Search Results

Search found 7651 results on 307 pages for 'pattern matching'.

Page 10/307 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • using sed to replace two patterns within a larger pattern

    - by Hair of the Dog
    Using sed how could I replace two patterns within a larger pattern on a single line? Given a single line of text I want to find a pattern (Let's call this the outer pattern) and then within that outer pattern replace two inner patterns. Here's a one line example of the input text: Z:\source\private\main\developer\foo\setenv.sh(25): export 'FONTCONFIG_PATH'="$WINE_SHARED_SUPPORT/X11/etc/fonts" In the example above the outer pattern is "/^.*([[:digit:]]+):/" which should equal "Z:\source\private\main\developer\foo\setenv.sh(25):" The two inner patterns are "/^[A-Za-z]:/" and "/\/". Another way to phrase my question is: Using sed I know how to perform replacements of a pattern using the "s" command, but how do I limit the range of "s" command so it only works on the portion of the input string up to the "(25):"? The ultimate result I am trying to get is the line of text is transformed into this: /enlistments/source/private/main/developer/foo/setenv.sh(25): export 'FONTCONFIG_PATH'="$WINE_SHARED_SUPPORT/X11/etc/fonts"

    Read the article

  • Expando Object and dynamic property pattern

    - by Al.Net
    I have read about 'dynamic property pattern' of Martin Fowler in his site under the tag 1997 in which he used dictionary kind of stuff to achieve this pattern. And I have come across about Expando object in c# very recently. When I see its implementation, I am able to see IDictionary implemented. So Expando object uses dictionary to store dynamic properties and is it what, Martin Fowler already defined 15 years ago?

    Read the article

  • Identifying which pattern fits better.

    - by Daniel Grillo
    I'm developing a software to program a device. I have some commands like Reset, Read_Version, Read_memory, Write_memory, Erase_memory. Reset and Read_Version are fixed. They don't need parameters. Read_memory and Erase_memory need the same parameters that are Length and Address. Write_memory needs Lenght, Address and Data. For each command, I have the same steps in sequence, that are something like this sendCommand, waitForResponse, treatResponse. I'm having difficulty to identify which pattern should I use. Factory, Template Method, Strategy or other pattern. Edit I'll try to explain better taking in count the given comments and answers. I've already done this software and now I'm trying to refactoring it. I'm trying to use patterns, even if it is not necessary because I'm taking advantage of this little software to learn about some patterns. Despite I think that one (or more) pattern fits here and it could improve my code. When I want to read version of the software of my device, I don't have to assembly the command with parameters. It is fixed. So I have to send it. After wait for response. If there is a response, treat (or parse) it and returns. To read a portion of the memory (maximum of 256 bytes), I have to assembly the command using the parameters Len and Address. So I have to send it. After wait for response. If there is a response, treat (or parse) it and returns. To write a portion in the memory (maximum of 256 bytes), I have to assembly the command using the parameters Len, Address and Data. So I have to send it. After wait for response. If there is a response, treat (or parse) it and returns. I think that I could use Template Method because I have almost the same algorithm for all. But the problem is some commands are fixes, others have 2 or 3 parameters. I think that parameters should be passed on the constructor of the class. But each class will have a constructor overriding the abstract class constructor. Is this a problem for the template method? Should I use other pattern?

    Read the article

  • Alternatives to the Singleton Design Pattern

    The Singleton Design Pattern is one of the simplest and most widely known design patterns in use in software development. However, despite its simplicity, it is very easy to get wrong and the consequences of its use even when properly implemented can outweigh its benefits. It turns out there are other ways to achieve the goals of the Singleton pattern which will often prove to be simpler, safer, and more maintainable.

    Read the article

  • List of events triggered on pages matching regex

    - by Cubius
    Is there a way to get the grouped list of events (such as in Top events) which were triggered on pages matching a regular expression? I may add the Page secondary dimension in Top events and apply the regex filter but this way I won't get a grouped list. I may apply the filter to Events - Pages report but this way the events will be grouped only inside pages whilst I need global grouping. Any suggestions?

    Read the article

  • How does Haskell do pattern matching without us defining an Eq on our data types?

