Search Results

Search found 289 results on 12 pages for 'maintainability'.

Page 10/12 | < Previous Page | 6 7 8 9 10 11 12  | Next Page >

  • LinqKit stack overflow exception using predicate builder

    - by MLynn
    I am writing an application in C# using LINQ and LINQKit. I have a very large database table with company registration numbers in it. I want to do a LINQ query which will produce the equivalent SQL: select * from table1 where regno in('123','456') The 'in' clause may have thousands of terms. First I get the company registration numbers from a field such as Country. I then add all the company registration numbers to a predicate: var predicate = PredicateExtensions.False<table2>(); if (RegNos != null) { foreach (int searchTerm in RegNos) { int temp = searchTerm; predicate = predicate.Or(ec => ec.regno.Equals(temp)); } } On Windows Vista Professional a stack overflow exception occured after 4063 terms were added. On Windows Server 2003 a stack overflow exception occured after about 1000 terms were added. I had to solve this problem quickly for a demo. To solve the problem I used this notation: var predicate = PredicateExtensions.False<table2>(); if (RegNosDistinct != null) { predicate = predicate.Or(ec => RegNos.Contains(ec.regno)); } My questions are: Why does a stack overflow occur using the foreach loop? I take it Windows Server 2003 has a much smaller stack per process\thread than NT\2000\XP\Vista\Windows 7 workstation versions of Windows. Which is the fastest and most correct way to achieve this using LINQ and LINQKit? It was suggested I stop using LINQ and go back to dynamic SQL or ADO.NET but I think using LINQ and LINQKit is far better for maintainability.

    Read the article

  • Divide and conquer of large objects for GC performance

    - by Aperion
    At my work we're discussing different approaches to cleaning up a large amount of managed ~50-100MB memory.There are two approaches on the table (read: two senior devs can't agree) and not having the experience the rest of the team is unsure of what approach is more desirable, performance or maintainability. The data being collected is many small items, ~30000 which in turn contains other items, all objects are managed. There is a lot of references between these objects including event handlers but not to outside objects. We'll call this large group of objects and references as a single entity called a blob. Approach #1: Make sure all references to objects in the blob are severed and let the GC handle the blob and all the connections. Approach #2: Implement IDisposable on these objects then call dispose on these objects and set references to Nothing and remove handlers. The theory behind the second approach is since the large longer lived objects take longer to cleanup in the GC. So, by cutting the large objects into smaller bite size morsels the garbage collector will processes them faster, thus a performance gain. So I think the basic question is this: Does breaking apart large groups of interconnected objects optimize data for garbage collection or is better to keep them together and rely on the garbage collection algorithms to processes the data for you? I feel this is a case of pre-optimization, but I do not know enough of the GC to know what does help or hinder it.

    Read the article

  • Passing an arbitrary JSONValue to a JSNI function

    - by Riley Lark
    I have a JSONValue in my Java that may be a JSONArray, a JSONObject, a JSONString, etc. I want to pass it to a JSNI function that can accept any of those types. If I naively write my JSNI as something like: public final native jsni(Object parameter) /*-{ doSomething(parameter); }-*/; public void useFunction(JSONValue value) { jsni(value); //Throws js exception at runtime :( } then I get a javascript exception, because GWT doesn't know how to convert the JSONValue to a JavaScriptObject (or native string / number value). My current workaround is public final native jsniForJSO(Object parameter) /*-{ doSomething(parameter); }-*/; public final native jsniForString(String parameter) /*-{ doSomething(parameter); }-*/; public final native jsniForNumber(double parameter) /*-{ doSomething(parameter); }-*/; public actuallyUseFunction(JSONValue value) { if (value.isObject()) { jsniForJSO(value.isObject().getJavaScriptObject()); } else if (value.isString()) { jsniForString(value.isString().stringValue()); } else { //etc } } This is a big burden for code maintainability, etc... especially if you have more than one parameter. Is there a way to generate these functions automatically, or get around this issue altogether? I've taken to wrapping everything in a JSONObject first, so I can definitely get a JavaScriptObject to pass to my jsni, but that's another clumsy mechanic.

    Read the article

  • Rails: generating URLs for actions in JSON response

    - by Chris Butler
    In a view I am generating an HTML canvas of figures based on model data in an app. In the view I am preloading JSON model data in the page like this (to avoid an initial request back): <script type="text/javascript" charset="utf-8"> <% ActiveRecord::Base.include_root_in_json = false -%> var objects = <%= @objects.to_json(:include => :other_objects) %>; ... Based on mouse (or touch) interaction I want to redirect to other parts of my app that are model specific (such as view, edit, delete, etc.). Rather than hard code the URLs in my JavaScript I want to generate them from Rails (which means it always adapts the latest routes). It seems like I have one of three options: Add an empty attr to the model that the controller fills in with the appropriate URL (we don't want to use routes in the model) before the JSON is generated Generate custom JSON where I add the different URLs manually Generate the URL as a template from Rails and replace the IDs in JavaScript as appropriate I am starting to lean towards #1 for ease of implementation and maintainability. Are there any other options that I am missing? Is #1 not the best? Thanks! Chris

    Read the article

  • What database strategy to choose for a large web application

    - by Snoopy
    I have to rewrite a large database application, running on 32 servers. The hardware is up to date, each machine has two quad core Xeon and 32 GByte RAM. The database is multi-tenant, each customer has his own file, around 5 to 10 GByte each. I run around 50 databases on this hardware. The app is open to the web, so I have no control on the load. There are no really complex queries, so SQL is not required if there is a better solution. The databases get updated via FTP every day at midnight. The database is read-only. C# is my favourite language and I want to use ASP.NET MVC. I thought about the following options: Use two big SQL servers running SQL Server 2012 to serve the 32 servers with data. On the 32 servers running IIS hosting providing REST services. Denormalize the database and use Redis on each webserver. Use booksleeve as a Redis client. Use a combination of SQL Server and Redis Use SQL Server 2012 together with Hadoop Use Hadoop without SQL Server What is the best way for a read-only database, to get the best performance without loosing maintainability? Does Map-Reduce make sense at all in such a scenario? The reason for the rewrite is, the old app written in C++ with ISAM technology is too slow, the interfaces are old fashioned and not nice to use from an website, especially when using ajax. The app uses a relational datamodel with many tables, but it is possible to write one accerlerator table where all queries can be performed on, and all other information from the other tables are possible by a simple key lookup.

    Read the article

  • Structuring the UI code of a single-page EXTjs Web app using Rails?

    - by Daniel Beardsley
    I’m in the process of creating a large single-page web-app using ext-js for the UI components with Rails on the backend. I’ve come to good solutions for transferring data using Whorm gem and Rails support of RESTful Resources. What I haven’t come to a conclusion on is how to structure the UI and business logic aspects of the application. I’ve had a look at a few options, including Netzke but haven’t seen anything that I really think fits my needs. How should a web-application that uses ext-js components, layouts, and controls in the browser and Rails on the server best implement UI component re-use, good organization, and maintainability while maintaining a flexible layout design. Specifically I’m looking for best-practice suggestions for structuring the code that creates and configures UI components (many UI config options will be based on user data) Should EXT classes be extended in static JS for often re-used customizations and then instantiated with various configuration options by generated JS within html partials? Should partials create javascript blocks that instantiate EXT components? Should partials call helpers that return ruby hashes for EXT component config which is then dumped to Json? Something else entirely? There are many options and I'd love to hear from people who've been down this road and found some methodology that worked for them.

    Read the article

  • What's the best way to store Logon User information for Web Application?

