute 14[IKE] processing APPLICATION_VERSION attribute 14[IKE] peer requested virtual IP %any 14[CFG] assigning new lease to 'android' 14[IKE] assigning virtual IP 10.0.0.2 to peer 'android' 14[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 14[MGR] checkin IKE_SA android2[1] 14[MGR] check-in of IKE_SA successful. 04[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 08[NET] waiting for data on sockets 01[JOB] got event, queuing job for execution 01[JOB] next event in 91ms, waiting 13[MGR] checkout IKE_SA 13[MGR] IKE_SA android2[1] successfully checked out 13[MGR] checkin IKE_SA android2[1] 13[MGR] check-in of IKE_SA successful. 01[JOB] got event, queuing job for execution 01[JOB] next event in 24s 136ms, waiting 15[MGR] checkout IKE_SA 15[MGR] IKE_SA android2[1] successfully checked out 15[MGR] checkin IKE_SA android2[1] 15[MGR] check-in of IKE_SA successful.

    Read the article

< Previous Page | 6 7 8 9 10