    - by devoured elysium
    I have defined a binary tree: data Tree = Null | Node Tree Int Tree and have implemented a function that'll yield the sum of the values of all its nodes: sumOfValues :: Tree -> Int sumOfValues Null = 0 sumOfValues (Node Null v Null) = v sumOfValues (Node Null v t2) = v + (sumOfValues t2) sumOfValues (Node t1 v Null) = v + (sumOfValues t1) sumOfValues (Node t1 v t2) = v + (sumOfValues t1) + (sumOfValues t2) It works as expected. I had the idea of also trying to implement it using guards: sumOfValues2 :: Tree -> Int sumOfValues2 Null = 0 sumOfValues2 (Node t1 v t2) | t1 == Null && t2 == Null = v | t1 == Null = v + (sumOfValues2 t2) | t2 == Null = v + (sumOfValues2 t1) | otherwise = v + (sumOfValues2 t1) + (sumOfValues2 t2) but this one doesn't work because I haven't implemented Eq, I believe: No instance for (Eq Tree) arising from a use of `==' at zzz3.hs:13:3-12 Possible fix: add an instance declaration for (Eq Tree) In the first argument of `(&&)', namely `t1 == Null' In the expression: t1 == Null && t2 == Null In a stmt of a pattern guard for the definition of `sumOfValues2': t1 == Null && t2 == Null The question that has to be made, then, is how can Haskell make pattern matching without knowing when a passed argument matches, without resorting to Eq?

    Read the article

  • Are there free, low cost, or open source tools for matching name/address data?

    - by luiscolorado
    This question is related to Tools for matching name/address data. There is a number commercial tools provided by SAS, Oracle, Microsoft, etc., that allow to de-duplicate or merging names of individuals or companies coming from multiple sources. However, after reading the answers to the question mentioned before, I wondered why a seemingly interesting problem didn't receive any answers mentioning open source projects that could tackle the problem. Are you aware of any open source projects or algorithms to implement the so called "record linking", "record merging", or "clustering"?

    Read the article

  • AntFarm anti-pattern -- strategies to avoid, antidotes to help heal from

    - by alchemical
    I'm working on a 10 page web site with a database back-end. There are 500+ objects in use, trying to implement the MVP pattern in ASP.Net. I'm tracing the code-execution from a single-page, my finger has been on F-11 in Visual Studio for about 40 minutes, there seems to be no end, possibly 1000+ method calls for one web page! If it was just 50 objects that would be one thing, however, code execution snakes through all these objects just like millions of ants frantically woring in their giant dirt mound house, riddled with object tunnels. Hence, a new anti-pattern is born : AntFarm. AntFarm is also known as "OO-Madnes", "OO-Fever", OO-ADD, or simply design-pattern junkie. This is not the first time I've seen this, nor my associates at other companies. It seems that this style is being actively propogated, or in any case is a misunderstanding of the numerous OO/DP gospels going around... I'd like to introduce an anti-pattern to the anti-pattern: GST or "Get Stuff Done" AKA "Get Sh** done" AKA GRD (GetRDone). This pattern focused on just what it says, getting stuff done, in a simple way. I may try to outline it more in a later post, or please share your ideas on this antidote pattern. Anyway, I'm in the midst of a great example of AntFarm anti-pattern as I write (as a bonus, there is no documentation or comments). Please share you thoughts on how this anti-pattern has become so prevelant, how we can avoid it, and how can one undo or deal with this pattern in a live system one must work with!

    Read the article

  • In OpenRasta is it possible to Pattern match multiple key/value pairs?

    - by Scott Littlewood
    Is it possible in OpenRasta to have a Uri pattern that allows for an array of values of the same key to be submitted and mapped to a handler method accepting an array of the query parameters. Example: Return all the contacts named Dave Smith from a collection. HTTP GET /contacts?filterBy=first&filterValue=Dave&filterBy=last&filterValue=Smith With a configuration of: What syntax would be best for the Uri string pattern matching? (Suggestions welcome) ResourceSpace.Has.ResourcesOfType<List<ContactResource>>() .AtUri("/contacts") .And.AtUri("/contacts?filterBy[]={filterBy}[]&filterValue[]={fv}[]") // Option 1 .And.AtUri("/contacts?filterBy={filterBy}[]&fv={fv}[]") // Option 2 Would map to a Handler method of: public object Get(params Filter[] filters) { /* create a Linq Expression based on the filters using dynamic linq query the repository using the Linq */ return Query.All<Contact>().Where(c => c.First == "Dave" && c.Last == "Smith").ToResource() } where Filter is defined by public class Filter { public string FilterBy { get; set; } public string FilterValue { get; set; } }