    - by Morgan Cheng
    I was once in a project of web application developed on ASP.NET. For each logon user, there is an object (let's call it UserSessionObject here) created and stored in RAM. For each HTTP request of given user, matching UserSessoinObject instance is used to visit user state information and connection to database. So, this UserSessionObject is pretty important. This design brings several problems found later: 1) Since this UserSessionObject is cached in ASP.NET memory space, we have to config load balancer to be sticky connection. That is, HTTP request in single session would always be sent to one web server behind. This limit scalability and maintainability. 2) This UserSessionObject is accessed in every HTTP request. To keep the consistency, there is a exclusive lock for the UserSessionObject. Only one HTTP request can be processed at any given time because it must to obtain the lock first. The performance and response time is affected. Now, I'm wondering whether there is better design to handle such logon user case. It seems Sharing-Nothing-Architecture helps. That means long user info is retrieved from database each time. I'm afraid that would hurt performance. Is there any design pattern for long user web app? Thanks.

    Read the article

  • How to embed a precharged collection of non-entity forms in symfony2

    - by metalvarez
    I want to embed a collection of precharged non-entity forms, here is the code, first is the parent form buildForm method. public function buildForm(FormBuilderInterface $builder, array $options) { $builder->add("example1")->add("example2"); $builder->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent $event) { /*some logic to do before adding the collection of forms*/ $form->add('aclAccess', 'collection', array( 'type' => new ChildFormType(), 'allow_add' => true, 'mapped' => false, 'data' => /* I dont know how to precharge a collection of non-entity forms*/ )); }); } now the child form public function buildForm (FormBuilderInterface $builder, array $options) { $builder->add("test1", "text", array("read_only" => true, "data" => "test")); $builder->->add("test2", "choice", array( 'choices' => array('opt1' => 'Opt1', 'opt2' => 'Opt2'), 'multiple' => true, 'expanded' => true )); } so basicly i want to manage those child options in the test2 field as separated forms, each option group will depend on the value of the test1 field, i know this can be done by coding everythin in twig without form classes but i think having form classes its the best practice to run phpunit test, for maintainability, etc ...

    Read the article

  • Enterprise Platform in Python, Design Advice

    - by Jason Miesionczek
    I am starting the design of a somewhat large enterprise platform in Python, and was wondering if you guys can give me some advice as to how to organize the various components and which packages would help achieve the goals of scalability, maintainability, and reliability. The system is basically a service that collects data from various outside sources, with each outside source having its own separate application. These applications would poll a central database and get any requests that have been submitted to perform on the external source. There will be a main website and REST/SOAP API that should also have access to the central data service. My initial thought was to use Django for the web site, web service and data access layer (using its built-in ORM), and then the outside source applications can use the web service(s) to get the information they need to process the request and save the results. Using this method would allow me to have multiple instances of the service applications running on the same or different machines to balance out the load. Are there more elegant means of accomplishing this? i've heard of messaging systems such as MQ, would something like that be beneficial in this scenario? My other thought was to use a completely separate data service not based on Django, and use some kind of remoting or remote objects (in they exist in Python) to interact with the data model. The downside here would be with the website which would become much slower if it had to push all of its data requests through a second layer. I would love to hear what other developers have come up with to achieve these goals in the most flexible way possible.

    Read the article

  • Identifying a class which is extending an abstract class

    - by Simon A. Eugster
    Good Evening, I'm doing a major refactoring of http://wiki2xhtml.sourceforge.net/ to finally get better overview and maintainability. (I started the project when I decided to start programming, so – you get it, right? ;)) At the moment I wonder how to solve the problem I'll describe now: Every file will be put through several parsers (like one for links, one for tables, one for images, etc.): public class WikiLinks extends WikiTask { ... } public class WikiTables extends WikiTask { ... } The files will then be parsed about this way: public void parse() { if (!parse) return; WikiTask task = new WikiLinks(); do { task.parse(this); } while ((task = task.nextTask()) != null); } Sometimes I may want to use no parser at all (for files that only need to be copied), or only a chosen one (e.g. for testing purposes). So before running task.parse() I need to check whether this certain parser is actually necessary/desired. (Perhaps via Blacklist or Whitelist.) What would you suggest for comparing? An ID for each WikiTask (how to do?)? Comparing the task Object itself against a new instance of a WikiTask (overhead)?

    Read the article

  • How to construct objects based on XML code?

    - by the_drow
    I have XML files that are representation of a portion of HTML code. Those XML files also have widget declarations. Example XML file: <message id="msg"> <p> <Widget name="foo" type="SomeComplexWidget" attribute="value"> inner text here, sets another attribute or inserts another widget to the tree if needed... </Widget> </p> </message> I have a main Widget class that all of my widgets inherit from. The question is how would I create it? Here are my options: Create a compile time tool that will parse the XML file and create the necessary code to bind the widgets to the needed objects. Advantages: No extra run-time overhead induced to the system. It's easy to bind setters. Disadvantages: Adds another step to the build chain. Hard to maintain as every widget in the system should be added to the parser. Use of macros to bind the widgets. Complex code Find a method to register all widgets into a factory automatically. Advantages: All of the binding is done completely automatically. Easier to maintain then option 1 as every new widget will only need to call a WidgetFactory method that registers it. Disadvantages: No idea how to bind setters without introducing a maintainability nightmare. Adds memory and run-time overhead. Complex code What do you think is better? Can you guys suggest a better solution?

    Read the article

  • for loop vs std::for_each with lambda

    - by Andrey
    Let's consider a template function written in C++11 which iterates over a container. Please exclude from consideration the range loop syntax because it is not yet supported by the compiler I'm working with. template <typename Container> void DoSomething(const Container& i_container) { // Option #1 for (auto it = std::begin(i_container); it != std::end(i_container); ++it) { // do something with *it } // Option #2 std::for_each(std::begin(i_container), std::end(i_container), [] (typename Container::const_reference element) { // do something with element }); } What are pros/cons of for loop vs std::for_each in terms of: a) performance? (I don't expect any difference) b) readability and maintainability? Here I see many disadvantages of for_each. It wouldn't accept a c-style array while the loop would. The declaration of the lambda formal parameter is so verbose, not possible to use auto there. It is not possible to break out of for_each. In pre- C++11 days arguments against for were a need of specifying the type for the iterator (doesn't hold any more) and an easy possibility of mistyping the loop condition (I've never done such mistake in 10 years). As a conclusion, my thoughts about for_each contradict the common opinion. What am I missing here?

    Read the article

  • multiple webapps in tomcat -- what is the optimal architecture?

    - by rvdb
    I am maintaining a growing base of mainly Cocoon-2.1-based web applications [http://cocoon.apache.org/2.1/], deployed in a Tomcat servlet container [http://tomcat.apache.org/], and proxied with an Apache http server [http://httpd.apache.org/docs/2.2/]. I am conceptually struggling with the best way to deploy multiple web applications in Tomcat. Since I'm not a Java programmer and we don't have any sysadmin staff I have to figure out myself what is the most sensible way to do this. My setup has evolved through 2 scenarios and I'm considering a third for maximal separation of the distinct webapps. [1] 1 Tomcat instance, 1 Cocoon instance, multiple webapps -tomcat |_ webapps |_ webapp1 |_ webapp2 |_ webapp[n] |_ WEB-INF (with Cocoon libs) This was my first approach: just drop all web applications inside a single Cocoon webapps folder inside a single Tomcat container. This seemed to run fine, I did not encounter any memory issues. However, this poses a maintainability drawback, as some Cocoon components are subject to updates, which often affect the webapp coding. Hence, updating Cocoon becomes unwieldy: since all webapps share the same pool of Cocoon components, updating one of them would require the code in all web applications to be updated simultaneously. In order to isolate the web applications, I moved to the second scenario. [2] 1 Tomcat instance, each webapp in its dedicated Cocoon environment -tomcat |_ webapps |_ webapp1 | |_ WEB-INF (with Cocoon libs) |_ webapp1 | |_ WEB-INF (with Cocoon libs) |_ webapp[n] |_ WEB-INF (with Cocoon libs) This approach separates all webapps into their own Cocoon environment, run inside a single Tomcat container. In theory, this works fine: all webapps can be updated independently. However, this soon results in PermGenSpace errors. It seemed that I could manage the problem by increasing memory allocation for Tomcat, but I realise this isn't a structural solution, and that overloading a single Tomcat in this way is prone to future memory errors. This set me thinking about the third scenario. [3] multiple Tomcat instances, each with a single webapp in its dedicated Cocoon environment -tomcat |_ webapps |_ webapp1 |_ WEB-INF (with Cocoon libs) -tomcat |_ webapps |_ webapp2 |_ WEB-INF (with Cocoon libs) -tomcat |_ webapps |_ webapp[n] |_ WEB-INF (with Cocoon libs) I haven't tried this approach, but am thinking of the $CATALINA_BASE variable. A single Tomcat distribution can be multiply instanciated with different $CATALINA_BASE environments, each pointing to a Cocoon instance with its own webapp. I wonder whether such an approach could avoid the structural memory-related problems of approach [2], or will the same issues apply? On the other hand, this approach would complicate management of the Apache http frontend, as it will require the AJP connectors of the different Tomcat instances to be listening at different ports. Hence, Apache's worker configuration has to be updated and reloaded whenever a new webapp (in its own Tomcat instance) is added. And there seems no way to reload worker.properties without restarting the entire Apache http server. Is there perhaps another / more dynamic way of 'modularizing' multiple Tomcat-served webapps, or can one of these scenarios be refined? Any thoughts, suggestions, advice much appreciated. Ron