    Read the article

  • null pointers vs. Null Object Pattern

    - by GlenH7
    Attribution: This grew out of a related P.SE question My background is in C / C++, but I have worked a fair amount in Java and am currently coding C#. Because of my C background, checking passed and returned pointers is second-hand, but I acknowledge it biases my point of view. I recently saw mention of the Null Object Pattern where the idea is than an object is always returned. Normal case returns the expected, populated object and the error case returns empty object instead of a null pointer. The premise being that the calling function will always have some sort of object to access and therefore avoid null access memory violations. So what are the pros / cons of a null check versus using the Null Object Pattern? I can see cleaner calling code with the NOP, but I can also see where it would create hidden failures that don't otherwise get raised. I would rather have my application fail hard (aka an exception) while I'm developing it than have a silent mistake escape into the wild. Can't the Null Object Pattern have similar problems as not performing a null check? Many of the objects I have worked with hold objects or containers of their own. It seems like I would have to have a special case to guarantee all of the main object's containers had empty objects of their own. Seems like this could get ugly with multiple layers of nesting.

    Read the article

  • Understanding Visitor Pattern

    - by Nezreli
    I have a hierarchy of classes that represents GUI controls. Something like this: Control-ContainerControl-Form I have to implement a series of algoritms that work with objects doing various stuff and I'm thinking that Visitor pattern would be the cleanest solution. Let take for example an algorithm which creates a Xml representaion of a hierarchy of objects. Using 'classic' approach I would do this: public abstract class Control { public virtual XmlElement ToXML(XmlDocument document) { XmlElement xml = document.CreateElement(this.GetType().Name); // Create element, fill it with attributes declared with control return xml; } } public abstract class ContainerControl : Control { public override XmlElement ToXML(XmlDocument document) { XmlElement xml = base.ToXML(document); // Use forech to fill XmlElement with child XmlElements return xml; } } public class Form : ContainerControl { public override XmlElement ToXML(XmlDocument document) { XmlElement xml = base.ToXML(document); // Fill remaining elements declared in Form class return xml; } } But I'm not sure how to do this with visitor pattern. This is the basic implementation: public class ToXmlVisitor : IVisitor { public void Visit(Form form) { } } Since even the abstract classes help with implementation I'm not sure how to do that properly in ToXmlVisitor. Perhaps there is a better solution to this problem. The reason that I'm considering Visitor pattern is that some algorithms will need references not available in project where the classes are implemented and there is a number of different algorithms so I'm avoiding large classes. Any thoughts are welcome.

    Read the article

  • Microkernel architectural pattern and applicability for business applications

    - by Pangea
    We are in the business of building customizable web applications. We have the core team that provides what we call as the core platform (provides services like security, billing etc.) on top of which core products are built. These core products are industry specific solutions like telecom, utility etc. These core products are later used by other teams to build customer specific solutions in a particular industry. Until now we have a loose separation between platform and core product. The customer specific solutions are build by customizing 20-40% of the core offering and re-packaging. The core-platform and core products are released together as monolithic apps (ear). I am looking to improvise the current situation so that there is a cleaner separation on these 3. This allows us to have evolve each of these 3 separately etc. I've read through the Mircokernel architecture and kind of felt that I can take apply the principles in my context. But most of my reading about this pattern is always in the context of operating systems or application servers etc. I am wondering if there are any examples on how that pattern was used for architecting business applications. Or you could provide some insight on how to apply that pattern to my problem.

    Read the article

  • Philosophy behind the memento pattern

    - by TheSilverBullet
    I have been reading up on memento pattern from various sources of the internet. Differing information from different sources has left me in confusion regarding why this pattern is actually needed. The dofactory implementation says that the primary intention of this pattern is to restore the state of the system. Wiki says that the primary intention is to be able to restore the changes on the system. This gives a different impact - saying that it is possible for a system to have memento implementation with no need to restore. And that ability of restore is a feature of this. OODesign says that It is sometimes necessary to capture the internal state of an object at some point and have the ability to restore the object to that state later in time. Such a case is useful in case of error or failure. So, my question is why exactly do we use this one? Is it to save previous states - or to promote encapsulation between the Caretaker and the Memento? Why is this type of encapsulation so important? Edit: For those visiting, check out this Implementation!

    Read the article

  • Complex string matching with fuzzywuzzy

    - by That1Guy
    I'm attempting to write a process that matches obscure strings to a single 'master string' for further processing. I have a lot of data that looks something like this: Basketball Basket Ball Football BasketBallR BBall BBall - r FootB ...and so on. These need to be mapped to a master record like so: Basketball = Basket Ball, BBall Basketball - R = BasketBallR, BBall - r I also have instances of data resembling this format: Football -r FootBall - r-g/H,Q,HH These situations need to be separated into different categories before being mapped. For example FootBall - r-g/H,Q,HH should be: Football - r Football - g Football - H Football - Q Football - HH At this point, it still needs to be mapped to a master record... I've tried several different combinations of fuzzywuzzy matching methods, Levenshtein Distance measurements, regex, etc. and can't seem to find a reliable method to logically associate different naming styles of a single item with a master name. I'm throwing my hands up in desperation. Are there any existing python resources than can help sort out my problem? Are there other options? Can anybody point out an obvious option that I might have overlooked? Basically, any suggestion, solution, resource or alternative method is greatly appreciated.

    Read the article

  • Matrix Pattern Recognition Algorithm

    - by Andres
    I am designing a logic analyzer and I would like to implement some Matrix Algorithm. I have several channels each one represented by a row in the matrix and every element in the column would be the state, for example: Channel 1 1 0 0 1 0 1 1 0 1 Channel 2 1 1 0 1 1 0 0 1 1 Channel 3 0 1 0 1 1 0 1 0 0 Channel 4 0 0 1 0 0 1 0 0 1 I would like to detect a pattern inside my matrix for example, detect if exist and where the sub-matrix or pattern: 1 0 1 1 I think it can be accomplished testing element by element but I think there should be a better way of doing it. Is there any Java API or any way to do it ? If there is a API ARM optimized for NEON instructions would be great also but not mandatory. Thank you very much in advance.