    Read the article

  • Parallelism in .NET – Part 17, Think Continuations, not Callbacks

    - by Reed
    In traditional asynchronous programming, we’d often use a callback to handle notification of a background task’s completion.  The Task class in the Task Parallel Library introduces a cleaner alternative to the traditional callback: continuation tasks. Asynchronous programming methods typically required callback functions.  For example, MSDN’s Asynchronous Delegates Programming Sample shows a class that factorizes a number.  The original method in the example has the following signature: public static bool Factorize(int number, ref int primefactor1, ref int primefactor2) { //... .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, calling this is quite “tricky”, even if we modernize the sample to use lambda expressions via C# 3.0.  Normally, we could call this method like so: int primeFactor1 = 0; int primeFactor2 = 0; bool answer = Factorize(10298312, ref primeFactor1, ref primeFactor2); Console.WriteLine("{0}/{1} [Succeeded {2}]", primeFactor1, primeFactor2, answer); If we want to make this operation run in the background, and report to the console via a callback, things get tricker.  First, we need a delegate definition: public delegate bool AsyncFactorCaller( int number, ref int primefactor1, ref int primefactor2); Then we need to use BeginInvoke to run this method asynchronously: int primeFactor1 = 0; int primeFactor2 = 0; AsyncFactorCaller caller = new AsyncFactorCaller(Factorize); caller.BeginInvoke(10298312, ref primeFactor1, ref primeFactor2, result => { int factor1 = 0; int factor2 = 0; bool answer = caller.EndInvoke(ref factor1, ref factor2, result); Console.WriteLine("{0}/{1} [Succeeded {2}]", factor1, factor2, answer); }, null); This works, but is quite difficult to understand from a conceptual standpoint.  To combat this, the framework added the Event-based Asynchronous Pattern, but it isn’t much easier to understand or author. Using .NET 4’s new Task<T> class and a continuation, we can dramatically simplify the implementation of the above code, as well as make it much more understandable.  We do this via the Task.ContinueWith method.  This method will schedule a new Task upon completion of the original task, and provide the original Task (including its Result if it’s a Task<T>) as an argument.  Using Task, we can eliminate the delegate, and rewrite this code like so: var background = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); background.ContinueWith(task => Console.WriteLine("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result)); This is much simpler to understand, in my opinion.  Here, we’re explicitly asking to start a new task, then continue the task with a resulting task.  In our case, our method used ref parameters (this was from the MSDN Sample), so there is a little bit of extra boiler plate involved, but the code is at least easy to understand. That being said, this isn’t dramatically shorter when compared with our C# 3 port of the MSDN code above.  However, if we were to extend our requirements a bit, we can start to see more advantages to the Task based approach.  For example, supposed we need to report the results in a user interface control instead of reporting it to the Console.  This would be a common operation, but now, we have to think about marshaling our calls back to the user interface.  This is probably going to require calling Control.Invoke or Dispatcher.Invoke within our callback, forcing us to specify a delegate within the delegate.  The maintainability and ease of understanding drops.  However, just as a standard Task can be created with a TaskScheduler that uses the UI synchronization context, so too can we continue a task with a specific context.  There are Task.ContinueWith method overloads which allow you to provide a TaskScheduler.  This means you can schedule the continuation to run on the UI thread, by simply doing: Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }).ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), TaskScheduler.FromCurrentSynchronizationContext()); This is far more understandable than the alternative.  By using Task.ContinueWith in conjunction with TaskScheduler.FromCurrentSynchronizationContext(), we get a simple way to push any work onto a background thread, and update the user interface on the proper UI thread.  This technique works with Windows Presentation Foundation as well as Windows Forms, with no change in methodology.

    Read the article

  • Simple-Talk development: a quick history lesson

    - by Michael Williamson
    Up until a few months ago, Simple-Talk ran on a pure .NET stack, with IIS as the web server and SQL Server as the database. Unfortunately, the platform for the site hadn’t quite gotten the love and attention it deserved. On the one hand, in the words of our esteemed editor Tony “I’d consider the current platform to be a “success”; it cost $10K, has lasted for 6 years, was finished, end to end in 6 months, and although we moan about it has got us quite a long way.” On the other hand, it was becoming increasingly clear that it needed some serious work. Among other issues, we had authors that wouldn’t blog because our current blogging platform, Community Server, was too painful for them to use. Forgetting about Simple-Talk for a moment, if you ask somebody what blogging platform they’d choose, the odds are they’d say WordPress. Regardless of its technical merits, it’s probably the most popular blogging platform, and it certainly seemed easier to use than Community Server. The issue was that WordPress is normally hosted on a Linux stack running PHP, Apache and MySQL — quite a difference from our Microsoft technology stack. We certainly didn’t want to rewrite the entire site — we just wanted a better blogging platform, with the rest of the existing, legacy site left as is. At a very high level, Simple-Talk’s technical design was originally very straightforward: when your browser sends an HTTP request to Simple-Talk, IIS (the web server) takes the request, does some work, and sends back a response. In order to keep the legacy site running, except with WordPress running the blogs, a different design is called for. We now use nginx as a reverse-proxy, which can then delegate requests to the appropriate application: So, when your browser sends a request to Simple-Talk, nginx takes that request and checks which part of the site you’re trying to access. Most of the time, it just passes the request along to IIS, which can then respond in much the same way it always has. However, if your request is for the blogs, then nginx delegates the request to WordPress. Unfortunately, as simple as that diagram looks, it hides an awful lot of complexity. In particular, the legacy site running on IIS was made up of four .NET applications. I’ve already mentioned one of these applications, Community Server, which handled the old blogs as well as managing membership and the forums. We have a couple of other applications to manage both our newsletters and our articles, and our own custom application to do some of the rendering on the site, such as the front page and the articles. When I say that it was made up of four .NET applications, this might conjure up an image in your mind of how they fit together: You might imagine four .NET applications, each with their own database, communicating over well-defined APIs. Sadly, reality was a little disappointing: We had four .NET applications that all ran on the same database. Worse still, there were many queries that happily joined across tables from multiple applications, meaning that each application was heavily dependent on the exact data schema that each other application used. Add to this that many of the queries were at least dozens of lines long, and practically identical to other queries except in a few key spots, and we can see that attempting to replace one component of the system would be more than a little tricky. However, the problems with the old system do give us a good place to start thinking about desirable qualities from any changes to the platform. Specifically: Maintainability — the tight coupling between each .NET application made it difficult to update any one application without also having to make changes elsewhere Replaceability — the tight coupling also meant that replacing one component wouldn’t be straightforward, especially if it wasn’t on a similar Microsoft stack. We’d like to be able to replace different parts without having to modify the existing codebase extensively Reusability — we’d like to be able to combine the different pieces of the system in different ways for different sites Repeatable deployments — rather than having to deploy the site manually with a long list of instructions, we should be able to deploy the entire site with a single command, allowing you to create a new instance of the site easily whether on production, staging servers, test servers or your own local machine Testability — if we can deploy the site with a single command, and each part of the site is no longer dependent on the specifics of how every other part of the site works, we can begin to run automated tests against the site, and against individual parts, both to prevent regressions and to do a little test-driven development In the next part, I’ll describe the high-level architecture we now have that hopefully brings us a little closer to these five traits.