    Read the article

  • The UIManager Pattern

    - by Duncan Mills
    One of the most common mistakes that I see when reviewing ADF application code, is the sin of storing UI component references, most commonly things like table or tree components in Session or PageFlow scope. The reasons why this is bad are simple; firstly, these UI object references are not serializable so would not survive a session migration between servers and secondly there is no guarantee that the framework will re-use the same component tree from request to request, although in practice it generally does do so. So there danger here is, that at best you end up with an NPE after you session has migrated, and at worse, you end up pinning old generations of the component tree happily eating up your precious memory. So that's clear, we should never. ever, be storing references to components anywhere other than request scope (or maybe backing bean scope). So double check the scope of those binding attributes that map component references into a managed bean in your applications.  Why is it Such a Common Mistake?  At this point I want to examine why there is this urge to hold onto these references anyway? After all, JSF will obligingly populate your backing beans with the fresh and correct reference when needed.   In most cases, it seems that the rational is down to a lack of distinction within the application between what is data and what is presentation. I think perhaps, a cause of this is the logical separation between business data behind the ADF data binding (#{bindings}) façade and the UI components themselves. Developers tend to think, OK this is my data layer behind the bindings object and everything else is just UI.  Of course that's not the case.  The UI layer itself will have state which is intrinsically linked to the UI presentation rather than the business model, but at the same time should not be tighly bound to a specific instance of any single UI component. So here's the problem.  I think developers try and use the UI components as state-holders for this kind of data, rather than using them to represent that state. An example of this might be something like the selection state of a tabset (panelTabbed), you might be interested in knowing what the currently disclosed tab is. The temptation that leads to the component reference sin is to go and ask the tabset what the selection is.  That of course is fine in context - e.g. a handler within the same request scoped bean that's got the binding to the tabset. However, it leads to problems when you subsequently want the same information outside of the immediate scope.  The simple solution seems to be to chuck that component reference into session scope and then you can simply re-check in the same way, leading of course to this mistake. Turn it on its Head  So the correct solution to this is to turn the problem on its head. If you are going to be interested in the value or state of some component outside of the immediate request context then it becomes persistent state (persistent in the sense that it extends beyond the lifespan of a single request). So you need to externalize that state outside of the component and have the component reference and manipulate that state as needed rather than owning it. This is what I call the UIManager pattern.  Defining the Pattern The  UIManager pattern really is very simple. The premise is that every application should define a session scoped managed bean, appropriately named UIManger, which is specifically responsible for holding this persistent UI component related state.  The actual makeup of the UIManger class varies depending on a needs of the application and the amount of state that needs to be stored. Generally I'll start off with a Map in which individual flags can be created as required, although you could opt for a more formal set of typed member variables with getters and setters, or indeed a mix. This UIManager class is defined as a session scoped managed bean (#{uiManager}) in the faces-config.xml.  The pattern is to then inject this instance of the class into any other managed bean (usually request scope) that needs it using a managed property.  So typically you'll have something like this:   <managed-bean>     <managed-bean-name>uiManager</managed-bean-name>     <managed-bean-class>oracle.demo.view.state.UIManager</managed-bean-class>     <managed-bean-scope>session</managed-bean-scope>   </managed-bean>  When is then injected into any backing bean that needs it:    <managed-bean>     <managed-bean-name>mainPageBB</managed-bean-name>     <managed-bean-class>oracle.demo.view.MainBacking</managed-bean-class>     <managed-bean-scope>request</managed-bean-scope>     <managed-property>       <property-name>uiManager</property-name>       <property-class>oracle.demo.view.state.UIManager</property-class>       <value>#{uiManager}</value>     </managed-property>   </managed-bean> In this case the backing bean in question needs a member variable to hold and reference the UIManager: private UIManager _uiManager;  Which should be exposed via a getter and setter pair with names that match the managed property name (e.g. setUiManager(UIManager _uiManager), getUiManager()).  This will then give your code within the backing bean full access to the UI state. UI components in the page can, of course, directly reference the uiManager bean in their properties, for example, going back to the tab-set example you might have something like this: <af:paneltabbed>   <af:showDetailItem text="First"                disclosed="#{uiManager.settings['MAIN_TABSET_STATE'].['FIRST']}"> ...   </af:showDetailItem>   <af:showDetailItem text="Second"                      disclosed="#{uiManager.settings['MAIN_TABSET_STATE'].['SECOND']}">     ...   </af:showDetailItem>   ... </af:panelTabbed> Where in this case the settings member within the UI Manger is a Map which contains a Map of Booleans for each tab under the MAIN_TABSET_STATE key. (Just an example you could choose to store just an identifier for the selected tab or whatever, how you choose to store the state within UI Manger is up to you.) Get into the Habit So we can see that the UIManager pattern is not great strain to implement for an application and can even be retrofitted to an existing application with ease. The point is, however, that you should always take this approach rather than committing the sin of persistent component references which will bite you in the future or shotgun scattered UI flags on the session which are hard to maintain.  If you take the approach of always accessing all UI state via the uiManager, or perhaps a pageScope focused variant of it, you'll find your applications much easier to understand and maintain. Do it today!

    Read the article

  • AWS .NET SDK v2: the message-pump pattern

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2013/10/11/aws-.net-sdk-v2--the-message-pump-pattern.aspxVersion 2 of the AWS SDK for .NET has had a few pre-release iterations on NuGet and is stable, if a bit lacking in step-by-step guides. There’s at least one big reason to try it out: the SQS queue client now supports asynchronous reads, so you don’t need a clumsy polling mechanism to retrieve messages. The new approach  is easy to use, and lets you work with AWS queues in a similar way to the message-pump pattern used in the latest Azure SDK for Service Bus queues and topics. I’ve posted a simple wrapper class for subscribing to an SQS hub on gist here: A wrapper for the SQS client in the AWS SDK for.NET v2, which uses the message-pump pattern. Here’s the core functionality in the subscribe method: private async void Subscribe() { if (_isListening) { var request = new ReceiveMessageRequest { MaxNumberOfMessages = 10 }; request.QueueUrl = QueueUrl; var result = await _sqsClient.ReceiveMessageAsync(request, _cancellationTokenSource.Token); if (result.Messages.Count > 0) { foreach (var message in result.Messages) { if (_receiveAction != null && message != null) { _receiveAction(message.Body); DeleteMessage(message.ReceiptHandle); } } } } if (_isListening) { Subscribe(); } } which you call with something like this: client.Subscribe(x=>Log.Debug(x.Body)); The async SDK call returns when there is something in the queue, and will run your receive action for every message it gets in the batch (defaults to the maximum size of 10 messages per call). The listener will sit there awaiting messages until you stop it with: client.Unsubscribe(); Internally it has a cancellation token which it sets when you call unsubscribe, which cancels any in-flight call to SQS and stops the pump. The wrapper will also create the queue if it doesn’t exist at runtime. The Ensure() method gets called in the constructor so when you first use the client for a queue (sending or subscribing), it will set itself up: if (!Exists()) { var request = new CreateQueueRequest(); request.QueueName = QueueName; var response = _sqsClient.CreateQueue(request); QueueUrl = response.QueueUrl; } The Exists() check has to do make a call to ListQueues on the SNS client, as it doesn’t provide its own method to check if a queue exists. That call also populates the Amazon Resource Name, the unique identifier for this queue, which will be useful later. To use the wrapper, just instantiate and go: var queueClient = new QueueClient(“ProcessWorkflow”); queueClient.Subscribe(x=>Log.Debug(x.Body)); var message = {}; //etc. queueClient.Send(message);

    Read the article

  • Composite-like pattern and SRP violation

    - by jimmy_keen
    Recently I've noticed myself implementing pattern similar to the one described below. Starting with interface: public interface IUserProvider { User GetUser(UserData data); } GetUser method's pure job is to somehow return user (that would be an operation speaking in composite terms). There might be many implementations of IUserProvider, which all do the same thing - return user basing on input data. It doesn't really matter, as they are only leaves in composite terms and that's fairly simple. Now, my leaves are used by one own them all composite class, which at the moment follows this implementation: public interface IUserProviderComposite : IUserProvider { void RegisterProvider(Predicate<UserData> predicate, IUserProvider provider); } public class UserProviderComposite : IUserProviderComposite { public User GetUser(SomeUserData data) ... public void RegisterProvider(Predicate<UserData> predicate, IUserProvider provider) ... } Idea behind UserProviderComposite is simple. You register providers, and this class acts as a reusable entry-point. When calling GetUser, it will use whatever registered provider matches predicate for requested user data (if that helps, it stores key-value map of predicates and providers internally). Now, what confuses me is whether RegisterProvider method (brings to mind composite's add operation) should be a part of that class. It kind of expands its responsibilities from providing user to also managing providers collection. As far as my understanding goes, this violates Single Responsibility Principle... or am I wrong here? I thought about extracting register part into separate entity and inject it to the composite. As long as it looks decent on paper (in terms of SRP), it feels bit awkward because: I would be essentially injecting Dictionary (or other key-value map) ...or silly wrapper around it, doing nothing more than adding entires This won't be following composite anymore (as add won't be part of composite) What exactly is the presented pattern called? Composite felt natural to compare it with, but I realize it's not exactly the one however nothing else rings any bells. Which approach would you take - stick with SRP or stick with "composite"/pattern? Or is the design here flawed and given the problem this can be done in a better way?