    Read the article

  • T-SQL Tuesday #21 - Crap!

    - by Most Valuable Yak (Rob Volk)
    Adam Machanic's (blog | twitter) ever popular T-SQL Tuesday series is being held on Wednesday this time, and the topic is… SHIT CRAP. No, not fecal material.  But crap code.  Crap SQL.  Crap ideas that you thought were good at the time, or were forced to do due (doo-doo?) to lack of time. The challenge for me is to look back on my SQL Server career and find something that WASN'T crap.  Well, there's a lot that wasn't, but for some reason I don't remember those that well.  So the additional challenge is to pick one particular turd that I really wish I hadn't squeezed out.  Let's see if this outline fits the bill: An ETL process on text files; That had to interface between SQL Server and an AS/400 system; That didn't use SSIS (should have) or BizTalk (ummm, no) but command-line scripting, using Unix utilities(!) via: xp_cmdshell; That had to email reports and financial data, some of it sensitive Yep, the stench smell is coming back to me now, as if it was yesterday… As to why SSIS and BizTalk were not options, basically I didn't know either of them well enough to get the job done (and I still don't).  I also had a strict deadline of 3 days, in addition to all the other responsibilities I had, so no time to learn them.  And seeing how screwed up the rest of the process was: Payment files from multiple vendors in multiple formats; Sent via FTP, PGP encrypted email, or some other wizardry; Manually opened/downloaded and saved to a particular set of folders (couldn't change this); Once processed, had to be placed BACK in the same folders with the original archived; x2 divisions that had to run separately; Plus an additional vendor file in another format on a completely different schedule; So that they could be MANUALLY uploaded into the AS/400 system (couldn't change this either, even if it was technically possible) I didn't feel so bad about the solution I came up with, which was naturally: Copy the payment files to the local SQL Server drives, using xp_cmdshell Run batch files (via xp_cmdshell) to parse the different formats using sed, a Unix utility (this was before Powershell) Use other Unix utilities (join, split, grep, wc) to process parsed files and generate metadata (size, date, checksum, line count) Run sqlcmd to execute a stored procedure that passed the parsed file names so it would bulk load the data to do a comparison bcp the compared data out to ANOTHER text file so that I could grep that data out of the original file Run another stored procedure to import the matched data into SQL Server so it could process the payments, including file metadata Process payment batches and log which division and vendor they belong to Email the payment details to the finance group (since it was too hard for them to run a web report with the same data…which they ran anyway to compare the emailed file against…which always matched, surprisingly) Email another report showing unmatched payments so they could manually void them…about 3 months afterward All in "Excel" format, using xp_sendmail (SQL 2000 system) Copy the unmatched data back to the original folder locations, making sure to match the file format exactly (if you've ever worked with ACH files, you'll understand why this sucked) If you're one of the 10 people who have read my blog before, you know that I love the DOS "for" command.  Like passionately.  Like fairy-tale love.  So my batch files were riddled with for loops, nested within other for loops, that called other batch files containing for loops.  I think there was one section that had 4 or 5 nested for commands.  It was wrong, disturbed, and completely un-maintainable by anyone, even myself.  Months, even a year, after I left the company I got calls from someone who had to make a minor change to it, and they called me to talk them out of spraying the office with an AK-47 after looking at this code.  (for you Star Trek TOS fans) The funniest part of this, well, one of the funniest, is that I made the deadline…sort of, I was only a day late…and the DAMN THING WORKED practically unchanged for 3 years.  Most of the problems came from the manual parts of the overall process, like forgetting to decrypt the files, or missing/late files, or saved to the wrong folders.  I'm definitely not trying to toot my own horn here, because this was truly one of the dumbest, crappiest solutions I ever came up with.  Fortunately as far as I know it's no longer in use and someone has written a proper replacement.  Today I would knuckle down and do it in SSIS or Powershell, even if it took me weeks to get it right. The real lesson from this crap code is to make things MAINTAINABLE and UNDERSTANDABLE.  sed scripting regular expressions doesn't fit that criteria in any way.  If you ever find yourself under pressure to do something fast at all costs, DON'T DO IT.  Stop and consider long-term maintainability, not just for yourself but for others on your team.  If you can't explain the basic approach in under 5 minutes, it ultimately won't succeed.  And while you may love to leave all that crap behind, it may follow you anyway, and you'll step in it again.   P.S. - if you're wondering about all the manual stuff that couldn't be changed, it was because the entire process had gone through Six Sigma, and was deemed the best possible way.  Phew!  Talk about stink!

    Read the article

  • C#/.NET Little Wonders &ndash; Cross Calling Constructors

    - by James Michael Hare
    Just a small post today, it’s the final iteration before our release and things are crazy here!  This is another little tidbit that I love using, and it should be fairly common knowledge, yet I’ve noticed many times that less experienced developers tend to have redundant constructor code when they overload their constructors. The Problem – repetitive code is less maintainable Let’s say you were designing a messaging system, and so you want to create a class to represent the properties for a Receiver, so perhaps you design a ReceiverProperties class to represent this collection of properties. Perhaps, you decide to make ReceiverProperties immutable, and so you have several constructors that you can use for alternative construction: 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: { 13: ReceiverType = receiverType; 14: Source = source; 15: IsDurable = isDurable; 16: IsBuffered = true; 17: } 18:  19: // Constructs a set of receiver properties with buffering on and durability off. 20: public ReceiverProperties(ReceiverType receiverType, string source) 21: { 22: ReceiverType = receiverType; 23: Source = source; 24: IsDurable = false; 25: IsBuffered = true; 26: } Note: keep in mind this is just a simple example for illustration, and in same cases default parameters can also help clean this up, but they have issues of their own. While strictly speaking, there is nothing wrong with this code, logically, it suffers from maintainability flaws.  Consider what happens if you add a new property to the class?  You have to remember to guarantee that it is set appropriately in every constructor call. This can cause subtle bugs and becomes even uglier when the constructors do more complex logic, error handling, or there are numerous potential overloads (especially if you can’t easily see them all on one screen’s height). The Solution – cross-calling constructors I’d wager nearly everyone knows how to call your base class’s constructor, but you can also cross-call to one of the constructors in the same class by using the this keyword in the same way you use base to call a base constructor. 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: : this(receiverType, source, isDurable, true) 13: { 14: } 15:  16: // Constructs a set of receiver properties with buffering on and durability off. 17: public ReceiverProperties(ReceiverType receiverType, string source) 18: : this(receiverType, source, false, true) 19: { 20: } Notice, there is much less code.  In addition, the code you have has no repetitive logic.  You can define the main constructor that takes all arguments, and the remaining constructors with defaults simply cross-call the main constructor, passing in the defaults. Yes, in some cases default parameters can ease some of this for you, but default parameters only work for compile-time constants (null, string and number literals).  For example, if you were creating a TradingDataAdapter that relied on an implementation of ITradingDao which is the data access object to retreive records from the database, you might want two constructors: one that takes an ITradingDao reference, and a default constructor which constructs a specific ITradingDao for ease of use: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: { 10: _tradingDao = new SqlTradingDao(); 11:  12: // same constructor logic as above 13: }   As you can see, this isn’t something we can solve with a default parameter, but we could with cross-calling constructors: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: : this(new SqlTradingDao()) 10: { 11: }   So in cases like this where you have constructors with non compiler-time constant defaults, default parameters can’t help you and cross-calling constructors is one of your best options. Summary When you have just one constructor doing the job of initializing the class, you can consolidate all your logic and error-handling in one place, thus ensuring that your behavior will be consistent across the constructor calls. This makes the code more maintainable and even easier to read.  There will be some cases where cross-calling constructors may be sub-optimal or not possible (if, for example, the overloaded constructors take completely different types and are not just “defaulting” behaviors). You can also use default parameters, of course, but default parameter behavior in a class hierarchy can be problematic (default values are not inherited and in fact can differ) so sometimes multiple constructors are actually preferable. Regardless of why you may need to have multiple constructors, consider cross-calling where you can to reduce redundant logic and clean up the code.   Technorati Tags: C#,.NET,Little Wonders

    Read the article

  • When does "proper" programming no longer matter?

    - by Kai Qing
    I've been a full time programmer for about 8 years now. Web based mostly, ranging in weird jobs for clients. Never anything I "want" to do. So my experience is limited to what I've been contracted to do, having no real incentive to master anything in particular. So here's my scenario and ultimately what I wonder about... I've been building an android game in my spare time. It's using the libgdx library so quite a bit of the heavy lifting is done for me. I don't read much of the docs cause unless it's in tutorial format I will just not care, and ultimately most of my questions have already been asked on stackoverflow. I get along fine and my game works as expected... Suspiciously well, even. So much so that I wonder why one should bother to be "proper" when coding if the end result is ultimately the same. To be more specific, I used a hashtable because I wanted something close to an associative array. Human readable key values. In other places to achieve similar things, I use a vector. I know libgdx has vector2 and vector3 classes, but I've never used them. When I come across weird problems and search stackoverflow for help, I see a lot of people just reaming the questions that use a certain datatype when another one is technically "proper." Like using an ArrayList because it does not require defined bounds versus re-defining an int[] with new known boundaries. Or even something trivial like this: for(int i = 0; i < items.length; i ++) { // do something } I know it evaluates item.length on every iteration. I just don't care. I know items will never be more than 15 to 20 items. So why bother caring if I evaluate items.length on every iteration? So I wonder - why does everyone get all up in arms over this? Who cares if I use a less efficient datatype to get the job done? I ran some tests to see how the app performs using the lazy, get it done fast and don't look back method I just described versus the proper, follow the tutorial and use the exact data types suggested by the community. The results: Same thing. Average 45 fps. I opened every app on the phone and galaxy tab. Same deal. No difference. My game is pretty graphic intensive. It's not like it's just a simple thing. I expected it to perform kind of badly since I don't care to optimize image assets or... well, you probably get the idea. I'm making the game for fun. As a joke, really. But in doing so I'm working outside the normal scope of my job, which is to always follow the rules and do it the right way. So to say, I am without bounds here and this has caused me to wonder why I ever really care to be "proper" So I guess my question to you is this: Is there a threshold when it no longer matters to be proper? Is there a lasting, longer term consequence to the lazy, get it done and don't look back route? Is it ok to say - "so long as it gets the job done, I don't care?" Disclaimer: When I program my game, I am almost always drunk. I do it to remember why I got into this stuff to begin with because the monotony of client based web work will make you hate being a programmer. I'm having a blast and my game is not crashing, tests well, performs well, looks good on all devices so far and has no noticeable negative impact on any of my testing devices. I expected failure because I was being so drunkenly careless with my code, but to my surprise, it had no noticeable impact. I am now starting to question the need to be careful. Help me regain the ability to care! ... or explain why it's not a bad thing to not care. Secondary disclaimer: I am aware of the benefits of maintainability. For myself and others. Agreed. But it's not like someone happening across my inefficient int[] loop won't know what it does. As an experienced programmer those kinds of things are just clear on sight. I document the complex stuff for myself knowing I was drunk and will probably need a reminder. Those notes would clarify any confusion for someone who might ever gaze upon my ridiculous game - though the reality is that either I maintain it myself or it fades into time. I'm ok with that. But if it doesn't slow the device down, or crash, then crossing the t's and dotting the i's might actually require more time than it's worth.

    Read the article

  • C#/.NET Little Wonders: Static Char Methods

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Often times in our code we deal with the bigger classes and types in the BCL, and occasionally forgot that there are some nice methods on the primitive types as well.  Today we will discuss some of the handy static methods that exist on the char (the C# alias of System.Char) type. The Background I was examining a piece of code this week where I saw the following: 1: // need to get the 5th (offset 4) character in upper case 2: var type = symbol.Substring(4, 1).ToUpper(); 3:  4: // test to see if the type is P 5: if (type == "P") 6: { 7: // ... do something with P type... 8: } Is there really any error in this code?  No, but it still struck me wrong because it is allocating two very short-lived throw-away strings, just to store and manipulate a single char: The call to Substring() generates a new string of length 1 The call to ToUpper() generates a new upper-case version of the string from Step 1. In my mind this is similar to using ToUpper() to do a case-insensitive compare: it isn’t wrong, it’s just much heavier than it needs to be (for more info on case-insensitive compares, see #2 in 5 More Little Wonders). One of my favorite books is the C++ Coding Standards: 101 Rules, Guidelines, and Best Practices by Sutter and Alexandrescu.  True, it’s about C++ standards, but there’s also some great general programming advice in there, including two rules I love:         8. Don’t Optimize Prematurely         9. Don’t Pessimize Prematurely We all know what #8 means: don’t optimize when there is no immediate need, especially at the expense of readability and maintainability.  I firmly believe this and in the axiom: it’s easier to make correct code fast than to make fast code correct.  Optimizing code to the point that it becomes difficult to maintain often gains little and often gives you little bang for the buck. But what about #9?  Well, for that they state: “All other things being equal, notably code complexity and readability, certain efficient design patterns and coding idioms should just flow naturally from your fingertips and are no harder to write then the pessimized alternatives. This is not premature optimization; it is avoiding gratuitous pessimization.” Or, if I may paraphrase: “where it doesn’t increase the code complexity and readability, prefer the more efficient option”. The example code above was one of those times I feel where we are violating a tacit C# coding idiom: avoid creating unnecessary temporary strings.  The code creates temporary strings to hold one char, which is just unnecessary.  I think the original coder thought he had to do this because ToUpper() is an instance method on string but not on char.  What he didn’t know, however, is that ToUpper() does exist on char, it’s just a static method instead (though you could write an extension method to make it look instance-ish). This leads me (in a long-winded way) to my Little Wonders for the day… Static Methods of System.Char So let’s look at some of these handy, and often overlooked, static methods on the char type: IsDigit(), IsLetter(), IsLetterOrDigit(), IsPunctuation(), IsWhiteSpace() Methods to tell you whether a char (or position in a string) belongs to a category of characters. IsLower(), IsUpper() Methods that check if a char (or position in a string) is lower or upper case ToLower(), ToUpper() Methods that convert a single char to the lower or upper equivalent. For example, if you wanted to see if a string contained any lower case characters, you could do the following: 1: if (symbol.Any(c => char.IsLower(c))) 2: { 3: // ... 4: } Which, incidentally, we could use a method group to shorten the expression to: 1: if (symbol.Any(char.IsLower)) 2: { 3: // ... 4: } Or, if you wanted to verify that all of the characters in a string are digits: 1: if (symbol.All(char.IsDigit)) 2: { 3: // ... 4: } Also, for the IsXxx() methods, there are overloads that take either a char, or a string and an index, this means that these two calls are logically identical: 1: // check given a character 2: if (char.IsUpper(symbol[0])) { ... } 3:  4: // check given a string and index 5: if (char.IsUpper(symbol, 0)) { ... } Obviously, if you just have a char, then you’d just use the first form.  But if you have a string you can use either form equally well. As a side note, care should be taken when examining all the available static methods on the System.Char type, as some seem to be redundant but actually have very different purposes.  For example, there are IsDigit() and IsNumeric() methods, which sound the same on the surface, but give you different results. IsDigit() returns true if it is a base-10 digit character (‘0’, ‘1’, … ‘9’) where IsNumeric() returns true if it’s any numeric character including the characters for ½, ¼, etc. Summary To come full circle back to our opening example, I would have preferred the code be written like this: 1: // grab 5th char and take upper case version of it 2: var type = char.ToUpper(symbol[4]); 3:  4: if (type == 'P') 5: { 6: // ... do something with P type... 7: } Not only is it just as readable (if not more so), but it performs over 3x faster on my machine:    1,000,000 iterations of char method took: 30 ms, 0.000050 ms/item.    1,000,000 iterations of string method took: 101 ms, 0.000101 ms/item. It’s not only immediately faster because we don’t allocate temporary strings, but as an added bonus there less garbage to collect later as well.  To me this qualifies as a case where we are using a common C# performance idiom (don’t create unnecessary temporary strings) to make our code better. Technorati Tags: C#,CSharp,.NET,Little Wonders,char,string

    Read the article

  • Web optimization

    - by hmloo
    1. CSS Optimization Organize your CSS code Good CSS organization helps with future maintainability of the site, it helps you and your team member understand the CSS more quickly and jump to specific styles. Structure CSS code For small project, you can break your CSS code in separate blocks according to the structure of the page or page content. for example you can break your CSS document according the content of your web page(e.g. Header, Main Content, Footer) Structure CSS file For large project, you may feel having too much CSS code in one place, so it's the best to structure your CSS into more CSS files, and use a master style sheet to import these style sheets. this solution can not only organize style structure, but also reduce server request./*--------------Master style sheet--------------*/ @import "Reset.css"; @import "Structure.css"; @import "Typography.css"; @import "Forms.css"; Create index for your CSS Another important thing is to create index at the beginning of your CSS file, index can help you quickly understand the whole CSS structure./*---------------------------------------- 1. Header 2. Navigation 3. Main Content 4. Sidebar 5. Footer ------------------------------------------*/ Writing efficient CSS selectors keep in mind that browsers match CSS selectors from right to left and the order of efficiency for selectors 1. id (#myid) 2. class (.myclass) 3. tag (div, h1, p) 4. adjacent sibling (h1 + p) 5. child (ul > li) 6. descendent (li a) 7. universal (*) 8. attribute (a[rel="external"]) 9. pseudo-class and pseudo element (a:hover, li:first) the rightmost selector is called "key selector", so when you write your CSS code, you should choose more efficient key selector. Here are some best practice: Don't tag-qualify Never do this:div#myid div.myclass .myclass#myid IDs are unique, classes are more unique than a tag so they don't need a tag. Doing so makes the selector less efficient. Avoid overqualifying selectors for example#nav a is more efficient thanul#nav li a Don't repeat declarationExample: body {font-size:12px;}h1 {font-size:12px;font-weight:bold;} since h1 is already inherited from body, so you don't need to repeate atrribute. Using 0 instead of 0px Always using #selector { margin: 0; } There’s no need to include the px after 0, removing all those superfluous px can reduce the size of your CSS file. Group declaration Example: h1 { font-size: 16pt; } h1 { color: #fff; } h1 { font-family: Arial, sans-serif; } it’s much better to combine them:h1 { font-size: 16pt; color: #fff; font-family: Arial, sans-serif; } Group selectorsExample: h1 { color: #fff; font-family: Arial, sans-serif; } h2 { color: #fff; font-family: Arial, sans-serif; } it would be much better if setup as:h1, h2 { color: #fff; font-family: Arial, sans-serif; } Group attributeExample: h1 { color: #fff; font-family: Arial, sans-serif; } h2 { color: #fff; font-family: Arial, sans-serif; font-size: 16pt; } you can set different rules for specific elements after setting a rule for a grouph1, h2 { color: #fff; font-family: Arial, sans-serif; } h2 { font-size: 16pt; } Using Shorthand PropertiesExample: #selector { margin-top: 8px; margin-right: 4px; margin-bottom: 8px; margin-left: 4px; }Better: #selector { margin: 8px 4px 8px 4px; }Best: #selector { margin: 8px 4px; } a good diagram illustrated how shorthand declarations are interpreted depending on how many values are specified for margin and padding property. instead of using:#selector { background-image: url(”logo.png”); background-position: top left; background-repeat: no-repeat; } is used:#selector { background: url(logo.png) no-repeat top left; } 2. Image Optimization Image Optimizer Image Optimizer is a free Visual Studio2010 extension that optimizes PNG, GIF and JPG file sizes without quality loss. It uses SmushIt and PunyPNG for the optimization. Just right click on any folder or images in Solution Explorer and choose optimize images, then it will automatically optimize all PNG, GIF and JPEG files in that folder. CSS Image Sprites CSS Image Sprites are a way to combine a collection of images to a single image, then use CSS background-position property to shift the visible area to show the required image, many images can take a long time to load and generates multiple server requests, so Image Sprite can reduce the number of server requests and improve site performance. You can use many online tools to generate your image sprite and CSS, and you can also try the Sprite and Image Optimization framework released by The ASP.NET team.

    Read the article

  • In a PHP project, how do you organize and access your helper objects?

    - by Pekka
    How do you organize and manage your helper objects like the database engine, user notification, error handling and so on in a PHP based, object oriented project? Say I have a large PHP CMS. The CMS is organized in various classes. A few examples: the database object user management an API to create/modify/delete items a messaging object to display messages to the end user a context handler that takes you to the right page a navigation bar class that shows buttons a logging object possibly, custom error handling etc. I am dealing with the eternal question, how to best make these objects accessible to each part of the system that needs it. my first apporach, many years ago was to have a $application global that contained initialized instances of these classes. global $application; $application->messageHandler->addMessage("Item successfully inserted"); I then changed over to the Singleton pattern and a factory function: $mh =&factory("messageHandler"); $mh->addMessage("Item successfully inserted"); but I'm not happy with that either. Unit tests and encapsulation become more and more important to me, and in my understanding the logic behind globals/singletons destroys the basic idea of OOP. Then there is of course the possibility of giving each object a number of pointers to the helper objects it needs, probably the very cleanest, resource-saving and testing-friendly way but I have doubts about the maintainability of this in the long run. Most PHP frameworks I have looked into use either the singleton pattern, or functions that access the initialized objects. Both fine approaches, but as I said I'm happy with neither. I would like to broaden my horizon on what is possible here and what others have done. I am looking for examples, additional ideas and pointers towards resources that discuss this from a long-term, real-world perspective. Also, I'm interested to hear about specialized, niche or plain weird approaches to the issue. Bounty I am following the popular vote in awarding the bounty, the answer which is probably also going to give me the most. Thank you for all your answers!

    Read the article

  • Should I HttpCombine Google Jquery Hosted File?

    - by chobo2
    Hi I am using something called HttpCombiner: http://code.msdn.microsoft.com/HttpCombiner An HTTP handler that combines multiple CSS, Javascript or URL into one response for faster page load. It can combine, compress and cache response which results in faster page load and better scalability of web application It's a good practice to use many small Javascript and CSS files instead of one large Javascript/CSS file for better code maintainability, but bad in terms of website performance. Although you should write your Javascript code in small files and break large CSS files into small chunks but when browser requests those javascript and css files, it makes one Http request per file. Every Http Request results in a network roundtrip form your browser to the server and the delay in reaching the server and coming back to the browser is called latency. So, if you have four javascripts and three css files loaded by a page, you are wasting time in seven network roundtrips. Within USA, latency is average 70ms. So, you waste 7x70 = 490ms, about half a second of delay. Outside USA, average latency is around 200ms. So, that means 1400ms of waiting. Browser cannot show the page properly until Css and Javascripts are fully loaded. So, the more latency you have, the slower page loads. You can reduce the wait time by using a CDN. Read my previous blog post about using CDN. However, a better solution is to deliver multiple files over one request using an HttpHandler that combines several files and delivers as one output. So, instead of putting many or tag, you just put one and one tag, and point them to the HttpHandler. You tell the handler which files to combine and it delivers those files in one response. This saves browser from making many requests and eliminates the latency. This Http Handler reads the file names defined in a configuration and combines all those files and delivers as one response. It delivers the response as gzip compressed to save bandwidth. Moreover, it generates proper cache header to cache the response in browser cache, so that, browser does not request it again on future visit. Now I am wondering since it can handle adding links should I put in it the jquery file? The reason I am not sure is if it gets combined with my other files I think I might close the advantages of it being hosted on googles servers such as caching(my thinking is if it gets combined it will look different so even if a user has it in it's cache I am not sure if it will use the one for the cahce or not). So should I combine it or only the finals that I am using locally?

    Read the article

  • Mulit-tenant ASP.NET MVC – Controllers

    - by zowens
    Part I – Introduction Part II – Foundation   The time has come to talk about controllers in a multi-tenant ASP.NET MVC architecture. This is actually the most critical design decision you will make when dealing with multi-tenancy with MVC. In my design, I took into account the design goals I mentioned in the introduction about inversion of control and what a tenant is to my design. Be aware that this is only one way to achieve multi-tenant controllers.   The Premise MvcEx (which is a sample written by Rob Ashton) utilizes dynamic controllers. Essentially a controller is “dynamic” in that multiple action results can be placed in different “controllers” with the same name. This approach is a bit too complicated for my design. I wanted to stick with plain old inheritance when dealing with controllers. The basic premise of my controller design is that my main host defines a set of universal controllers. It is the responsibility of the tenant to decide if the tenant would like to utilize these core controllers. This can be done either by straight usage of the controller or inheritance for extension of the functionality defined by the controller. The controller is resolved by a StructureMap container that is attached to the tenant, as discussed in Part II.   Controller Resolution I have been thinking about two different ways to resolve controllers with StructureMap. One way is to use named instances. This is a really easy way to simply pull the controller right out of the container without a lot of fuss. I ultimately chose not to use this approach. The reason for this decision is to ensure that the controllers are named properly. If a controller has a different named instance that the controller type, then the resolution has a significant disconnect and there are no guarantees. The final approach, the one utilized by the sample, is to simply pull all controller types and correlate the type with a controller name. This has a bit of a application start performance disadvantage, but is significantly more approachable for maintainability. For example, if I wanted to go back and add a “ControllerName” attribute, I would just have to change the ControllerFactory to suit my needs.   The Code The container factory that I have built is actually pretty simple. That’s really all we need. The most significant method is the GetControllersFor method. This method makes the model from the Container and determines all the concrete types for IController.  The thing you might notice is that this doesn’t depend on tenants, but rather containers. You could easily use this controller factory for an application that doesn’t utilize multi-tenancy. public class ContainerControllerFactory : IControllerFactory { private readonly ThreadSafeDictionary<IContainer, IDictionary<string, Type>> typeCache; public ContainerControllerFactory(IContainerResolver resolver) { Ensure.Argument.NotNull(resolver, "resolver"); this.ContainerResolver = resolver; this.typeCache = new ThreadSafeDictionary<IContainer, IDictionary<string, Type>>(); } public IContainerResolver ContainerResolver { get; private set; } public virtual IController CreateController(RequestContext requestContext, string controllerName) { var controllerType = this.GetControllerType(requestContext, controllerName); if (controllerType == null) return null; var controller = this.ContainerResolver.Resolve(requestContext).GetInstance(controllerType) as IController; // ensure the action invoker is a ContainerControllerActionInvoker if (controller != null && controller is Controller && !((controller as Controller).ActionInvoker is ContainerControllerActionInvoker)) (controller as Controller).ActionInvoker = new ContainerControllerActionInvoker(this.ContainerResolver); return controller; } public void ReleaseController(IController controller) { if (controller != null && controller is IDisposable) ((IDisposable)controller).Dispose(); } internal static IEnumerable<Type> GetControllersFor(IContainer container) { Ensure.Argument.NotNull(container); return container.Model.InstancesOf<IController>().Select(x => x.ConcreteType).Distinct(); } protected virtual Type GetControllerType(RequestContext requestContext, string controllerName) { Ensure.Argument.NotNull(requestContext, "requestContext"); Ensure.Argument.NotNullOrEmpty(controllerName, "controllerName"); var container = this.ContainerResolver.Resolve(requestContext); var typeDictionary = this.typeCache.GetOrAdd(container, () => GetControllersFor(container).ToDictionary(x => ControllerFriendlyName(x.Name))); Type found = null; if (typeDictionary.TryGetValue(ControllerFriendlyName(controllerName), out found)) return found; return null; } private static string ControllerFriendlyName(string value) { return (value ?? string.Empty).ToLowerInvariant().Without("controller"); } } One thing to note about my implementation is that we do not use namespaces that can be utilized in the default ASP.NET MVC controller factory. This is something that I don’t use and have no desire to implement and test. The reason I am not using namespaces in this situation is because each tenant has its own namespaces and the routing would not make sense in this case.   Because we are using IoC, dependencies are automatically injected into the constructor. For example, a tenant container could implement it’s own IRepository and a controller could be defined in the “main” project. The IRepository from the tenant would be injected into the main project’s controller. This is quite a useful feature.   Again, the source code is on GitHub here.   Up Next Up next is the view resolution. This is a complicated issue, so be prepared. I hope that you have found this series useful. If you have any questions about my implementation so far, send me an email or DM me on Twitter. I have had a lot of great conversations about multi-tenancy so far and I greatly appreciate the feedback!

    Read the article

  • Company Review: Google Products

    Google, Inc offers an array of products and services to all of its end-users. However their search capabilities are the foundation for Google’s current success and their primary business focus. Currently, Google offers over twenty different search applications that allow users to search the internet for books, maps, videos, images, products and much more. Their product decisions have allowed users demands to be met while focusing on the free based model. This allows users to access Google data free of charge and indirectly gives Google a strong competitive advantage of other competitors along with the accuracy of the search results. According to Google, Inc, they offer the following types of searching capabilities: Alerts Get email updates on the topics of your choice Blog Search Find blogs on your favorite topics  Books Search the full text of books  Custom Search Create a customized search experience for your community  Desktop Search and personalize your computer  Dictionary Search for definitions of words and phrases Directory Search the web, organized by topic or category Earth Explore the world from your computer Finance Business info, news and interactive charts GOOG-411 Find and connect for free with businesses from your phone  Images Search for images on the web Maps View maps and directions News Search thousands of news stories Patent Search Search the full text of US Patents Product Search Search for stuff to buy Scholar Search scholarly papers Toolbar Add a search box to your browser Trends Explore past and present search trends Videos Search for videos on the web Web Search Search billions of web pages Web Search Features Find movies, music, stocks, books and more mapping Google’s free based business model is only one way it differentiates itself from its competition. There is also a strong focus on the accuracy of search results and the speed in which they are returned to the end-user. Quality function deployment (QFD) is a structured method used to help connect user needs to the design features of a project proposed to address those needs. This method is particularly useful in accounting for needs that are not easily articulated or precisely defined according to the U. S. Department of Transportation Federal Highway Administration. Due to the fact that QFD is so customer driven Google is always in a constant state of change in attempt to reengineer its search algorithms, and other dependant systems so that end-users requirements are constantly being met. Value engineering is a key example of this, Google is constantly trying to improve all aspects of its products, improve system maintainability, and system interoperability. Bridgefield Group defines value engineering as an organized methodology that identifies and selects the lowest lifecycle cost options in design, materials and processes that achieves the desired level of performance, reliability and customer satisfaction. In addition, it seeks to remove unnecessary costs in the above areas and is often a joint effort with cross-functional internal teams and relevant suppliers. Common issues that appear when developing large scale systems like Google’s search applications include modular design of a product and/or service and providing accurate value analysis. A design approach that adheres to four fundamental tenets of cohesiveness, encapsulation, self-containment, and high binding to design a system component as an independently operable unit subject to change is how the Open System Joint Task Force defines modular design. More specifically M. S. Schmaltz defines modular software design as having a large collection of statements strung together in one partition of in-line code; we segment or divide the statements into logical groups called modules. Each module performs one or two tasks, and then passes control to another module. By breaking up the code into "bite-sized chunks", so to speak, we are able to better control the flow of data and control. This is especially true in large software systems. Value analysis is a process to evaluate products and services based on effectiveness, safety, and cost. Value analysis involves assessing the quality as well as the cost of a product or service as defined by the Healthcare Financial Management Association.  “Operations Management deals with the design and management of products, processes, services and supply chains. It considers the acquisition, development, and utilization of resources that firms need to deliver the goods and services their clients want.” (MIT,2010) Google, Inc encourages an open environment between all employees, also known as Googlers. This is reinforced by a cross-section team or cross-functional teams comprised from multiple departments assigned to every project so that every department like marketing, finance, and quality assurance has input on every project. In addition, Google is known for their openness to new ideas regardless of the status or seniority of an employee. In fact, Google allows for 20% of an employee’s time can be devoted to developing new ideas and/or pet projects. HumTech.com defines a cross-functional team as a collection of people with varied levels of skills and experience brought together to accomplish a task. As the name implies, Cross-Functional Team members come from different organizational units. Cross-Functional Teams may be permanent or ad hoc. Google’s search application product strategy primarily focuses on mass customization. This is allows Google to create a base search application and allows results to be returned to the end-users quickly based on specific parameters and search settings. In addition, they also store the data that is returned in case other desire the same results based on other end-users supplying the same customized settings. This allows Google to appear to render search results in virtually real-time to the user while allowing for complete customization of the searching criteria. Greg Vogl, a professor at Uganda Martyrs University, defines mass customization as when a business gives its customers the opportunity to tailor its products or services to the customer's specifications. The IT staff at Google play a key role in ensuring that the search application’s product strategy is maintained simply because the IT staff designs, develops, and maintains all of their proprietary applications. In fact, they also maintain all network infrastructure to ensure that it is available to all end-users. References: http://www.google.com/intl/en/options/ http://ops.fhwa.dot.gov/freight/publications/ftat_user_guide/sec5.htm http://www.bridgefieldgroup.com/bridgefieldgroup/glos9.htm#V http://www.acq.osd.mil/osjtf/termsdef.html http://www.cise.ufl.edu/~mssz/Pascal-CGS2462/prog-dsn.html http://www.hfma.org/publications/business_caring_newsletter/exclusives/Supply+and+Inventory+Terms+Defined.htm http://mitsloan.mit.edu/omg/om-definition.php http://www.humtech.com/opm/grtl/ols/ols3.cfm http://www.gregvogl.net/courses/mis1/glossary.htm

    Read the article

  • Video on Architecture and Code Quality using Visual Studio 2012&ndash;interview with Marcel de Vries and Terje Sandstrom by Adam Cogan

    - by terje
    Find the video HERE. Adam Cogan did a great Web TV interview with Marcel de Vries and myself on the topics of architecture and code quality.  It was real fun participating in this session.  Although we know each other from the MVP ALM community,  Marcel, Adam and I haven’t worked together before. It was very interesting to see how we agreed on so many terms, and how alike we where thinking.  The basics of ensuring you have a good architecture and how you could document it is one thing.  Also, the same agreement on the importance of having a high quality code base, and how we used the Visual Studio 2012 tools, and some others (NDepend for example)  to measure and ensure that the code quality was where it should be.  As the tools, methods and thinking popped up during the interview it was a lot of “Hey !  I do that too!”.  The tools are not only for “after the fact” work, but we use them during the coding.  That way the tools becomes an integrated part of our coding work, and helps us to find issues we may have overlooked.  The video has a bunch of call outs, pinpointing important things to remember. These are also listed on the corresponding web page. I haven’t seen that touch before, but really liked this way of doing it – it makes it much easier to spot the highlights.  Titus Maclaren and Raj Dhatt from SSW have done a terrific job producing this video.  And thanks to Lei Xu for doing the camera and recording job.  Thanks guys ! Also, if you are at TechEd Amsterdam 2012, go and listen to Adam Cogan in his session on “A modern architecture review: Using the new code review tools” Friday 29th, 10.15-11.30 and Marcel de Vries session on “Intellitrace, what is it and how can I use it to my benefit” Wednesday 27th, 5-6.15 The highlights points out some important practices.  I’ll elaborate on a few of them here: Add instructions on how to compile the solution.  You do this by adding a text file with instructions to the solution, and keep it under source control.  These instructions should contain what is needed on top of a standard install of Visual Studio.  I do a lot of code reviews, and more often that not, I am not even able to compile the program, because they have used some tool or library that needs to be installed.  The same applies to any new developer who enters into the team, so do this to increase your productivity when the team changes, or a team member switches computer. Don’t forget to document what you have to configure on the computer, the IIS being a common one. The more automatic you can do this, the better.  Use NuGet to get down libraries. When the text document gets more than say, half a page, with a bunch of different things to do, convert it into a powershell script instead.  The metrics warning levels.  These are very conservatively set by Microsoft.  You rarely see anything but green, and besides, you should have color scales for each of the metrics.  I have a blog post describing a more appropriate set of levels, based on both research work and industry “best practices”.  The essential limits are: Cyclomatic complexity and coupling:  Higher numbers are worse On method levels: Green :  From 0 to 10 Yellow:  From 10 to 20  (some say 15).   Acceptable, but have a look to see if there is something unneeded here. Red: From 20 to 40:   Action required, get these down. Bleeding Red: Above 40   This is the real red alert.  Immediate action!  (My invention, as people have asked what do I do when I have cyclomatic complexity of 150.  The only answer I could think of was: RUN! ) Maintainability index:  Lower numbers are worse, scale from 0 to 100. On method levels: Green:  60 to 100 Yellow:  40 – 60.    You will always have methods here too, accept the higher ones, take a look at those who are down to the lower limit.  Check up against the other metrics.) Red:  20 – 40:  Action required, fix these. Bleeding red:  Below 20.  Immediate action required. When doing metrics analysis, you should leave the generated code out.  You do this by adding attributes, unfortunately Microsoft has “forgotten” to add these to all their stuff, so you might have to add them to some of the code.  It most cases it can be done so that it is not overwritten by a new round of code generation.  Take a look a my blog post here for details on how to do that. Class level metrics might also be useful, at least for coupling and maintenance.  But it is much more difficult to set any fixed limits on those.  Any metric aggregations on higher level tend to be pretty useless, as the number of methods vary pretty much, and there are little science on what number of methods can be regarded as good or bad.  NDepend have a recommendation, but they say it may vary too.  And in these days of data binding, the number might be pretty high, as properties counts as methods.  However, if you take the worst case situations, classes with more than 20 methods are suspicious, and coupling and cyclomatic complexity go red above 20, so any classes with more than 20x20 = 400 for these measures should be checked over. In the video we mention the SOLID principles, coined by “Uncle Bob” (Richard Martin). One of them, the Dependency Inversion principle we discuss in the video.  It is important to note that this principle is NOT on whether you should use a Dependency Inversion Container or not, it is about how you design the interfaces and interactions between your classes.  The Dependency Inversion Container is just one technique which is based on this principle, but which main purpose is to isolate things you would like to change at runtime, for example if you implement a plug in architecture.  Overuse of a Dependency Inversion Container is however, NOT a good thing.  It should be used for a purpose and not as a general DI solution.  The general DI solution and thinking however is useful far beyond the DIC.   You should always “program to an abstraction”, and not to the concreteness.  We also talk a bit about the GRASP patterns, a term coined by Craig Larman in his book Applying UML and design patterns. GRASP patterns stand for General Responsibility Assignment Software Patterns and describe fundamental principles of object design and responsibility assignment.  What I find great with these patterns is that they is another way to focus on the responsibility of a class.  One of the things I most often found that is broken in software designs, is that the class lack responsibility, and as a result there are a lot of classes mucking around in the internals of the other classes.  We also discuss the term “Code Smells”.  This term was invented by Kent Beck and Martin Fowler when they worked with Fowler’s “Refactoring” book. A code smell is a set of “bad” coding practices, which are the drivers behind a corresponding set of refactorings.  Here is a good list of the smells, and their corresponding refactor patterns. See also this.

    Read the article

< Previous Page | 6 7 8 9 10 11 12  | Next Page >