    Read the article

  • Yippy &ndash; the F# MVVM Pattern

    - by MarkPearl
    I did a recent post on implementing WPF with F#. Today I would like to expand on this posting to give a simple implementation of the MVVM pattern in F#. A good read about this topic can also be found on Dean Chalk’s blog although my example of the pattern is possibly simpler. With the MVVM pattern one typically has 3 segments, the view, viewmodel and model. With the beauty of WPF binding one is able to link the state based viewmodel to the view. In my implementation I have kept the same principles. I have a view (MainView.xaml), and and a ViewModel (MainViewModel.fs).     What I would really like to illustrate in this posting is the binding between the View and the ViewModel so I am going to jump to that… In Program.fs I have the following code… module Program open System open System.Windows open System.Windows.Controls open System.Windows.Markup open myViewModels // Create the View and bind it to the View Model let myView = Application.LoadComponent(new System.Uri("/FSharpWPF;component/MainView.xaml", System.UriKind.Relative)) :?> Window myView.DataContext <- new MainViewModel() :> obj // Application Entry point [<STAThread>] [<EntryPoint>] let main(_) = (new Application()).Run(myView) You can see that I have simply created the view (myView) and then created an instance of my viewmodel (MainViewModel) and then bound it to the data context with the code… myView.DataContext <- new MainViewModel() :> obj If I have a look at my viewmodel (MainViewModel) it looks like this… module myViewModels open System open System.Windows open System.Windows.Input open System.ComponentModel open ViewModelBase type MainViewModel() = // private variables let mutable _title = "Bound Data to Textbox" // public properties member x.Title with get() = _title and set(v) = _title <- v // public commands member x.MyCommand = new FuncCommand ( (fun d -> true), (fun e -> x.ShowMessage) ) // public methods member public x.ShowMessage = let msg = MessageBox.Show(x.Title) () I have exposed a few things, namely a property called Title that is mutable, a command and a method called ShowMessage that simply pops up a message box when called. If I then look at my view which I have created in xaml (MainView.xaml) it looks as follows… <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="F# WPF MVVM" Height="350" Width="525"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="Auto"/> <RowDefinition Height="Auto"/> <RowDefinition Height="*"/> </Grid.RowDefinitions> <TextBox Text="{Binding Path=Title, Mode=TwoWay}" Grid.Row="0"/> <Button Command="{Binding MyCommand}" Grid.Row="1"> <TextBlock Text="Click Me"/> </Button> </Grid> </Window>   It is also very simple. It has a button that’s command is bound to the MyCommand and a textbox that has its text bound to the Title property. One other module that I have created is my ViewModelBase. Right now it is used to store my commanding function but I would look to expand on it at a later stage to implement other commonly used functions… module ViewModelBase open System open System.Windows open System.Windows.Input open System.ComponentModel type FuncCommand (canExec:(obj -> bool),doExec:(obj -> unit)) = let cecEvent = new DelegateEvent<EventHandler>() interface ICommand with [<CLIEvent>] member x.CanExecuteChanged = cecEvent.Publish member x.CanExecute arg = canExec(arg) member x.Execute arg = doExec(arg) Put this all together and you have a basic project that implements the MVVM pattern in F#. For me this is quite exciting as it turned out to be a lot simpler to do than I originally thought possible. Also because I have my view in XAML I can use the XAML designer to design forms in F# which I believe is a much cleaner way to go rather than implementing it all in code. Finally if I look at my viewmodel code, it is actually quite clean and compact…

    Read the article

  • Identifying the best pattern

    - by Daniel Grillo
    I'm developing a software to program a device. I have some commands like Reset, Read_Version, Read_memory, Write_memory, Erase_memory. Reset and Read_Version are fixed. They don't need parameters. Read_memory and Erase_memory need the same parameters that are Length and Address. Write_memory needs Lenght, Address and Data. For each command, I have the same steps in sequence, that are something like this sendCommand, waitForResponse, treatResponse. I'm having difficulty to identify which pattern should I use. Factory, Template Method, Strategy or other pattern.

    Read the article

  • Pattern for performing game actions

    - by Arkiliknam
    Is there a generally accepted pattern for performing various actions within a game? A way a player can perform actions and also that an AI might perform actions, such as move, attack, self-destruct, etc. I currently have an abstract BaseAction which uses .NET generics to specify the different objects that get returned by the various actions. This is all implemented in a pattern similar to the Command, where each action is responsible for itself and does all that it needs. My reasoning for being abstract is so that I may have a single ActionHandler, and AI can just queue up different action implementing the baseAction. And the reason it is generic is so that the different actions can return result information relevant to the action (as different actions can have totally different outcomes in the game), along with some common beforeAction and afterAction implementations. So... is there a more accepted way of doing this, or does this sound alright?

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >