Search Results

Search found 262 results on 11 pages for 'pcie'.

Page 10/11 | < Previous Page | 6 7 8 9 10 11  | Next Page >

  • NULL pointer dereference in swiotlb_unmap_sg_attrs() on disk IO

    - by Inductiveload
    I'm getting an error I really don't understand when reading or writing files using a PCIe block device driver. I seem to be hitting an issue in swiotlb_unmap_sg_attrs(), which appears to be doing a NULL dereference of the sg pointer, but I don't know where this is coming from, as the only scatterlist I use myself is allocated as part of the device info structure and persists as long as the driver does. There is a stacktrace to go with the problem. It tends to vary a bit in exact details, but it always crashes in swiotlb_unmap_sq_attrs(). I think it's likely I have a locking issue, as I am not sure how to handle the locks around the IO functions. The lock is already held when the request function is called, I release it before the IO functions themselves are called, as they need an (MSI) IRQ to complete. The IRQ handler updates a "status" value, which the IO function is waiting for. When the IO function returns, I then take the lock back up and return to request queue handling. The crash happens in blk_fetch_request() during the following: if (!__blk_end_request(req, res, bytes)){ printk(KERN_ERR "%s next request\n", DRIVER_NAME); req = blk_fetch_request(q); } else { printk(KERN_ERR "%s same request\n", DRIVER_NAME); } where bytes is updated by the request handler to be the total length of IO (summed length of each scatter-gather segment).

    Read the article

  • How to read MAC address with python

    - by getjoefree
    Earlier, I could read MAC address with awk tools in Windows or Windows PE 4.0, but now it don't support Windows PE 4.0 64-bit. I want to get this result "set mac=A4BADB9D1E8E" with python 2.6, who could help to me. As follows: ipconfig -all|sed -nrf getmac.sed | sed -e "s/-//g" > D:\LOG\WINMAC.BAT getmac.sed: /Realtek/ { n; s/.*: ([-0-9A-F]+)/set winmac=\1/p; } and "ipconfig -all" command log as bellows ipconfig -all >mac.log Ethernet adapter Ethernet: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : WKSCN.WISTRON Description . . . . . . . . . . . : Realtek PCIe FE Family Controller Physical Address. . . . . . . . . : 24-B6-FD-1F-41-E7 DHCP Enabled. . . . . . . . . . . : Yes Autoconfiguration Enabled . . . . : Yes --------------------------------------- we can get Physical Address when plug in lan cable, but not plug the network cable, it is impossible to obtain IP address.

    Read the article

  • How to read MAC address with sed vs python

    - by getjoefree
    Earlier, I could read MAC address with awk tools in Windows or Windows PE 4.0, but now it don't support Windows PE 4.0 64-bit. I want to get this result "set mac=A4BADB9D1E8E" with python 2.6, who could help to me. As follows: ipconfig -all|sed -nrf getmac.sed | sed -e "s/-//g" > D:\LOG\WINMAC.BAT ----------------------------------------------------------------------- getmac.sed: /Realtek/ { n; s/.*: ([-0-9A-F]+)/set winmac=\1/p; } and "ipconfig -all" command log as bellows: ipconfig -all >mac.log ---------------------- Ethernet adapter Ethernet: -------------------------- Media State . . . . . . . . . . . : Media disconnected ------------------------------------------------------ Connection-specific DNS Suffix . : WKSCN.WISTRON ------------------------------------------------ Description . . . . . . . . . . . : Realtek PCIe FE Family Controller --------------------------------------------------------------------- Physical Address. . . . . . . . . : 24-B6-FD-1F-41-E7 ----------------------------------------------------- DHCP Enabled. . . . . . . . . . . : Yes --------------------------------------- Autoconfiguration Enabled . . . . : Yes ---------------------------------------

    Read the article

  • openstack, bridging, netfilter and dnat

    - by Craig Sanders
    In a recent upgrade (from Openstack Diablo on Ubuntu Lucid to Openstack Essex on Ubuntu Precise), we found that DNS packets were frequently (almost always) dropped on the bridge interface (br100). For our compute-node hosts, that's a Mellanox MT26428 using the mlx4_en driver module. We've found two workarounds for this: Use an old lucid kernel (e.g. 2.6.32-41-generic). This causes other problems, in particular the lack of cgroups and the old version of the kvm and kvm_amd modules (we suspect the kvm module version is the source of a bug we're seeing where occasionally a VM will use 100% CPU). We've been running with this for the last few months, but can't stay here forever. With the newer Ubuntu Precise kernels (3.2.x), we've found that if we use sysctl to disable netfilter on bridge (see sysctl settings below) that DNS started working perfectly again. We thought this was the solution to our problem until we realised that turning off netfilter on the bridge interface will, of course, mean that the DNAT rule to redirect VM requests for the nova-api-metadata server (i.e. redirect packets destined for 169.254.169.254:80 to compute-node's-IP:8775) will be completely bypassed. Long-story short: with 3.x kernels, we can have reliable networking and broken metadata service or we can have broken networking and a metadata service that would work fine if there were any VMs to service. We haven't yet found a way to have both. Anyone seen this problem or anything like it before? got a fix? or a pointer in the right direction? Our suspicion is that it's specific to the Mellanox driver, but we're not sure of that (we've tried several different versions of the mlx4_en driver, starting with the version built-in to the 3.2.x kernels all the way up to the latest 1.5.8.3 driver from the mellanox web site. The mlx4_en driver in the 3.5.x kernel from Quantal doesn't work at all) BTW, our compute nodes have supermicro H8DGT motherboards with built-in mellanox NIC: 02:00.0 InfiniBand: Mellanox Technologies MT26428 [ConnectX VPI PCIe 2.0 5GT/s - IB QDR / 10GigE] (rev b0) we're not using the other two NICs in the system, only the Mellanox and the IPMI card are connected. Bridge netfilter sysctl settings: net.bridge.bridge-nf-call-arptables = 0 net.bridge.bridge-nf-call-iptables = 0 net.bridge.bridge-nf-call-ip6tables = 0 Since discovering this bridge-nf sysctl workaround, we've found a few pages on the net recommending exactly this (including Openstack's latest network troubleshooting page and a launchpad bug report that linked to this blog-post that has a great description of the problem and the solution)....it's easier to find stuff when you know what to search for :), but we haven't found anything on the DNAT issue that it causes.

    Read the article

  • How can I troubleshoot a "Hardware Malfunction" blue screen?

    - by AaronSieb
    My computer has suddenly started crashing to a blue screen with the following text: hardware malfunction call your hardware vendor for support *the system has halted* The crash occurs randomly during normal use. I have thus far always been able to reproduce it by transferring the contents of a large folder... But I'm not sure if this is caused by the file transfer, or simply because the transfer takes long enough for something else to trigger it. A bit about my hardware I have an dual core Intel CPU, and Asus motherboard. Video card is by nVidia, and connects via PCIe. My hard drives are in pairs, and connect via SATA to a RAID controller on the motherboard. They are configured to use a RAID0 configuration. What I've tried so far There is nothing in the Windows Event Log. WhoCrashed was unable to find any crash records. ScanDisk runs to completion (it launches prior to Windows load) and reports no errors. MemTest reports no errors (to 200% coverage). System temperatures are in the range of 40 to 50 degrees Celsius, with video card temperatures in the range of 60 to eighty degrees Celsius. I have stripped the system down to a minimal configuration (hard drive, video card, one memory module, motherboard, CPU, power supply). The problem still occurrs. However, this has allowed me to rule out a few components: It is not the video card because the problem still occurred after replacing the video card another one I had on hand. It is not the hard drive or anything software related because the problem occurred after a fresh installation of Windows on a replacement hard drive. It is not the hard drive cables because I replaced those with new ones and still had the problem. It is not the power supply because the problem still occurred after replacing the power supply with another one I had on hand. It is probably not the memory because I've tried three different memory modules in three different memory slots and was still able to replicate the issue. Is there anything I can do to confirm what's causing the issue? At the moment it seems as though it must be either the motherboard or CPU, but those are both difficult components to replace... In addition, both components are relatively new (two to three years old). I will gladly edit in any additional information I can get my hands on, and/or focus the question as I can find more details...

    Read the article

  • Windows Server 2008 - one MAC Address, assign multiple external IP's to VirtualBoxes running as guests on host

    - by Sise
    Couldn't find any help @ google or here. The scenario: Windows Server 2008 Std x64 on i7-975, 12 GB RAM. The server is running in a data centre. One hardware NIC - RealTek PCIe GBE - one MAC Address. The data centre provides us 4 static external IP's. The first is assigned to the host by default of course. I have ordered all 4 IP's, the data centre can assign the available IP's to the physical MAC address of the given NIC only. This means one NIC, one MAC Address, 4 IP's. Everything works fine so far. Now, what I would like to have: Installed VirtualBox with 1-3 guests running, each gets it's own external IP assigned. Each of it should be an standalone Win Server 2008. It looks like the easiest way would be to put the guests into an virtual subnet and routing all data coming to the 2nd till 4th external IP through to this guests using there subnet IP's. I have been through the VirtualBox User Manuel regarding networking. What's not working: I can't use bridged networking without anything else, because the IP's are assigned to the one MAC address only. I can't use NAT networking because it does not allow access from outside or the host to the guest. I do not wanna use port forwarding. Host-only networking itself would not allow internet access, by sharing the default internet connection of the host, internet is granted from the guest to the outside but not from outside or the host to the guest. InternalNetworking is not really an option here. What I have tried is to create an additional MS Loopback adapter for a routed subnet, where the Vbox guests are in, now the idea was to NAT the internet connection to the loopback 'subnet'. But I can't ping the gateway from the guests. By using route command in the command shell or RRAS (static route, NAT) I didn't get there as well. Solutions like the following do work for the one way, but not for the way back: For your situation, it might be best to use the Host-Only adapter for ICS. Go to the preferences of VB itself and select network. There you can change the configuration for the interface. Set the IP address to 192.168.0.1, netmask 255.255.255.0. Disable the DHCP server if it isn't already and that's it. Now the Guest should get an IP from Windows itself and be able to get onto the internet, while you can also access the Host. Slowly I'm pretty stucked with this topic. There is a possibility I've just overlooked something or just didn't getting it by trying, especially using RRAS, but it's kinda hard to find useful howto's or something in the web. Thanks in advance! Best regards, Simon

    Read the article

  • how to read mac address with sed vs python

    - by getjoefree
    before, i can read mac with awk tools in windows or winpe, but now it don't support winpe 4.0 64-bit. i want to get this result "set mac=A4BADB9D1E8E" with python 2.6, who could help to me. thanks a lot! as follows: ipconfig -all|sed -nrf getmac.sed | sed -e "s/-//g" D:\LOG\WINMAC.BAT getmac.sed: /Realtek/ { n; s/.*: ([-0-9A-F]+)/set winmac=\1/p; } and "ipconfig -all" command log as bellows: ipconfig -all mac.log Ethernet adapter Ethernet: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : WKSCN.WISTRON Description . . . . . . . . . . . : Realtek PCIe FE Family Controller Physical Address. . . . . . . . . : 24-B6-FD-1F-41-E7 DHCP Enabled. . . . . . . . . . . : Yes Autoconfiguration Enabled . . . . : Yes

    Read the article

  • Linux RAID-0 performance doesn't scale up over 1 GB/s

    - by wazoox
    I have trouble getting the max throughput out of my setup. The hardware is as follow : dual Quad-Core AMD Opteron(tm) Processor 2376 16 GB DDR2 ECC RAM dual Adaptec 52245 RAID controllers 48 1 TB SATA drives set up as 2 RAID-6 arrays (256KB stripe) + spares. Software : Plain vanilla 2.6.32.25 kernel, compiled for AMD-64, optimized for NUMA; Debian Lenny userland. benchmarks run : disktest, bonnie++, dd, etc. All give the same results. No discrepancy here. io scheduler used : noop. Yeah, no trick here. Up until now I basically assumed that striping (RAID 0) several physical devices should augment performance roughly linearly. However this is not the case here : each RAID array achieves about 780 MB/s write, sustained, and 1 GB/s read, sustained. writing to both RAID arrays simultaneously with two different processes gives 750 + 750 MB/s, and reading from both gives 1 + 1 GB/s. however when I stripe both arrays together, using either mdadm or lvm, the performance is about 850 MB/s writing and 1.4 GB/s reading. at least 30% less than expected! running two parallel writer or reader processes against the striped arrays doesn't enhance the figures, in fact it degrades performance even further. So what's happening here? Basically I ruled out bus or memory contention, because when I run dd on both drives simultaneously, aggregate write speed actually reach 1.5 GB/s and reading speed tops 2 GB/s. So it's not the PCIe bus. I suppose it's not the RAM. It's not the filesystem, because I get exactly the same numbers benchmarking against the raw device or using XFS. And I also get exactly the same performance using either LVM striping and md striping. What's wrong? What's preventing a process from going up to the max possible throughput? Is Linux striping defective? What other tests could I run?

    Read the article

  • Ubuntu 10.04 not detecting multiple monitors

    - by user28837
    I have 2 graphics cards, the output from the lspci: 01:00.0 VGA compatible controller: ATI Technologies Inc RV770 [Radeon HD 4850] 02:00.0 VGA compatible controller: ATI Technologies Inc RV710 [Radeon HD 4350] I have one monitor connected to the 4850 and 2 connected to the 4350. However when I go into System Preferences Monitors the only monitor shown is the one connected to the 4850. Is there something I need to enable for it to be able to use the other card? How do I get this to work. Thanks. As per request: X.Org X Server 1.7.6 Release Date: 2010-03-17 X Protocol Version 11, Revision 0 Build Operating System: Linux 2.6.24-25-server i686 Ubuntu Current Operating System: Linux jeff-desktop 2.6.32-22-generic-pae #33-Ubuntu SMP Wed Apr 28 14:57:29 UTC 2010 i686 Kernel command line: BOOT_IMAGE=/boot/vmlinuz-2.6.32-22-generic-pae root=UUID=852e1013-4ed6-40fd-a462-c29087888383 ro quiet splash Build Date: 23 April 2010 05:11:50PM xorg-server 2:1.7.6-2ubuntu7 (Bryce Harrington <[email protected]>) Current version of pixman: 0.16.4 Before reporting problems, check http://wiki.x.org to make sure that you have the latest version. Markers: (--) probed, (**) from config file, (==) default setting, (++) from command line, (!!) notice, (II) informational, (WW) warning, (EE) error, (NI) not implemented, (??) unknown. (==) Log file: "/var/log/Xorg.0.log", Time: Tue May 11 08:24:52 2010 (==) Using config file: "/etc/X11/xorg.conf" (==) Using config directory: "/usr/lib/X11/xorg.conf.d" (==) No Layout section. Using the first Screen section. (**) |-->Screen "Default Screen" (0) (**) | |-->Monitor "<default monitor>" (==) No device specified for screen "Default Screen". Using the first device section listed. (**) | |-->Device "Default Device" (==) No monitor specified for screen "Default Screen". Using a default monitor configuration. (==) Automatically adding devices (==) Automatically enabling devices (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. Entry deleted from font path. (==) FontPath set to: /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/75dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, /usr/share/fonts/X11/75dpi, /var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType, built-ins (==) ModulePath set to "/usr/lib/xorg/extra-modules,/usr/lib/xorg/modules" (II) The server relies on udev to provide the list of input devices. If no devices become available, reconfigure udev or disable AutoAddDevices. (II) Loader magic: 0x81f0e80 (II) Module ABI versions: X.Org ANSI C Emulation: 0.4 X.Org Video Driver: 6.0 X.Org XInput driver : 7.0 X.Org Server Extension : 2.0 (++) using VT number 7 (--) PCI:*(0:1:0:0) 1002:9442:174b:e104 ATI Technologies Inc RV770 [Radeon HD 4850] rev 0, Mem @ 0xc0000000/268435456, 0xfe7e0000/65536, I/O @ 0x0000a000/256, BIOS @ 0x????????/131072 (--) PCI: (0:2:0:0) 1002:954f:1462:1618 ATI Technologies Inc RV710 [Radeon HD 4350] rev 0, Mem @ 0xd0000000/268435456, 0xfe8e0000/65536, I/O @ 0x0000b000/256, BIOS @ 0x????????/131072 (WW) Open ACPI failed (/var/run/acpid.socket) (No such file or directory) (II) "extmod" will be loaded by default. (II) "dbe" will be loaded by default. (II) "glx" will be loaded. This was enabled by default and also specified in the config file. (II) "record" will be loaded by default. (II) "dri" will be loaded by default. (II) "dri2" will be loaded by default. (II) LoadModule: "glx" (II) Loading /usr/lib/xorg/extra-modules/modules/extensions/libglx.so (II) Module glx: vendor="FireGL - ATI Technologies Inc." compiled for 7.5.0, module version = 1.0.0 (II) Loading extension GLX (II) LoadModule: "extmod" (II) Loading /usr/lib/xorg/modules/extensions/libextmod.so (II) Module extmod: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.0.0 Module class: X.Org Server Extension ABI class: X.Org Server Extension, version 2.0 (II) Loading extension MIT-SCREEN-SAVER (II) Loading extension XFree86-VidModeExtension (II) Loading extension XFree86-DGA (II) Loading extension DPMS (II) Loading extension XVideo (II) Loading extension XVideo-MotionCompensation (II) Loading extension X-Resource (II) LoadModule: "dbe" (II) Loading /usr/lib/xorg/modules/extensions/libdbe.so (II) Module dbe: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.0.0 Module class: X.Org Server Extension ABI class: X.Org Server Extension, version 2.0 (II) Loading extension DOUBLE-BUFFER (II) LoadModule: "record" (II) Loading /usr/lib/xorg/modules/extensions/librecord.so (II) Module record: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.13.0 Module class: X.Org Server Extension ABI class: X.Org Server Extension, version 2.0 (II) Loading extension RECORD (II) LoadModule: "dri" (II) Loading /usr/lib/xorg/modules/extensions/libdri.so (II) Module dri: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.0.0 ABI class: X.Org Server Extension, version 2.0 (II) Loading extension XFree86-DRI (II) LoadModule: "dri2" (II) Loading /usr/lib/xorg/modules/extensions/libdri2.so (II) Module dri2: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.1.0 ABI class: X.Org Server Extension, version 2.0 (II) Loading extension DRI2 (II) LoadModule: "fglrx" (II) Loading /usr/lib/xorg/extra-modules/modules/drivers/fglrx_drv.so (II) Module fglrx: vendor="FireGL - ATI Technologies Inc." compiled for 1.7.1, module version = 8.72.11 Module class: X.Org Video Driver (II) Loading sub module "fglrxdrm" (II) LoadModule: "fglrxdrm" (II) Loading /usr/lib/xorg/extra-modules/modules/linux/libfglrxdrm.so (II) Module fglrxdrm: vendor="FireGL - ATI Technologies Inc." compiled for 1.7.1, module version = 8.72.11 (II) ATI Proprietary Linux Driver Version Identifier:8.72.11 (II) ATI Proprietary Linux Driver Release Identifier: 8.723.1 (II) ATI Proprietary Linux Driver Build Date: Apr 8 2010 21:40:29 (II) Primary Device is: PCI 01@00:00:0 (WW) Falling back to old probe method for fglrx (II) Loading PCS database from /etc/ati/amdpcsdb (--) Assigning device section with no busID to primary device (WW) fglrx: No matching Device section for instance (BusID PCI:0@2:0:0) found (--) Chipset Supported AMD Graphics Processor (0x9442) found (WW) fglrx: No matching Device section for instance (BusID PCI:0@1:0:1) found (WW) fglrx: No matching Device section for instance (BusID PCI:0@2:0:1) found (**) ChipID override: 0x954F (**) Chipset Supported AMD Graphics Processor (0x954F) found (II) AMD Video driver is running on a device belonging to a group targeted for this release (II) AMD Video driver is signed (II) fglrx(0): pEnt->device->identifier=0x9428aa0 (II) pEnt->device->identifier=(nil) (II) fglrx(0): === [atiddxPreInit] === begin (II) Loading sub module "vgahw" (II) LoadModule: "vgahw" (II) Loading /usr/lib/xorg/modules/libvgahw.so (II) Module vgahw: vendor="X.Org Foundation" compiled for 1.7.6, module version = 0.1.0 ABI class: X.Org Video Driver, version 6.0 (II) fglrx(0): Creating default Display subsection in Screen section "Default Screen" for depth/fbbpp 24/32 (**) fglrx(0): Depth 24, (--) framebuffer bpp 32 (II) fglrx(0): Pixel depth = 24 bits stored in 4 bytes (32 bpp pixmaps) (==) fglrx(0): Default visual is TrueColor (==) fglrx(0): RGB weight 888 (II) fglrx(0): Using 8 bits per RGB (==) fglrx(0): Buffer Tiling is ON (II) Loading sub module "fglrxdrm" (II) LoadModule: "fglrxdrm" (II) Reloading /usr/lib/xorg/extra-modules/modules/linux/libfglrxdrm.so ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiOpenByBusid: Searching for BusID PCI:1:0:0 ukiOpenDevice: node name is /dev/ati/card0 ukiOpenDevice: open result is 10, (OK) ukiOpenByBusid: ukiOpenMinor returns 10 ukiOpenByBusid: ukiGetBusid reports PCI:2:0:0 ukiOpenDevice: node name is /dev/ati/card1 ukiOpenDevice: open result is 10, (OK) ukiOpenByBusid: ukiOpenMinor returns 10 ukiOpenByBusid: ukiGetBusid reports PCI:1:0:0 ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiOpenByBusid: Searching for BusID PCI:2:0:0 ukiOpenDevice: node name is /dev/ati/card0 ukiOpenDevice: open result is 11, (OK) ukiOpenByBusid: ukiOpenMinor returns 11 ukiOpenByBusid: ukiGetBusid reports PCI:2:0:0 (--) fglrx(0): Chipset: "ATI Radeon HD 4800 Series" (Chipset = 0x9442) (--) fglrx(0): (PciSubVendor = 0x174b, PciSubDevice = 0xe104) (==) fglrx(0): board vendor info: third party graphics adapter - NOT original ATI (--) fglrx(0): Linear framebuffer (phys) at 0xc0000000 (--) fglrx(0): MMIO registers at 0xfe7e0000 (--) fglrx(0): I/O port at 0x0000a000 (==) fglrx(0): ROM-BIOS at 0x000c0000 (II) fglrx(0): AC Adapter is used (II) fglrx(0): Primary V_BIOS segment is: 0xc000 (II) Loading sub module "vbe" (II) LoadModule: "vbe" (II) Loading /usr/lib/xorg/modules/libvbe.so (II) Module vbe: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.1.0 ABI class: X.Org Video Driver, version 6.0 (II) fglrx(0): VESA BIOS detected (II) fglrx(0): VESA VBE Version 3.0 (II) fglrx(0): VESA VBE Total Mem: 16384 kB (II) fglrx(0): VESA VBE OEM: ATI ATOMBIOS (II) fglrx(0): VESA VBE OEM Software Rev: 11.13 (II) fglrx(0): VESA VBE OEM Vendor: (C) 1988-2005, ATI Technologies Inc. (II) fglrx(0): VESA VBE OEM Product: RV770 (II) fglrx(0): VESA VBE OEM Product Rev: 01.00 (II) fglrx(0): ATI Video BIOS revision 9 or later detected (--) fglrx(0): Video RAM: 524288 kByte, Type: GDDR3 (II) fglrx(0): PCIE card detected (--) fglrx(0): Using per-process page tables (PPPT) as GART. (WW) fglrx(0): board is an unknown third party board, chipset is supported (--) fglrx(0): Chipset: "ATI Radeon HD 4300/4500 Series" (Chipset = 0x954f) (--) fglrx(0): (PciSubVendor = 0x1462, PciSubDevice = 0x1618) (==) fglrx(0): board vendor info: third party graphics adapter - NOT original ATI (--) fglrx(0): Linear framebuffer (phys) at 0xd0000000 (--) fglrx(0): MMIO registers at 0xfe8e0000 (--) fglrx(0): I/O port at 0x0000b000 (==) fglrx(0): ROM-BIOS at 0x000c0000 (II) fglrx(0): AC Adapter is used (II) fglrx(0): Invalid ATI BIOS from int10, the adapter is not VGA-enabled (II) fglrx(0): ATI Video BIOS revision 9 or later detected (--) fglrx(0): Video RAM: 524288 kByte, Type: DDR2 (II) fglrx(0): PCIE card detected (--) fglrx(0): Using per-process page tables (PPPT) as GART. (WW) fglrx(0): board is an unknown third party board, chipset is supported (II) fglrx(0): Using adapter: 1:0.0. (II) fglrx(0): [FB] MC range(MCFBBase = 0xf00000000, MCFBSize = 0x20000000) (II) fglrx(0): Interrupt handler installed at IRQ 31. (II) fglrx(0): Using adapter: 2:0.0. (II) fglrx(0): [FB] MC range(MCFBBase = 0xf00000000, MCFBSize = 0x20000000) (II) fglrx(0): RandR 1.2 support is enabled! (II) fglrx(0): RandR 1.2 rotation support is enabled! (==) fglrx(0): Center Mode is disabled (II) Loading sub module "fb" (II) LoadModule: "fb" (II) Loading /usr/lib/xorg/modules/libfb.so (II) Module fb: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.0.0 ABI class: X.Org ANSI C Emulation, version 0.4 (II) Loading sub module "ddc" (II) LoadModule: "ddc" (II) Module "ddc" already built-in (II) fglrx(0): Finished Initialize PPLIB! (II) Loading sub module "ddc" (II) LoadModule: "ddc" (II) Module "ddc" already built-in (II) fglrx(0): Connected Display0: DFP on external TMDS [tmds2] (II) fglrx(0): Display0 EDID data --------------------------- (II) fglrx(0): Manufacturer: DEL Model: a038 Serial#: 810829397 (II) fglrx(0): Year: 2008 Week: 51 (II) fglrx(0): EDID Version: 1.3 (II) fglrx(0): Digital Display Input (II) fglrx(0): Max Image Size [cm]: horiz.: 53 vert.: 30 (II) fglrx(0): Gamma: 2.20 (II) fglrx(0): DPMS capabilities: StandBy Suspend Off (II) fglrx(0): Supported color encodings: RGB 4:4:4 YCrCb 4:4:4 (II) fglrx(0): Default color space is primary color space (II) fglrx(0): First detailed timing is preferred mode (II) fglrx(0): redX: 0.640 redY: 0.330 greenX: 0.300 greenY: 0.600 (II) fglrx(0): blueX: 0.150 blueY: 0.060 whiteX: 0.312 whiteY: 0.329 (II) fglrx(0): Supported established timings: (II) fglrx(0): 720x400@70Hz (II) fglrx(0): 640x480@60Hz (II) fglrx(0): 640x480@75Hz (II) fglrx(0): 800x600@60Hz (II) fglrx(0): 800x600@75Hz (II) fglrx(0): 1024x768@60Hz (II) fglrx(0): 1024x768@75Hz (II) fglrx(0): 1280x1024@75Hz (II) fglrx(0): Manufacturer's mask: 0 (II) fglrx(0): Supported standard timings: (II) fglrx(0): #0: hsize: 1152 vsize 864 refresh: 75 vid: 20337 (II) fglrx(0): #1: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 (II) fglrx(0): #2: hsize: 1920 vsize 1080 refresh: 60 vid: 49361 (II) fglrx(0): Supported detailed timing: (II) fglrx(0): clock: 148.5 MHz Image Size: 531 x 298 mm (II) fglrx(0): h_active: 1920 h_sync: 2008 h_sync_end 2052 h_blank_end 2200 h_border: 0 (II) fglrx(0): v_active: 1080 v_sync: 1084 v_sync_end 1089 v_blanking: 1125 v_border: 0 (II) fglrx(0): Serial No: Y183D8CF0TFU (II) fglrx(0): Monitor name: DELL S2409W (II) fglrx(0): Ranges: V min: 50 V max: 76 Hz, H min: 30 H max: 83 kHz, PixClock max 170 MHz (II) fglrx(0): EDID (in hex): (II) fglrx(0): 00ffffffffffff0010ac38a055465430 (II) fglrx(0): 3312010380351e78eeee91a3544c9926 (II) fglrx(0): 0f5054a54b00714f8180d1c001010101 (II) fglrx(0): 010101010101023a801871382d40582c (II) fglrx(0): 4500132a2100001e000000ff00593138 (II) fglrx(0): 3344384346305446550a000000fc0044 (II) fglrx(0): 454c4c205332343039570a20000000fd (II) fglrx(0): 00324c1e5311000a2020202020200059 (II) fglrx(0): End of Display0 EDID data -------------------- (II) fglrx(0): Output DFP2 has no monitor section (II) fglrx(0): Output DFP_EXTTMDS has no monitor section (II) fglrx(0): Output CRT1 has no monitor section (II) fglrx(0): Output CRT2 has no monitor section (II) fglrx(0): Output DFP2 disconnected (II) fglrx(0): Output DFP_EXTTMDS connected (II) fglrx(0): Output CRT1 disconnected (II) fglrx(0): Output CRT2 disconnected (II) fglrx(0): Using exact sizes for initial modes (II) fglrx(0): Output DFP_EXTTMDS using initial mode 1920x1080 (II) fglrx(0): DPI set to (96, 96) (II) fglrx(0): Adapter ATI Radeon HD 4800 Series has 2 configurable heads and 1 displays connected. (==) fglrx(0): QBS disabled (==) fglrx(0): PseudoColor visuals disabled (II) Loading sub module "ramdac" (II) LoadModule: "ramdac" (II) Module "ramdac" already built-in (==) fglrx(0): NoAccel = NO (==) fglrx(0): NoDRI = NO (==) fglrx(0): Capabilities: 0x00000000 (==) fglrx(0): CapabilitiesEx: 0x00000000 (==) fglrx(0): OpenGL ClientDriverName: "fglrx_dri.so" (==) fglrx(0): UseFastTLS=0 (==) fglrx(0): BlockSignalsOnLock=1 (--) Depth 24 pixmap format is 32 bpp (II) Loading extension ATIFGLRXDRI (II) fglrx(0): doing swlDriScreenInit (II) fglrx(0): swlDriScreenInit for fglrx driver ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiOpenByBusid: Searching for BusID PCI:1:0:0 ukiOpenDevice: node name is /dev/ati/card0 ukiOpenDevice: open result is 17, (OK) ukiOpenByBusid: ukiOpenMinor returns 17 ukiOpenByBusid: ukiGetBusid reports PCI:2:0:0 ukiOpenDevice: node name is /dev/ati/card1 ukiOpenDevice: open result is 17, (OK) ukiOpenByBusid: ukiOpenMinor returns 17 ukiOpenByBusid: ukiGetBusid reports PCI:1:0:0 (II) fglrx(0): [uki] DRM interface version 1.0 (II) fglrx(0): [uki] created "fglrx" driver at busid "PCI:1:0:0" (II) fglrx(0): [uki] added 8192 byte SAREA at 0x2000 (II) fglrx(0): [uki] mapped SAREA 0x2000 to 0xb6996000 (II) fglrx(0): [uki] framebuffer handle = 0x3000 (II) fglrx(0): [uki] added 1 reserved context for kernel (II) fglrx(0): swlDriScreenInit done (II) fglrx(0): Kernel Module Version Information: (II) fglrx(0): Name: fglrx (II) fglrx(0): Version: 8.72.11 (II) fglrx(0): Date: Apr 8 2010 (II) fglrx(0): Desc: ATI FireGL DRM kernel module (II) fglrx(0): Kernel Module version matches driver. (II) fglrx(0): Kernel Module Build Time Information: (II) fglrx(0): Build-Kernel UTS_RELEASE: 2.6.32-22-generic-pae (II) fglrx(0): Build-Kernel MODVERSIONS: yes (II) fglrx(0): Build-Kernel __SMP__: yes (II) fglrx(0): Build-Kernel PAGE_SIZE: 0x1000 (II) fglrx(0): [uki] register handle = 0x00004000 (II) fglrx(0): DRI initialization successfull! (II) fglrx(0): FBADPhys: 0xf00000000 FBMappedSize: 0x01068000 (II) fglrx(0): FBMM initialized for area (0,0)-(1920,2240) (II) fglrx(0): FBMM auto alloc for area (0,0)-(1920,1920) (front color buffer - assumption) (II) fglrx(0): Largest offscreen area available: 1920 x 320 (==) fglrx(0): Backing store disabled (II) Loading extension FGLRXEXTENSION (==) fglrx(0): DPMS enabled (II) fglrx(0): Initialized in-driver Xinerama extension (**) fglrx(0): Textured Video is enabled. (II) LoadModule: "glesx" (II) Loading /usr/lib/xorg/extra-modules/modules/glesx.so (II) Module glesx: vendor="X.Org Foundation" compiled for 1.7.1, module version = 1.0.0 (II) Loading extension GLESX (II) Loading sub module "xaa" (II) LoadModule: "xaa" (II) Loading /usr/lib/xorg/modules/libxaa.so (II) Module xaa: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.2.1 ABI class: X.Org Video Driver, version 6.0 (II) fglrx(0): GLESX enableFlags = 94 (II) fglrx(0): Using XFree86 Acceleration Architecture (XAA) Screen to screen bit blits Solid filled rectangles Solid Horizontal and Vertical Lines Driver provided ScreenToScreenBitBlt replacement Driver provided FillSolidRects replacement (II) fglrx(0): GLESX is enabled (II) LoadModule: "amdxmm" (II) Loading /usr/lib/xorg/extra-modules/modules/amdxmm.so (II) Module amdxmm: vendor="X.Org Foundation" compiled for 1.7.1, module version = 1.0.0 (II) Loading extension AMDXVOPL (II) fglrx(0): UVD2 feature is available (II) fglrx(0): Enable composite support successfully (II) fglrx(0): X context handle = 0x1 (II) fglrx(0): [DRI] installation complete (==) fglrx(0): Silken mouse enabled (==) fglrx(0): Using HW cursor of display infrastructure! (II) fglrx(0): Disabling in-server RandR and enabling in-driver RandR 1.2. (--) RandR disabled (II) Found 2 VGA devices: arbiter wrapping enabled (II) Initializing built-in extension Generic Event Extension (II) Initializing built-in extension SHAPE (II) Initializing built-in extension MIT-SHM (II) Initializing built-in extension XInputExtension (II) Initializing built-in extension XTEST (II) Initializing built-in extension BIG-REQUESTS (II) Initializing built-in extension SYNC (II) Initializing built-in extension XKEYBOARD (II) Initializing built-in extension XC-MISC (II) Initializing built-in extension SECURITY (II) Initializing built-in extension XINERAMA (II) Initializing built-in extension XFIXES (II) Initializing built-in extension RENDER (II) Initializing built-in extension RANDR (II) Initializing built-in extension COMPOSITE (II) Initializing built-in extension DAMAGE ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiOpenByBusid: Searching for BusID PCI:1:0:0 ukiOpenDevice: node name is /dev/ati/card0 ukiOpenDevice: open result is 18, (OK) ukiOpenByBusid: ukiOpenMinor returns 18 ukiOpenByBusid: ukiGetBusid reports PCI:2:0:0 ukiOpenDevice: node name is /dev/ati/card1 ukiOpenDevice: open result is 18, (OK) ukiOpenByBusid: ukiOpenMinor returns 18 ukiOpenByBusid: ukiGetBusid reports PCI:1:0:0 (II) AIGLX: Loaded and initialized /usr/lib/dri/fglrx_dri.so (II) GLX: Initialized DRI GL provider for screen 0 (II) fglrx(0): Enable the clock gating! (II) fglrx(0): Setting screen physical size to 507 x 285 (II) XKB: reuse xkmfile /var/lib/xkb/server-B20D7FC79C7F597315E3E501AEF10E0D866E8E92.xkm (II) config/udev: Adding input device Power Button (/dev/input/event1) (**) Power Button: Applying InputClass "evdev keyboard catchall" (II) LoadModule: "evdev" (II) Loading /usr/lib/xorg/modules/input/evdev_drv.so (II) Module evdev: vendor="X.Org Foundation" compiled for 1.7.6, module version = 2.3.2 Module class: X.Org XInput Driver ABI class: X.Org XInput driver, version 7.0 (**) Power Button: always reports core events (**) Power Button: Device: "/dev/input/event1" (II) Power Button: Found keys (II) Power Button: Configuring as keyboard (II) XINPUT: Adding extended input device "Power Button" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device Power Button (/dev/input/event0) (**) Power Button: Applying InputClass "evdev keyboard catchall" (**) Power Button: always reports core events (**) Power Button: Device: "/dev/input/event0" (II) Power Button: Found keys (II) Power Button: Configuring as keyboard (II) XINPUT: Adding extended input device "Power Button" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device Logitech USB-PS/2 Optical Mouse (/dev/input/event3) (**) Logitech USB-PS/2 Optical Mouse: Applying InputClass "evdev pointer catchall" (**) Logitech USB-PS/2 Optical Mouse: always reports core events (**) Logitech USB-PS/2 Optical Mouse: Device: "/dev/input/event3" (II) Logitech USB-PS/2 Optical Mouse: Found 12 mouse buttons (II) Logitech USB-PS/2 Optical Mouse: Found scroll wheel(s) (II) Logitech USB-PS/2 Optical Mouse: Found relative axes (II) Logitech USB-PS/2 Optical Mouse: Found x and y relative axes (II) Logitech USB-PS/2 Optical Mouse: Configuring as mouse (**) Logitech USB-PS/2 Optical Mouse: YAxisMapping: buttons 4 and 5 (**) Logitech USB-PS/2 Optical Mouse: EmulateWheelButton: 4, EmulateWheelInertia: 10, EmulateWheelTimeout: 200 (II) XINPUT: Adding extended input device "Logitech USB-PS/2 Optical Mouse" (type: MOUSE) (II) Logitech USB-PS/2 Optical Mouse: initialized for relative axes. (II) config/udev: Adding input device Logitech USB-PS/2 Optical Mouse (/dev/input/mouse1) (II) No input driver/identifier specified (ignoring) (II) config/udev: Adding input device Logitech USB Multimedia Keyboard (/dev/input/event4) (**) Logitech USB Multimedia Keyboard: Applying InputClass "evdev keyboard catchall" (**) Logitech USB Multimedia Keyboard: always reports core events (**) Logitech USB Multimedia Keyboard: Device: "/dev/input/event4" (II) Logitech USB Multimedia Keyboard: Found keys (II) Logitech USB Multimedia Keyboard: Configuring as keyboard (II) XINPUT: Adding extended input device "Logitech USB Multimedia Keyboard" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device Logitech USB Multimedia Keyboard (/dev/input/event5) (**) Logitech USB Multimedia Keyboard: Applying InputClass "evdev keyboard catchall" (**) Logitech USB Multimedia Keyboard: always reports core events (**) Logitech USB Multimedia Keyboard: Device: "/dev/input/event5" (II) Logitech USB Multimedia Keyboard: Found keys (II) Logitech USB Multimedia Keyboard: Configuring as keyboard (II) XINPUT: Adding extended input device "Logitech USB Multimedia Keyboard" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device KEYBOARD (/dev/input/event6) (**) KEYBOARD: Applying InputClass "evdev keyboard catchall" (**) KEYBOARD: always reports core events (**) KEYBOARD: Device: "/dev/input/event6" (II) KEYBOARD: Found keys (II) KEYBOARD: Configuring as keyboard (II) XINPUT: Adding extended input device "KEYBOARD" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device KEYBOARD (/dev/input/event7) (**) KEYBOARD: Applying InputClass "evdev keyboard catchall" (**) KEYBOARD: always reports core events (**) KEYBOARD: Device: "/dev/input/event7" (II) KEYBOARD: Found 14 mouse buttons (II) KEYBOARD: Found scroll wheel(s) (II) KEYBOARD: Found relative axes (II) KEYBOARD: Found keys (II) KEYBOARD: Configuring as mouse (II) KEYBOARD: Configuring as keyboard (**) KEYBOARD: YAxisMapping: buttons 4 and 5 (**) KEYBOARD: EmulateWheelButton: 4, EmulateWheelInertia: 10, EmulateWheelTimeout: 200 (II) XINPUT: Adding extended input device "KEYBOARD" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (EE) KEYBOARD: failed to initialize for relative axes. (II) config/udev: Adding input device KEYBOARD (/dev/input/mouse2) (II) No input driver/identifier specified (ignoring) (II) config/udev: Adding input device Macintosh mouse button emulation (/dev/input/event2) (**) Macintosh mouse button emulation: Applying InputClass "evdev pointer catchall" (**) Macintosh mouse button emulation: always reports core events (**) Macintosh mouse button emulation: Device: "/dev/input/event2" (II) Macintosh mouse button emulation: Found 3 mouse buttons (II) Macintosh mouse button emulation: Found relative axes (II) Macintosh mouse button emulation: Found x and y relative axes (II) Macintosh mouse button emulation: Configuring as mouse (**) Macintosh mouse button emulation: YAxisMapping: buttons 4 and 5 (**) Macintosh mouse button emulation: EmulateWheelButton: 4, EmulateWheelInertia: 10, EmulateWheelTimeout: 200 (II) XINPUT: Adding extended input device "Macintosh mouse button emulation" (type: MOUSE) (II) Macintosh mouse button emulation: initialized for relative axes. (II) config/udev: Adding input device Macintosh mouse button emulation (/dev/input/mouse0) (II) No input driver/identifier specified (ignoring) (II) fglrx(0): Restoring Recent Mode via PCS is not supported in RANDR 1.2 capable environments

    Read the article

  • Windows 8 ignores more specific route

    - by Lander
    OS: Windows 8 I have a cabled NIC (connected to router with ip 192.168.1.0) and a WIFI NIC (connected to a router with ip 192.168.1.1) . I want all traffic to go through the cabled NIC, except the 192.168.1.0/8 range should use the wifi-nic. This was working fine in Windows 7, without any manual configuration. In Windows 8 however, it's not. My routing table: =========================================================================== Interface List 14...f2 7b cb 13 e7 f0 ......Microsoft Wi-Fi Direct Virtual Adapter 13...b8 ac 6f 54 d2 5c ......Realtek PCIe FE Family Controller 12...f0 7b cb 13 e7 f0 ......Dell Wireless 1397 WLAN Mini-Card 1...........................Software Loopback Interface 1 15...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter 16...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface =========================================================================== IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 192.168.1.1 192.168.1.198 30 0.0.0.0 0.0.0.0 192.168.0.1 192.168.0.233 20 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 192.168.0.0 255.255.255.0 On-link 192.168.0.233 276 192.168.0.233 255.255.255.255 On-link 192.168.0.233 276 192.168.0.255 255.255.255.255 On-link 192.168.0.233 276 192.168.1.0 255.255.255.0 192.168.1.1 192.168.1.198 31 192.168.1.198 255.255.255.255 On-link 192.168.1.198 286 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 192.168.0.233 276 224.0.0.0 240.0.0.0 On-link 192.168.1.198 286 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 192.168.0.233 276 255.255.255.255 255.255.255.255 On-link 192.168.1.198 286 =========================================================================== Persistent Routes: None I added the rule for 192.168.1.0. I would think Windows should use this rule for the IP 192.168.1.1 because it's more specific than the default-route. However it's not: C:\Windows\system32>tracert 192.168.1.1 Tracing route to 192.168.1.1 over a maximum of 30 hops 1 58 ms 4 ms 4 ms 192.168.0.1 2 68 ms 12 ms 11 ms ^C So... What do I do wrong? And how can I make Windows use the wireless NIC for 192.168.1.0/8

    Read the article

  • Some sites won't load on Ubuntu/Mint

    - by Or W
    I have a REALLY weird problem with either my network or my OS. Last week I've suddenly had difficulties loading some websites or even more odd some parts of different websites. For example, I could load gmail.com, login and view the list of emails in my inbox but when I clicked one of them it would just time out. Another example is http://www.ynet.co.il, I can view the home page but going into any one of the articles fails (times out). I've tried Chrome, Firefox and Opera, all fail the same way. If I take a URL of a page I cannot load via the browser and try to wget it though the console I get the file just fine. I've formatted my machine (Used to run Ubuntu 13.04) and installed Mint Linux this time, it worked fine for a few days and now, again, having the same exact issues. Important to note that I have other machines connected either directly or via Wi-Fi to the router and they are all working fine (two win7 machines and 1 raspberry pi). Another strange behavior is that I can ftp or ssh to remote machines but cannot send files via ftp (times out) even if I set passive mode ON and when using ssh I can do just about anything but I cannot paste text into the remote machine, for example if I nano a file on the remote machine and try to paste anything from my clipboard it freezes. What I've tried so far: Disable IPv6 on the networking admin (and on firefox disabling ipv6 on the about:config page) Changing the port and the network cable I went to the store and bought a new standalone PCIe network adapter Connected my win7 laptop using the same cable and router port (sites that were not working on my Mint are working just fine on the win7 machine) Loaded Mint from a livecd, got the same result Tried changing the MTU (was 1500, tried 1492) Some observations: When I clear my browser cache and go to facebook.com for example, the homepage loads but I fail to load any profile/group page. If I refresh facebook.com homepage a couple of times it stops and fails to load until I clear my browser cache. I changed the chrome cache folder permissions to 0777 but that did not help. When I run netstat -n I see A LOT of connections that are in 'FIN_WAIT' mode (I'm guessing that's when I try to refresh pages that are not working and timing out), I have no idea what it means or if it helps anyone figure out what's wrong. The sites that are not loading correctly are always that same, they don't vary or anything and they fail to load exactly the same way on all three browsers that I've tried. When I Googled 'Ubuntu some sites not loading' I see a huge amount of complaints just like mine, but none of them that I could find actually says what the problem is or how they fixed it. Technical stuff: netstat -n ps aux netstat -nr

    Read the article

  • Windows Server 2008 - one MAC Address, assign multiple external IP's to VirtualBoxes running as guests on host

    - by Sise
    Couldn't find any help @ google or here. The scenario: Windows Server 2008 Std x64 on i7-975, 12 GB RAM. The server is running in a data centre. One hardware NIC - RealTek PCIe GBE - one MAC Address. The data centre provides us 4 static external IP's. The first is assigned to the host by default of course. I have ordered all 4 IP's, the data centre can assign the available IP's to the physical MAC address of the given NIC only. This means one NIC, one MAC Address, 4 IP's. Everything works fine so far. Now, what I would like to have: Installed VirtualBox with 1-3 guests running, each gets it's own external IP assigned. Each of it should be an standalone Win Server 2008. It looks like the easiest way would be to put the guests into an virtual subnet and routing all data coming to the 2nd till 4th external IP through to this guests using there subnet IP's. I have been through the VirtualBox User Manuel regarding networking. What's not working: I can't use bridged networking without anything else, because the IP's are assigned to the one MAC address only. I can't use NAT networking because it does not allow access from outside or the host to the guest. I do not wanna use port forwarding. Host-only networking itself would not allow internet access, by sharing the default internet connection of the host, internet is granted from the guest to the outside but not from outside or the host to the guest. InternalNetworking is not really an option here. What I have tried is to create an additional MS Loopback adapter for a routed subnet, where the Vbox guests are in, now the idea was to NAT the internet connection to the loopback 'subnet'. But I can't ping the gateway from the guests. By using route command in the command shell or RRAS (static route, NAT) I didn't get there as well. Solutions like the following do work for the one way, but not for the way back: For your situation, it might be best to use the Host-Only adapter for ICS. Go to the preferences of VB itself and select network. There you can change the configuration for the interface. Set the IP address to 192.168.0.1, netmask 255.255.255.0. Disable the DHCP server if it isn't already and that's it. Now the Guest should get an IP from Windows itself and be able to get onto the internet, while you can also access the Host. Slowly I'm pretty stucked with this topic. There is a possibility I've just overlooked something or just didn't getting it by trying, especially using RRAS, but it's kinda hard to find useful howto's or something in the web. Thanks in advance! Best regards, Simon

    Read the article

  • System won't boot: Gigabyte HD 7790 1GB OC GPU issue or Corsair VS550 PSU issue?

    - by MGOwen
    Installed a new GPU, and PC won't boot. Turn it on and: No monitor signal at all (tried HDMI and VGA via DVI, on 2 working monitors). CPU and GPU fans DO spin, but No system beeps, no sounds from drives (they might make a small noise in the first 1 second or so, but there's definitely no OS loading or anything like that) If hit "power off" button it turns off immediately (no holding down for 3 seconds like usual) If I put my old HD 5670 GPU back in, everything works fine. But (plot twist!) card is not totally dead. My friend put it in his PC, and it works fine (he even played a game for 15 minutes, no issues). He has a Corsair TX850 850W and a Gigabyte MB. So my main theory is: the GPU isn't getting enough power from the PSU. But is it: Bad PSU? Seems unlikely, since it works fine with the other GPU. Also, the PSU Is brand new and 550W (single 42A/504W 12V rail). Overkill for this GPU. Corsair is a decent brand, but maybe just mine is faulty? Bad GPU? Could it be drawing more power than it should be, somehow, or something? Supposedly HD 7790 needs only 21A/75W on the 12v rail, though this one is factory overclocked a bit... but should that triple the power requirement? Something else? Could there be a motherboard incompatibility somehow? Both MB and GPU are less than a year old and PCI Express 3.0 x16. Things I've tried: Re-seating the video card Testing PC with old GPU (works fine, same PCIe slot). Checked AMD's stated amp/watt requirements of a 7790 and my PSU (see above). My PSU can output twice the amps (single rail) and 5x the Wattage a 7790 needs. Here are the full specs: Gigabyte HD 7790 1GB OC GPU Corsair VS550 550W PSU 4GB RAM AsRock H61M U3S3 motherboard i3-2100 500GB SATA HDD (2007-ish) blu-ray drive (new) PCI 802.11g card Edit: Motherboard BIOS Update seems to have fixed it. (If anyone has same problem and it doesn't work, comment here).

    Read the article

  • SPARC M7 Chip - 32 cores - Mind Blowing performance

    - by Angelo-Oracle
    The M7 Chip Oracle just announced its Next Generation Processor at the HotChips HC26 conference. As the Tech Lead in our Systems Division's Partner group, I had a front row seat to the extraordinary price performance advantage of Oracle current T5 and M6 based systems. Partner after partner tested  these systems and were impressed with it performance. Just read some of the quotes to see what our partner has been saying about our hardware. We just announced our next generation processor, the M7. This has 32 cores (up from 16-cores in T5 and 12-cores in M6). With 20 nm technology  this is our most advanced processor. The processor has more cores than anything else in the industry today. After the Sun acquisition Oracle has released 5 processors in 4 years and this is the 6th.  The S4 core  The M7 is built using the foundation of the S4 core. This is the next generation core technology. Like its predecessor, the S4 has 8 dynamic threads. It increases the frequency while maintaining the Pipeline depth. Each core has its own fine grain power estimator that keeps the core within its power envelop in 250 nano-sec granularity. Each core also includes Software in Silicon features for Application Acceleration Support. Each core includes features to improve Application Data Integrity, with almost no performance loss. The core also allows using part of the Virtual Address to store meta-data.  User-Level Synchronization Instructions are also part of the S4 core. Each core has 16 KB Instruction and 16 KB Data L1 cache. The Core Clusters  The cores on the M7 chip are organized in sets of 4-core clusters. The core clusters share  L2 cache.  All four cores in the complex share 256 KB of 4 way set associative L2 Instruction Cache, with over 1/2 TB/s of throughput. Two cores share 256 KB of 8 way set associative L2 Data Cache, with over 1/2 TB/s of throughput. With this innovative Core Cluster architecture, the M7 doubles core execution bandwidth. to maximize per-thread performance.  The Chip  Each  M7 chip has 8 sets of these core-clusters. The chip has 64 MB on-chip L3 cache. This L3 caches is shared among all the cores and is partitioned into 8 x 8 MB chunks. Each chunk is  8-way set associative cache. The aggregate bandwidth for the L3 cache on the chip is over 1.6TB/s. Each chip has 4 DDR4 memory controllers and can support upto 16 DDR4 DIMMs, allowing for 2 TB of RAM/chip. The chip also includes 4 internal links of PCIe Gen3 I/O controllers.  Each chip has 7 coherence links, allowing for 8 of these chips to be connected together gluelessly. Also 32 of these chips can be connected in an SMP configuration. A potential system with 32 chips will have 1024 cores and 8192 threads and 64 TB of RAM.  Software in Silicon The M7 chip has many built in Application Accelerators in Silicon. These features will be exposed to our Software partners using the SPARC Accelerator Program.  The M7  has built-in logic to decompress data at the speed of memory access. This means that applications can directly work on compressed data in memory increasing the data access rates. The VA Masking feature allows the use of part of the virtual address to store meta-data.  Realtime Application Data Integrity The Realtime Application Data Integrity feature helps applications safeguard against invalid, stale memory reference and buffer overflows. The first 4-bits if the Pointer can be used to store a version number and this version number is also maintained in the memory & cache lines. When a pointer accesses memory the hardware checks to make sure the two versions match. A SEGV signal is raised when there is a mismatch. This feature can be used by the Database, applications and the OS.  M7 Database In-Memory Query Accelerator The M7 chip also includes a In-Silicon Query Engines.  These accelerate tasks that work on In-Memory Columnar Vectors. Oracle In-Memory options stores data in Column Format. The M7 Query Engine can speed up In-Memory Format Conversion, Value and Range Comparisons and Set Membership lookups. This engine can work on Compressed data - this means not only are we accelerating the query performance but also increasing the memory bandwidth for queries.  SPARC Accelerated Program  At the Hotchips conference we also introduced the SPARC Accelerated Program to provide our partners and third part developers access to all the goodness of the M7's SPARC Application Acceleration features. Please get in touch with us if you are interested in knowing more about this program. 

    Read the article

  • Availability Best Practices on Oracle VM Server for SPARC

    - by jsavit
    This is the first of a series of blog posts on configuring Oracle VM Server for SPARC (also called Logical Domains) for availability. This series will show how to how to plan for availability, improve serviceability, avoid single points of failure, and provide resiliency against hardware and software failures. Availability is a broad topic that has filled entire books, so these posts will focus on aspects specifically related to Oracle VM Server for SPARC. The goal is to improve Reliability, Availability and Serviceability (RAS): An article defining RAS can be found here. Oracle VM Server for SPARC Principles for Availability Let's state some guiding principles for availability that apply to Oracle VM Server for SPARC: Avoid Single Points Of Failure (SPOFs). Systems should be configured so a component failure does not result in a loss of application service. The general method to avoid SPOFs is to provide redundancy so service can continue without interruption if a component fails. For a critical application there may be multiple levels of redundancy so multiple failures can be tolerated. Oracle VM Server for SPARC makes it possible to configure systems that avoid SPOFs. Configure for availability at a level of resource and effort consistent with business needs. Effort and resource should be consistent with business requirements. Production has different availability requirements than test/development, so it's worth expending resources to provide higher availability. Even within the category of production there may be different levels of criticality, outage tolerances, recovery and repair time requirements. Keep in mind that a simple design may be more understandable and effective than a complex design that attempts to "do everything". Design for availability at the appropriate tier or level of the platform stack. Availability can be provided in the application, in the database, or in the virtualization, hardware and network layers they depend on - or using a combination of all of them. It may not be necessary to engineer resilient virtualization for stateless web applications applications where availability is provided by a network load balancer, or for enterprise applications like Oracle Real Application Clusters (RAC) and WebLogic that provide their own resiliency. It's (often) the same architecture whether virtual or not: For example, providing resiliency against a lost device path or failing disk media is done for the same reasons and may use the same design whether in a domain or not. It's (often) the same technique whether using domains or not: Many configuration steps are the same. For example, configuring IPMP or creating a redundant ZFS pool is pretty much the same within the guest whether you're in a guest domain or not. There are configuration steps and choices for provisioning the guest with the virtual network and disk devices, which we will discuss. Sometimes it is different using domains: There are new resources to configure. Most notable is the use of alternate service domains, which provides resiliency in case of a domain failure, and also permits improved serviceability via "rolling upgrades". This is an important differentiator between Oracle VM Server for SPARC and traditional virtual machine environments where all virtual I/O is provided by a monolithic infrastructure that itself is a SPOF. Alternate service domains are widely used to provide resiliency in production logical domains environments. Some things are done via logical domains commands, and some are done in the guest: For example, with Oracle VM Server for SPARC we provide multiple network connections to the guest, and then configure network resiliency in the guest via IP Multi Pathing (IPMP) - essentially the same as for non-virtual systems. On the other hand, we configure virtual disk availability in the virtualization layer, and the guest sees an already-resilient disk without being aware of the details. These blogs will discuss configuration details like this. Live migration is not "high availability" in the sense of "continuous availability": If the server is down, then you don't live migrate from it! (A cluster or VM restart elsewhere would be used). However, live migration can be part of the RAS (Reliability, Availability, Serviceability) picture by improving Serviceability - you can move running domains off of a box before planned service or maintenance. The blog Best Practices - Live Migration on Oracle VM Server for SPARC discusses this. Topics Here are some of the topics that will be covered: Network availability using IP Multipathing and aggregates Disk path availability using virtual disks defined with multipath groups ("mpgroup") Disk media resiliency configuring for redundant disks that can tolerate media loss Multiple service domains - this is probably the most significant item and the one most specific to Oracle VM Server for SPARC. It is very widely deployed in production environments as the means to provide network and disk availability, but it can be confusing. Subsequent articles will describe why and how to configure multiple service domains. Note, for the sake of precision: an I/O domain is any domain that has a physical I/O resource (such as a PCIe bus root complex). A service domain is a domain providing virtual device services to other domains; it is almost always an I/O domain too (so it can have something to serve). Resources Here are some important links; we'll be drawing on their content in the next several articles: Oracle VM Server for SPARC Documentation Maximizing Application Reliability and Availability with SPARC T5 Servers whitepaper by Gary Combs Maximizing Application Reliability and Availability with the SPARC M5-32 Server whitepaper by Gary Combs Summary Oracle VM Server for SPARC offers features that can be used to provide highly-available environments. This and the following blog entries will describe how to plan and deploy them.

    Read the article

  • Why won't USB 3.0 external hard drive run at USB 3.0 speeds?

    - by jgottula
    I recently purchased a PCI Express x1 USB 3.0 controller card (containing the NEC USB 3.0 controller) with the intent of using a USB 3.0 external hard drive with my Linux box. I installed the card in an empty PCIe slot on my motherboard, connected the card to a power cable, strung a USB 3.0 cable between one of the new ports and my external HDD, and connected the HDD to a wall socket for power. Booting the system, the drive works 100% as intended, with the one exception of throughput: rather than using SuperSpeed 4.8 Gbps connectivity, it seems to be falling back to High Speed 480 Mbps USB 2.0-style throughput. Disk Utility shows it as a 480 Mbps device, and running a couple Disk Utility and dd benchmarks confirms that the drive fails to exceed ~40 MB/s (the approximate limit of USB 2.0), despite it being an SSD capable of far more than that. When I connect my USB 3.0 HDD, dmesg shows this: [ 3923.280018] usb 3-2: new high speed USB device using ehci_hcd and address 6 where I would expect to find this: [ 3923.280018] usb 3-2: new SuperSpeed USB device using xhci_hcd and address 6 My system was running on kernel 2.6.35-25-generic at the time. Then, I stumbled upon this forum thread by an individual who found that a bug, which was present in kernels prior to 2.6.37-rc5, could be the culprit for this type of problem. Consequently, I installed the 2.6.37-generic mainline Ubuntu kernel to determine if the problem would go away. It didn't, so I tried 2.6.38-rc3-generic, and even the 2.6.38 nightly from 2010.02.01, to no avail. In short, I'm trying to determine why, with USB 3.0 support in the kernel, my USB 3.0 drive fails to run at full SuperSpeed throughput. See the comments under this question for additional details. Output that might be relevant to the problem (when booting from 2.6.38-rc3): Relevant lines from dmesg: [ 19.589491] xhci_hcd 0000:03:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 19.589512] xhci_hcd 0000:03:00.0: setting latency timer to 64 [ 19.589516] xhci_hcd 0000:03:00.0: xHCI Host Controller [ 19.589623] xhci_hcd 0000:03:00.0: new USB bus registered, assigned bus number 12 [ 19.650492] xhci_hcd 0000:03:00.0: irq 17, io mem 0xf8100000 [ 19.650556] xhci_hcd 0000:03:00.0: irq 47 for MSI/MSI-X [ 19.650560] xhci_hcd 0000:03:00.0: irq 48 for MSI/MSI-X [ 19.650563] xhci_hcd 0000:03:00.0: irq 49 for MSI/MSI-X [ 19.653946] xHCI xhci_add_endpoint called for root hub [ 19.653948] xHCI xhci_check_bandwidth called for root hub Relevant section of sudo lspci -v: 03:00.0 USB Controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) (prog-if 30) Flags: bus master, fast devsel, latency 0, IRQ 17 Memory at f8100000 (64-bit, non-prefetchable) [size=8K] Capabilities: [50] Power Management version 3 Capabilities: [70] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [90] MSI-X: Enable+ Count=8 Masked- Capabilities: [a0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [140] Device Serial Number ff-ff-ff-ff-ff-ff-ff-ff Capabilities: [150] #18 Kernel driver in use: xhci_hcd Kernel modules: xhci-hcd Relevant section of sudo lsusb -v: Bus 012 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 3.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 3 bMaxPacketSize0 9 idVendor 0x1d6b Linux Foundation idProduct 0x0003 3.0 root hub bcdDevice 2.06 iManufacturer 3 Linux 2.6.38-020638rc3-generic xhci_hcd iProduct 2 xHCI Host Controller iSerial 1 0000:03:00.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 4 wHubCharacteristic 0x0009 Per-port power switching Per-port overcurrent protection TT think time 8 FS bits bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Device Status: 0x0003 Self Powered Remote Wakeup Enabled Full, non-verbose lsusb: Bus 012 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 011 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 010 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 009 Device 003: ID 04d9:0702 Holtek Semiconductor, Inc. Bus 009 Device 002: ID 046d:c068 Logitech, Inc. G500 Laser Mouse Bus 009 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 008 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 006: ID 174c:5106 ASMedia Technology Inc. Bus 003 Device 004: ID 0bda:0151 Realtek Semiconductor Corp. Mass Storage Device (Multicard Reader) Bus 003 Device 002: ID 058f:6366 Alcor Micro Corp. Multi Flash Reader Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 006: ID 1687:0163 Kingmax Digital Inc. Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 002: ID 046d:081b Logitech, Inc. Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Full output: full dmesg full lspci full lsusb

    Read the article

  • SPARC T4 ??????: SPARC T4 ??????????!!

    - by user13138700
    ?? 2011 ? 9 ?? SPARC T4 CPU ???????? SPARC T4 ????????????????2011??10?????????????????????????? ????????????????????SPARC T4 ?????????????????????????????????????????????????????????? SPARC T4 CPU ???? SPARC T4 ?????????????????????????????????? ??????????????????????4/4, 4/5, 4/6 ? 3???????? Oracle Open World 2012 ???????? Oracle Open World 2012 Tokyo ?? Oracle ?????&????? ??? Oracle Solaris ????????????·????????? SPARC&Solaris ??????????????SPARC&Solaris ????????????????????????????????????????????????????????????????????????? Oracle OpenWorld Tokyo 2012 ???? URL http://www.oracle.com/openworld/jp-ja/index.html ?????? 7264 ??????????????? ????Oracle Open World 2012 Tokyo ?????????????????????????SPARC T4 ????? ????????????????? SPARC T4 ????????? SPARC T3 ????????(S2??)??????????????????????????(S3??)??????????????????? ???????" T " ???????????????(?)?????? SPARC T1/T2/T3 ???????????????????????????(????????)????????????????????????? ?SPARC T4 ????????????????????????????? ?SPARC T4 ???????DB?????????????????????????????? ???????????????? ????????????????????????????????????????????? ???? SPARC T3 ???????????????????????????2???????????? ????????????????????????????????????????????????????? ?????????????? SPARC T4 ????????????????????????????????????SPARC T4 ????????? SPARC T4 ??????????????????????????????????????????? ?????????????? T4 ??????????????????? SPARC ???????????????????????????????????????????????????????????????????&??????????? ?????????????????????????????????????????????????????????Web?????????????DB?????????????????????????????????????? (????????????) ???????????? SPARC T4 ????????????????????????????? < T4 ???????? > ??? SPARC ??(S3??)??? x5??????????????????? x2????????????????????? Crypto (?????)?????????? ?????????????????????????/???????????????? ?????? 1, 2,& 4 ??????????? < T4 ????? ??????? > 8x SPARC S3 ?? (64????/???) 4MB ?? L3 ????? (8???/16???) 8x9 ????? 4x DDR3 ??????????? @6.4Gbps 6x ?????????? @9.6Gbps 2x8 PCIe 2.0 (5GTS) 2x10Gb XAUI ??????? < S3???????????? > ALU : Arithmetic Logic Unit BRU : Branch Logic Unit FGU : Flouting-point Graphics Unit IRF : Integer Register File FRF : Flouting-point Register File WRF : Working Register File MMU : Memory Management Unit LSU : Load Store Unit Crypto(SPU) : Streaming Processing Unit TRU : Trap Logic Unit < S3????????? > ????? 8????/?? ?????? Out-of-Order ?? 16???????????????? ????????????? ???????????? ??????? ????????? 64???? ITLB ? 128???? DTLB 64KB 4??? L1 ?????????????? 128KB 8??? ???? L2 ????? < T4 ???????? vs T3 ???????? > T4 ????????????? Out-Of-Order ???? Pick ???????? In-Order ?? Pick ?????? Commit ??????? Out-Of-Order ?? Commit ?????? In-Order ?? < T4 ?????????? > ???????????vs????????????????????????????? ????????Active??????????????????? ???????????????????????? ??????????????????? < T4vsT1/T2/T3 ??????? > SPARC T4 ???? T3????????Web??????????? DB?????????????????????????????? ????????????????????SPARC T4 ?????&Solaris ?????????????(????????)??????????????????????????????????????????????????????????!!? ????Oracle Open World 2012 Tokyo ????????????????SPARC T4 ?????????????????????? 4/4, 4/5, 4/6 ?3????????????????????????????????????????????????????????????????????????????????????? ????????????????? URL http://www.oracle.com/openworld/jp-ja/exhibit/index.html

    Read the article

  • Linux bcm43224 wifi adapter slows down a couple minutes after boot

    - by Blubber
    I just installed Ubuntu on my mid 2012 MacBook Air. Everything worked out of the box, but the wifi is showing some weird behavior. When I first login it's really fast, loading google.com is near instant, and browsing in general feels at least as smooth as it did on Mac OS. However, after a couple minutes the connection slows down dramatically, sometimes it takes over 5s to load google.com, a simple reboot fixes the problem for another couple minutes. Specs: Wifi: 02:00.0 Network controller: Broadcom Corporation BCM43224 802.11a/b/g/n (rev 01) Driver: open-source brcmsmac driver Kernel: Linux wega 3.8.0-21-generic #32-Ubuntu SMP Tue May 14 22:16:46 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux Distro: Ubuntu 13.04 (uptodate) I tried a number of things, none of which actually helped Use proprietary sta driver from broadcom Installed firmware into /lib/firmware/brcms (which, as far as I can tell from logs, does not get loaded at all) Switch router to only use 2.4 OR 5 GHz Set router to only use a OR g OR n Set router to use AES encryption only Turned off power management on the adapter Set regulatory region to the correct value (NL) on both router and laptop Disable ipv6 Nothing seems to help, the slowdown always occurs. I did notice that the latency (ping google.com) stays roughly the same (around 9ms). Below is some more information that might be of use. $ lspci -nnk | grep -iA2 net 02:00.0 Network controller [0280]: Broadcom Corporation BCM43224 802.11a/b/g/n [14e4:4353] (rev 01) Subsystem: Apple Inc. Device [106b:00e9] Kernel driver in use: bcma-pci-bridge $ rfkill list 0: hci0: Bluetooth Soft blocked: no Hard blocked: no 1: phy0: Wireless LAN Soft blocked: no Hard blocked: no $ lsmod Module Size Used by dm_crypt 22820 1 arc4 12615 2 brcmsmac 550698 0 coretemp 13355 0 kvm_intel 132891 0 parport_pc 28152 0 kvm 443165 1 kvm_intel ppdev 17073 0 cordic 12574 1 brcmsmac brcmutil 14755 1 brcmsmac mac80211 606457 1 brcmsmac cfg80211 510937 2 brcmsmac,mac80211 bnep 18036 2 rfcomm 42641 12 joydev 17377 0 applesmc 19353 0 input_polldev 13896 1 applesmc snd_hda_codec_hdmi 36913 1 microcode 22881 0 snd_hda_codec_cirrus 23829 1 nls_iso8859_1 12713 1 uvcvideo 80847 0 btusb 22474 0 snd_hda_intel 39619 3 videobuf2_vmalloc 13056 1 uvcvideo snd_hda_codec 136453 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec_cirrus bcm5974 17347 0 bluetooth 228619 22 bnep,btusb,rfcomm snd_hwdep 13602 1 snd_hda_codec lpc_ich 17061 0 videobuf2_memops 13202 1 videobuf2_vmalloc videobuf2_core 40513 1 uvcvideo videodev 129260 2 uvcvideo,videobuf2_core bcma 41051 1 brcmsmac snd_pcm 97451 3 snd_hda_codec_hdmi,snd_hda_codec,snd_hda_intel snd_page_alloc 18710 2 snd_pcm,snd_hda_intel snd_seq_midi 13324 0 snd_seq_midi_event 14899 1 snd_seq_midi snd_rawmidi 30180 1 snd_seq_midi snd_seq 61554 2 snd_seq_midi_event,snd_seq_midi snd_seq_device 14497 3 snd_seq,snd_rawmidi,snd_seq_midi snd_timer 29425 2 snd_pcm,snd_seq snd 68876 16 snd_hwdep,snd_timer,snd_hda_codec_hdmi,snd_pcm,snd_seq,snd_rawmidi,snd_hda_codec,snd_hda_intel,snd_seq_device,snd_hda_codec_cirrus mei 41158 0 soundcore 12680 1 snd apple_bl 13673 0 mac_hid 13205 0 lp 17759 0 parport 46345 3 lp,ppdev,parport_pc usb_storage 57204 0 hid_apple 13237 0 hid_generic 12540 0 ghash_clmulni_intel 13259 0 aesni_intel 55399 399 aes_x86_64 17255 1 aesni_intel xts 12885 1 aesni_intel lrw 13257 1 aesni_intel gf128mul 14951 2 lrw,xts ablk_helper 13597 1 aesni_intel cryptd 20373 4 ghash_clmulni_intel,aesni_intel,ablk_helper i915 600351 3 ahci 25731 3 libahci 31364 1 ahci video 19390 1 i915 i2c_algo_bit 13413 1 i915 drm_kms_helper 49394 1 i915 usbhid 47074 0 drm 286313 4 i915,drm_kms_helper hid 101002 3 hid_generic,usbhid,hid_apple $ dmesg | egrep 'b43|bcma|brcm|[F]irm' [ 0.055025] [Firmware Bug]: ioapic 2 has no mapping iommu, interrupt remapping will be disabled [ 0.152336] [Firmware Bug]: ACPI: BIOS _OSI(Linux) query ignored [ 2.187681] pci_root PNP0A08:00: [Firmware Info]: MMCONFIG for domain 0000 [bus 00-99] only partially covers this bridge [ 12.553600] bcma-pci-bridge 0000:02:00.0: enabling device (0000 -> 0002) [ 12.553657] bcma: bus0: Found chip with id 0xA8D8, rev 0x01 and package 0x08 [ 12.553688] bcma: bus0: Core 0 found: ChipCommon (manuf 0x4BF, id 0x800, rev 0x22, class 0x0) [ 12.553715] bcma: bus0: Core 1 found: IEEE 802.11 (manuf 0x4BF, id 0x812, rev 0x17, class 0x0) [ 12.553764] bcma: bus0: Core 2 found: PCIe (manuf 0x4BF, id 0x820, rev 0x0F, class 0x0) [ 12.605777] bcma: bus0: Bus registered [ 12.852925] brcmsmac bcma0:0: mfg 4bf core 812 rev 23 class 0 irq 17 [ 13.085176] brcmsmac bcma0:0: brcms_ops_bss_info_changed: qos enabled: false (implement) [ 13.085186] brcmsmac bcma0:0: brcms_ops_config: change power-save mode: false (implement) [ 20.862617] brcmsmac bcma0:0: brcmsmac: brcms_ops_bss_info_changed: associated [ 20.862622] brcmsmac bcma0:0: brcms_ops_bss_info_changed: arp filtering: enabled true, count 0 (implement) [ 20.862625] brcmsmac bcma0:0: brcms_ops_bss_info_changed: qos enabled: true (implement) [ 20.897957] brcmsmac bcma0:0: brcms_ops_bss_info_changed: arp filtering: enabled true, count 1 (implement) $ iwconfig lo no wireless extensions. wlan0 IEEE 802.11abgn ESSID:"wlan" Mode:Managed Frequency:5.22 GHz Access Point: E0:46:9A:4E:63:9A Bit Rate=65 Mb/s Tx-Power=17 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=63/70 Signal level=-47 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:13 Invalid misc:56 Missed beacon:0

    Read the article

  • hostapd running on Ubuntu Server 13.04 only allows single station to connect when using wpa

    - by user450688
    Problem Only a single station can connect to hostapd at a time. Any single station can connect (W8, OSX, iOS, Nexus) but when two or more hosts are connected at the same time the first client loses its connectivity. However there are no connectivity issues when WPA is not used. Setup Linux (Ubuntu server 13.04) wireless router (with separate networks for wired WAN, wired LAN, and Wireless LAN. iptables-save output: *nat :PREROUTING ACCEPT [0:0] :INPUT ACCEPT [0:0] :OUTPUT ACCEPT [0:0] :POSTROUTING ACCEPT [0:0] -A POSTROUTING -s 10.0.0.0/24 -o p4p1 -j MASQUERADE -A POSTROUTING -s 10.0.1.0/24 -o p4p1 -j MASQUERADE COMMIT *mangle :PREROUTING ACCEPT [13:916] :INPUT ACCEPT [9:708] :FORWARD ACCEPT [4:208] :OUTPUT ACCEPT [9:3492] :POSTROUTING ACCEPT [13:3700] COMMIT *filter :INPUT DROP [0:0] :FORWARD DROP [0:0] :OUTPUT ACCEPT [9:3492] -A INPUT -i p4p1 -m state --state RELATED,ESTABLISHED -j ACCEPT -A INPUT -i p4p1 -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT -A INPUT -i eth0 -j ACCEPT -A INPUT -i wlan0 -j ACCEPT -A INPUT -i lo -j ACCEPT -A FORWARD -i p4p1 -m state --state RELATED,ESTABLISHED -j ACCEPT -A FORWARD -i eth0 -j ACCEPT -A FORWARD -i wlan0 -j ACCEPT -A FORWARD -i lo -j ACCEPT COMMIT /etc/hostapd/hostapd.conf #Wireless Interface interface=wlan0 driver=nl80211 ssid=<removed> hw_mode=g channel=6 max_num_sta=15 auth_algs=3 ieee80211n=1 wmm_enabled=1 wme_enabled=1 #Configure Hardware Capabilities of Interface ht_capab=[HT40+][SMPS-STATIC][GF][SHORT-GI-20][SHORT-GI-40][RX-STBC12] #Accept all MAC address macaddr_acl=0 #Shared Key Authentication wpa=1 wpa_passphrase=<removed> wpa_key_mgmt=WPA-PSK wpa_pairwise=CCMP rsn_pairwise=CCMP ###IPad Connectivevity Repair ieee8021x=0 eap_server=0 Wireless Card #lshw output product: RT2790 Wireless 802.11n 1T/2R PCIe vendor: Ralink corp. physical id: 0 bus info: pci@0000:03:00.0 logical name: mon.wlan0 version: 00 serial: <removed> width: 32 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list logical wireless ethernet physical configuration: broadcast=yes driver=rt2800pci driverversion=3.8.0-25-generic firmware=0.34 ip=10.0.1.254 latency=0 link=yes multicast=yes wireless=IEEE 802.11bgn #iw list output Band 1: Capabilities: 0x272 HT20/HT40 Static SM Power Save RX Greenfield RX HT20 SGI RX HT40 SGI RX STBC 2-streams Max AMSDU length: 3839 bytes No DSSS/CCK HT40 Maximum RX AMPDU length 65535 bytes (exponent: 0x003) Minimum RX AMPDU time spacing: 2 usec (0x04) HT RX MCS rate indexes supported: 0-15, 32 TX unequal modulation not supported HT TX Max spatial streams: 1 HT TX MCS rate indexes supported may differ Frequencies: * 2412 MHz [1] (27.0 dBm) * 2417 MHz [2] (27.0 dBm) * 2422 MHz [3] (27.0 dBm) * 2427 MHz [4] (27.0 dBm) * 2432 MHz [5] (27.0 dBm) * 2437 MHz [6] (27.0 dBm) * 2442 MHz [7] (27.0 dBm) * 2447 MHz [8] (27.0 dBm) * 2452 MHz [9] (27.0 dBm) * 2457 MHz [10] (27.0 dBm) * 2462 MHz [11] (27.0 dBm) * 2467 MHz [12] (disabled) * 2472 MHz [13] (disabled) * 2484 MHz [14] (disabled) Bitrates (non-HT): * 1.0 Mbps * 2.0 Mbps (short preamble supported) * 5.5 Mbps (short preamble supported) * 11.0 Mbps (short preamble supported) * 6.0 Mbps * 9.0 Mbps * 12.0 Mbps * 18.0 Mbps * 24.0 Mbps * 36.0 Mbps * 48.0 Mbps * 54.0 Mbps max # scan SSIDs: 4 max scan IEs length: 2257 bytes Coverage class: 0 (up to 0m) Supported Ciphers: * WEP40 (00-0f-ac:1) * WEP104 (00-0f-ac:5) * TKIP (00-0f-ac:2) * CCMP (00-0f-ac:4) Available Antennas: TX 0 RX 0 Supported interface modes: * IBSS * managed * AP * AP/VLAN * WDS * monitor * mesh point software interface modes (can always be added): * AP/VLAN * monitor valid interface combinations: * #{ AP } <= 8, total <= 8, #channels <= 1 Supported commands: * new_interface * set_interface * new_key * new_beacon * new_station * new_mpath * set_mesh_params * set_bss * authenticate * associate * deauthenticate * disassociate * join_ibss * join_mesh * set_tx_bitrate_mask * set_tx_bitrate_mask * action * frame_wait_cancel * set_wiphy_netns * set_channel * set_wds_peer * Unknown command (84) * Unknown command (87) * Unknown command (85) * Unknown command (89) * Unknown command (92) * testmode * connect * disconnect Supported TX frame types: * IBSS: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * managed: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * AP: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * AP/VLAN: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * mesh point: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * P2P-client: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * P2P-GO: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * Unknown mode (10): 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 Supported RX frame types: * IBSS: 0x40 0xb0 0xc0 0xd0 * managed: 0x40 0xd0 * AP: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * AP/VLAN: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * mesh point: 0xb0 0xc0 0xd0 * P2P-client: 0x40 0xd0 * P2P-GO: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * Unknown mode (10): 0x40 0xd0 Device supports RSN-IBSS. HT Capability overrides: * MCS: ff ff ff ff ff ff ff ff ff ff * maximum A-MSDU length * supported channel width * short GI for 40 MHz * max A-MPDU length exponent * min MPDU start spacing Device supports TX status socket option. Device supports HT-IBSS.

    Read the article

  • SPARC T3-1 Record Results Running JD Edwards EnterpriseOne Day in the Life Benchmark with Added Batch Component

    - by Brian
    Using Oracle's SPARC T3-1 server for the application tier and Oracle's SPARC Enterprise M3000 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne applications Day in the Life benchmark run concurrently with a batch workload. The SPARC T3-1 server based result has 25% better performance than the IBM Power 750 POWER7 server even though the IBM result did not include running a batch component. The SPARC T3-1 server based result has 25% better space/performance than the IBM Power 750 POWER7 server as measured by the online component. The SPARC T3-1 server based result is 5x faster than the x86-based IBM x3650 M2 server system when executing the online component of the JD Edwards EnterpriseOne 9.0.1 Day in the Life benchmark. The IBM result did not include a batch component. The SPARC T3-1 server based result has 2.5x better space/performance than the x86-based IBM x3650 M2 server as measured by the online component. The combination of SPARC T3-1 and SPARC Enterprise M3000 servers delivered a Day in the Life benchmark result of 5000 online users with 0.875 seconds of average transaction response time running concurrently with 19 Universal Batch Engine (UBE) processes at 10 UBEs/minute. The solution exercises various JD Edwards EnterpriseOne applications while running Oracle WebLogic Server 11g Release 1 and Oracle Web Tier Utilities 11g HTTP server in Oracle Solaris Containers, together with the Oracle Database 11g Release 2. The SPARC T3-1 server showed that it could handle the additional workload of batch processing while maintaining the same number of online users for the JD Edwards EnterpriseOne Day in the Life benchmark. This was accomplished with minimal loss in response time. JD Edwards EnterpriseOne 9.0.1 takes advantage of the large number of compute threads available in the SPARC T3-1 server at the application tier and achieves excellent response times. The SPARC T3-1 server consolidates the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth. A number of Oracle advanced technology and features were used to obtain this result: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle WebLogic Server 11g Release 1, Oracle Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and SPARC64 VII+ based servers. This is the first published result running both online and batch workload concurrently on the JD Enterprise Application server. No published results are available from IBM running the online component together with a batch workload. The 9.0.1 version of the benchmark saw some minor performance improvements relative to 9.0. When comparing between 9.0.1 and 9.0 results, the reader should take this into account when the difference between results is small. Performance Landscape JD Edwards EnterpriseOne Day in the Life Benchmark Online with Batch Workload This is the first publication on the Day in the Life benchmark run concurrently with batch jobs. The batch workload was provided by Oracle's Universal Batch Engine. System RackUnits Online Users Resp Time (sec) BatchConcur(# of UBEs) BatchRate(UBEs/m) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII+ (2.86 GHz), Solaris 10 4 5000 0.88 19 10 9.0.1 Resp Time (sec) — Response time of online jobs reported in seconds Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs Batch Rate (UBEs/m) — Batch transaction rate in UBEs/minute. JD Edwards EnterpriseOne Day in the Life Benchmark Online Workload Only These results are for the Day in the Life benchmark. They are run without any batch workload. System RackUnits Online Users ResponseTime (sec) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII (2.75 GHz), Solaris 10 4 5000 0.52 9.0.1 IBM Power 750, 1xPOWER7 (3.55 GHz), IBM i7.1 4 4000 0.61 9.0 IBM x3650M2, 2xIntel X5570 (2.93 GHz), OVM 2 1000 0.29 9.0 IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere Configuration Summary Hardware Configuration: 1 x SPARC T3-1 server 1 x 1.65 GHz SPARC T3 128 GB memory 16 x 300 GB 10000 RPM SAS 1 x Sun Flash Accelerator F20 PCIe Card, 92 GB 1 x 10 GbE NIC 1 x SPARC Enterprise M3000 server 1 x 2.86 SPARC64 VII+ 64 GB memory 1 x 10 GbE NIC 2 x StorageTek 2540 + 2501 Software Configuration: JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3 Oracle Database 11g Release 2 Oracle 11g WebLogic server 11g Release 1 version 10.3.2 Oracle Web Tier Utilities 11g Oracle Solaris 10 9/10 Mercury LoadRunner 9.10 with Oracle Day in the Life kit for JD Edwards EnterpriseOne 9.0.1 Oracle’s Universal Batch Engine - Short UBEs and Long UBEs Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE workload of 15 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large UBEs, and the QPROCESS queue for short UBEs run concurrently. One of the Oracle Solaris Containers ran 4 Long UBEs, while another Container ran 15 short UBEs concurrently. The mixed size UBEs ran concurrently from the SPARC T3-1 server with the 5000 online users driven by the LoadRunner. Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers. See Also SPARC T3-1 oracle.com SPARC Enterprise M3000 oracle.com Oracle Solaris oracle.com JD Edwards EnterpriseOne oracle.com Oracle Database 11g Release 2 Enterprise Edition oracle.com Disclosure Statement Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 6/27/2011.

    Read the article

  • Why did Ubuntu suddenly get so slow?

    - by user101383
    12.10 has been slowing down mysteriously. Normally, in past versions, I can log in, open Firefox, and it will pop up within seconds. 12.10 is like that upon install too, though once I install my old apps, it gets very slow by Ubuntu standards. After login the hard drive will just make noise for a while before the OS will do anything. Hardware: enter description: Desktop Computer product: XPS 8300 () vendor: Dell Inc. serial: B6G2WR1 width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: boot=normal chassis=desktop uuid=44454C4C-3600-1047-8032-C2C04F575231 core description: Motherboard product: 0Y2MRG vendor: Dell Inc. physical id: 0 version: A00 serial: ..CN7360419G04VQ. slot: To Be Filled By O.E.M. *cpu description: CPU product: Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz serial: To Be Filled By O.E.M. slot: CPU 1 size: 1600MHz capacity: 1600MHz width: 64 bits clock: 100MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx lahf_lm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=1 threads=2 *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 256KiB capacity: 256KiB capabilities: internal write-through unified *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 1MiB capacity: 1MiB capabilities: internal write-through unified *-cache:2 DISABLED description: L3 cache physical id: 7 slot: L3-Cache size: 8MiB capacity: 8MiB capabilities: internal write-back unified *-memory description: System Memory physical id: 20 slot: System board or motherboard size: 8GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: NT2GC64B88B0NF-CG vendor: Nanya physical id: 0 serial: 7228183 slot: DIMM3 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: NT2GC64B88B0NF-CG vendor: Nanya physical id: 1 serial: 1E28183 slot: DIMM1 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: NT2GC64B88B0NF-CG vendor: Nanya physical id: 2 serial: 9E28183 slot: DIMM4 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:3 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: NT2GC64B88B0NF-CG vendor: Nanya physical id: 3 serial: 5527183 slot: DIMM2 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-firmware description: BIOS vendor: Dell Inc. physical id: 0 version: A05 date: 09/21/2011 size: 64KiB capacity: 4032KiB capabilities: mca pci upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb zipboot biosbootspecification *-pci description: Host bridge product: 2nd Generation Core Processor Family DRAM Controller vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 09 width: 32 bits clock: 33MHz *-pci:0 description: PCI bridge product: Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port vendor: Intel Corporation physical id: 1 bus info: pci@0000:00:01.0 version: 09 width: 32 bits clock: 33MHz capabilities: pci pm msi pciexpress normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:e000(size=4096) memory:fe600000-fe6fffff ioport:d0000000(size=268435456) *-display description: VGA compatible controller product: Juniper [Radeon HD 5700 Series] vendor: Advanced Micro Devices [AMD] nee ATI physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=radeon latency=0 resources: irq:44 memory:d0000000-dfffffff memory:fe620000-fe63ffff ioport:e000(size=256) memory:fe600000-fe61ffff *-multimedia description: Audio device product: Juniper HDMI Audio [Radeon HD 5700 Series] vendor: Advanced Micro Devices [AMD] nee ATI physical id: 0.1 bus info: pci@0000:01:00.1 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:48 memory:fe640000-fe643fff *-communication description: Communication controller product: 6 Series/C200 Series Chipset Family MEI Controller #1 vendor: Intel Corporation physical id: 16 bus info: pci@0000:00:16.0 version: 04 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: driver=mei latency=0 resources: irq:45 memory:fe708000-fe70800f *-usb:0 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 vendor: Intel Corporation physical id: 1a bus info: pci@0000:00:1a.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:16 memory:fe707000-fe7073ff *-multimedia description: Audio device product: 6 Series/C200 Series Chipset Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:46 memory:fe700000-fe703fff *-pci:1 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 memory:fe500000-fe5fffff *-network description: Network controller product: BCM4313 802.11b/g/n Wireless LAN Controller vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:02:00.0 version: 01 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=bcma-pci-bridge latency=0 resources: irq:16 memory:fe500000-fe503fff *-pci:2 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 4 vendor: Intel Corporation physical id: 1c.3 bus info: pci@0000:00:1c.3 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 memory:fe400000-fe4fffff *-network description: Ethernet interface product: NetLink BCM57788 Gigabit Ethernet PCIe vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: eth0 version: 01 serial: 18:03:73:e1:a7:71 size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=tg3 driverversion=3.123 duplex=full firmware=sb ip=192.168.1.3 latency=0 link=yes multicast=yes port=MII speed=100Mbit/s resources: irq:47 memory:fe400000-fe40ffff *-usb:1 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:23 memory:fe706000-fe7063ff *-isa description: ISA bridge product: H67 Express Chipset Family LPC Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-storage description: SATA controller product: 6 Series/C200 Series Chipset Family SATA AHCI Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 05 width: 32 bits clock: 66MHz capabilities: storage msi pm ahci_1.0 bus_master cap_list configuration: driver=ahci latency=0 resources: irq:43 ioport:f070(size=8) ioport:f060(size=4) ioport:f050(size=8) ioport:f040(size=4) ioport:f020(size=32) memory:fe705000-fe7057ff *-serial UNCLAIMED description: SMBus product: 6 Series/C200 Series Chipset Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:fe704000-fe7040ff ioport:f000(size=32) *-scsi:0 physical id: 1 logical name: scsi0 capabilities: emulated *-disk description: ATA Disk product: Hitachi HUA72201 vendor: Hitachi physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: JP4O serial: JPW9J0HD21BTZC size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sectorsize=512 signature=000641dc *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: 4e3d91b7-fd38-4f44-a9e9-ba3c39b926ec size: 585GiB capacity: 585GiB capabilities: primary journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2012-10-21 16:26:50 filesystem=ext4 lastmountpoint=/ modified=2012-10-29 18:12:08 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,data=ordered mounted=2012-10-29 18:12:08 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 7823MiB capacity: 7823MiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 7823MiB capabilities: nofs *-volume:2 description: Windows NTFS volume physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 version: 3.1 serial: 84a92aae-347b-7940-a2d1-f4745b885ef2 size: 337GiB capacity: 337GiB capabilities: primary bootable ntfs initialized configuration: clustersize=4096 created=2012-10-21 18:43:39 filesystem=ntfs modified_by_chkdsk=true mounted_on_nt4=true resize_log_file=true state=dirty upgrade_on_mount=true *-scsi:1 physical id: 2 logical name: scsi1 capabilities: emulated *-cdrom description: DVD-RAM writer product: DVDRWBD DH-12E3S vendor: PLDS physical id: 0.0.0 bus info: scsi@1:0.0.0 logical name: /dev/cdrom logical name: /dev/cdrw logical name: /dev/dvd logical name: /dev/dvdrw logical name: /dev/sr0 version: MD11 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-scsi:2 physical id: 3 bus info: usb@2:1.8 logical name: scsi6 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk:0 description: SCSI Disk physical id: 0.0.0 bus info: scsi@6:0.0.0 logical name: /dev/sdb configuration: sectorsize=512 *-disk:1 description: SCSI Disk physical id: 0.0.1 bus info: scsi@6:0.0.1 logical name: /dev/sdc configuration: sectorsize=512 *-disk:2 description: SCSI Disk physical id: 0.0.2 bus info: scsi@6:0.0.2 logical name: /dev/sdd configuration: sectorsize=512 *-disk:3 description: SCSI Disk product: MS/MS-Pro vendor: Generic- physical id: 0.0.3 bus info: scsi@6:0.0.3 logical name: /dev/sde version: 1.03 serial: 3 capabilities: removable configuration: sectorsize=512 *-medium physical id: 0 logical name: /dev/sde

    Read the article

  • Best Practices - which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains) One question that frequently comes up is "which types of domain should I use to run applications?" There used to be a simple answer in most cases: "only run applications in guest domains", but enhancements to T-series servers, Oracle VM Server for SPARC and the advent of SPARC SuperCluster have made this question more interesting and worth qualifying differently. This article reviews the relevant concepts and provides suggestions on where to deploy applications in a logical domains environment. Review: division of labor and types of domain Oracle VM Server for SPARC offloads many functions from the hypervisor to domains (also called virtual machines). This is a modern alternative to using a "thick" hypervisor that provides all virtualization functions, as in traditional VM designs, This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, which further improves reliability and security. In this architecture, management and I/O functionality are provided within domains. Oracle VM Server for SPARC does this by defining the following types of domain, each with their own roles: Control domain - management control point for the server, used to configure domains and manage resources. It is the first domain to boot on a power-up, is an I/O domain, and is usually a service domain as well. I/O domain - has been assigned physical I/O devices: a PCIe root complex, a PCI device, or a SR-IOV (single-root I/O Virtualization) function. It has native performance and functionality for the devices it owns, unmediated by any virtualization layer. Service domain - provides virtual network and disk devices to guest domains. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI busses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain, which is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure: guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device doesn't result in an application outage. This is also used for "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O busses, so there is more I/O capacity that can be used for applications. Increased T-series server capacity made it attractive to run more vertical applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the SPARC SuperCluster engineered system, announced a year ago at Oracle OpenWorld. In SPARC SuperCluster, I/O domains are used for high performance applications, with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is the introduction of Direct I/O (DIO) and Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. A domain with either a DIO or SR-IOV device is an I/O domain. In summary: not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O go guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm has to be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. I/O domains can be used for applications with high performance requirements. This is used to great effect in SPARC SuperCluster and in general T4 deployments. Direct I/O (DIO) and Single Root I/O Virtualization (SR-IOV) make this more attractive by giving direct I/O access to more domains. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect other domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so an interruption of service in the service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. SPARC SuperCluster use the control domain for applications, but it is an exception: it's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity T-series servers have made it more attractive to use them for applications with high resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide higher performance for critical applications.

    Read the article

  • OS X 10.9 Mavericks Kernel Panics out of the box

    - by Kevin
    OS X Kernel panics after a fresh install of OS X 10.9 on a 17" Macbook Pro. Anonymous UUID: D002464D-24B7-C2B5-3D83-1C0B02873B29 Wed Oct 30 11:08:17 2013 panic(cpu 1 caller 0xffffff8006edc19e): Kernel trap at 0xffffff7f88e0a96c, type 14=page fault, registers: CR0: 0x000000008001003b, CR2: 0xffffef7f88e309b8, CR3: 0x0000000009c2d000, CR4: 0x0000000000000660 RAX: 0x0fffffd0c7b30000, RBX: 0xffffef7f88e309b0, RCX: 0x0000000000000001, RDX: 0x000002f384d06471 RSP: 0xffffff80eff03d80, RBP: 0xffffff80eff03e70, RSI: 0x0000031384cfb168, RDI: 0xffffff80e8f05148 R8: 0xffffff801b0f8670, R9: 0x0000000000000005, R10: 0x0000000000004a24, R11: 0x0000000000000202 R12: 0xffffff801938b800, R13: 0x0000000000000005, R14: 0xffffff80e8f05148, R15: 0xffffff7f88e2ee20 RFL: 0x0000000000010006, RIP: 0xffffff7f88e0a96c, CS: 0x0000000000000008, SS: 0x0000000000000010 Fault CR2: 0xffffef7f88e309b8, Error code: 0x0000000000000002, Fault CPU: 0x1 Backtrace (CPU 1), Frame : Return Address 0xffffff80eff03a10 : 0xffffff8006e22f69 0xffffff80eff03a90 : 0xffffff8006edc19e 0xffffff80eff03c60 : 0xffffff8006ef3606 0xffffff80eff03c80 : 0xffffff7f88e0a96c 0xffffff80eff03e70 : 0xffffff7f88e09b89 0xffffff80eff03f30 : 0xffffff8006edda5c 0xffffff80eff03f50 : 0xffffff8006e3757a 0xffffff80eff03f90 : 0xffffff8006e378c8 0xffffff80eff03fb0 : 0xffffff8006ed6aa7 Kernel Extensions in backtrace: com.apple.driver.AppleIntelCPUPowerManagement(216.0)[A6EE4D7B-228E-3A3C-95BA-10ED6F331236]@0xffffff7f88e07000->0xffffff7f88e31fff BSD process name corresponding to current thread: kernel_task Mac OS version: 13A603 Kernel version: Darwin Kernel Version 13.0.0: Thu Sep 19 22:22:27 PDT 2013; root:xnu-2422.1.72~6/RELEASE_X86_64 Kernel UUID: 1D9369E3-D0A5-31B6-8D16-BFFBBB390393 Kernel slide: 0x0000000006c00000 Kernel text base: 0xffffff8006e00000 System model name: MacBookPro5,2 (Mac-F2268EC8) System uptime in nanoseconds: 4634353513870 last loaded kext at 39203945245: com.viscosityvpn.Viscosity.tun 1.0 (addr 0xffffff7f89200000, size 32768) last unloaded kext at 147930318702: com.apple.driver.AppleFileSystemDriver 3.0.1 (addr 0xffffff7f89110000, size 8192) loaded kexts: com.viscosityvpn.Viscosity.tun 1.0 com.viscosityvpn.Viscosity.tap 1.0 com.apple.driver.AudioAUUC 1.60 com.apple.driver.AppleHWSensor 1.9.5d0 com.apple.filesystems.autofs 3.0 com.apple.iokit.IOBluetoothSerialManager 4.2.0f6 com.apple.driver.AGPM 100.14.11 com.apple.driver.AppleMikeyHIDDriver 124 com.apple.driver.AppleHDA 2.5.2fc2 com.apple.iokit.BroadcomBluetoothHostControllerUSBTransport 4.2.0f6 com.apple.GeForceTesla 8.1.8 com.apple.driver.AppleMikeyDriver 2.5.2fc2 com.apple.iokit.IOUserEthernet 1.0.0d1 com.apple.driver.AppleUpstreamUserClient 3.5.13 com.apple.driver.AppleMuxControl 3.4.12 com.apple.driver.ACPI_SMC_PlatformPlugin 1.0.0 com.apple.driver.AppleSMCLMU 2.0.4d1 com.apple.Dont_Steal_Mac_OS_X 7.0.0 com.apple.driver.AppleHWAccess 1 com.apple.driver.AppleMCCSControl 1.1.12 com.apple.driver.AppleLPC 1.7.0 com.apple.driver.SMCMotionSensor 3.0.4d1 com.apple.driver.AppleUSBTCButtons 240.2 com.apple.driver.AppleUSBTCKeyboard 240.2 com.apple.driver.AppleIRController 325.7 com.apple.AppleFSCompression.AppleFSCompressionTypeDataless 1.0.0d1 com.apple.AppleFSCompression.AppleFSCompressionTypeZlib 1.0.0d1 com.apple.BootCache 35 com.apple.iokit.SCSITaskUserClient 3.6.0 com.apple.driver.XsanFilter 404 com.apple.iokit.IOAHCIBlockStorage 2.4.0 com.apple.driver.AppleUSBHub 650.4.4 com.apple.driver.AppleUSBEHCI 650.4.1 com.apple.driver.AppleFWOHCI 4.9.9 com.apple.driver.AirPort.Brcm4331 700.20.22 com.apple.driver.AppleAHCIPort 2.9.5 com.apple.nvenet 2.0.21 com.apple.driver.AppleUSBOHCI 650.4.1 com.apple.driver.AppleSmartBatteryManager 161.0.0 com.apple.driver.AppleRTC 2.0 com.apple.driver.AppleHPET 1.8 com.apple.driver.AppleACPIButtons 2.0 com.apple.driver.AppleSMBIOS 2.0 com.apple.driver.AppleACPIEC 2.0 com.apple.driver.AppleAPIC 1.7 com.apple.driver.AppleIntelCPUPowerManagementClient 216.0.0 com.apple.nke.applicationfirewall 153 com.apple.security.quarantine 3 com.apple.driver.AppleIntelCPUPowerManagement 216.0.0 com.apple.kext.triggers 1.0 com.apple.iokit.IOSerialFamily 10.0.7 com.apple.AppleGraphicsDeviceControl 3.4.12 com.apple.driver.DspFuncLib 2.5.2fc2 com.apple.vecLib.kext 1.0.0 com.apple.iokit.IOAudioFamily 1.9.4fc11 com.apple.kext.OSvKernDSPLib 1.14 com.apple.iokit.IOBluetoothHostControllerUSBTransport 4.2.0f6 com.apple.iokit.IOSurface 91 com.apple.iokit.IOBluetoothFamily 4.2.0f6 com.apple.nvidia.classic.NVDANV50HalTesla 8.1.8 com.apple.driver.AppleSMBusPCI 1.0.12d1 com.apple.driver.AppleGraphicsControl 3.4.12 com.apple.driver.IOPlatformPluginLegacy 1.0.0 com.apple.driver.AppleBacklightExpert 1.0.4 com.apple.iokit.IOFireWireIP 2.2.5 com.apple.driver.AppleHDAController 2.5.2fc2 com.apple.iokit.IOHDAFamily 2.5.2fc2 com.apple.driver.AppleSMBusController 1.0.11d1 com.apple.nvidia.classic.NVDAResmanTesla 8.1.8 com.apple.driver.IOPlatformPluginFamily 5.5.1d27 com.apple.iokit.IONDRVSupport 2.3.6 com.apple.iokit.IOGraphicsFamily 2.3.6 com.apple.driver.AppleSMC 3.1.6d1 com.apple.driver.AppleUSBMultitouch 240.6 com.apple.iokit.IOUSBHIDDriver 650.4.4 com.apple.driver.AppleUSBMergeNub 650.4.0 com.apple.driver.AppleUSBComposite 650.4.0 com.apple.driver.CoreStorage 380 com.apple.iokit.IOSCSIMultimediaCommandsDevice 3.6.0 com.apple.iokit.IOBDStorageFamily 1.7 com.apple.iokit.IODVDStorageFamily 1.7.1 com.apple.iokit.IOCDStorageFamily 1.7.1 com.apple.iokit.IOAHCISerialATAPI 2.6.0 com.apple.iokit.IOSCSIArchitectureModelFamily 3.6.0 com.apple.iokit.IOUSBUserClient 650.4.4 com.apple.iokit.IOFireWireFamily 4.5.5 com.apple.iokit.IO80211Family 600.34 com.apple.iokit.IOAHCIFamily 2.6.0 com.apple.iokit.IONetworkingFamily 3.2 com.apple.iokit.IOUSBFamily 650.4.4 com.apple.driver.NVSMU 2.2.9 com.apple.driver.AppleEFINVRAM 2.0 com.apple.driver.AppleEFIRuntime 2.0 com.apple.iokit.IOHIDFamily 2.0.0 com.apple.iokit.IOSMBusFamily 1.1 com.apple.security.sandbox 278.10 com.apple.kext.AppleMatch 1.0.0d1 com.apple.security.TMSafetyNet 7 com.apple.driver.AppleKeyStore 2 com.apple.driver.DiskImages 371.1 com.apple.iokit.IOStorageFamily 1.9 com.apple.iokit.IOReportFamily 21 com.apple.driver.AppleFDEKeyStore 28.30 com.apple.driver.AppleACPIPlatform 2.0 com.apple.iokit.IOPCIFamily 2.8 com.apple.iokit.IOACPIFamily 1.4 com.apple.kec.pthread 1 com.apple.kec.corecrypto 1.0 System Profile: Model: MacBookPro5,2, BootROM MBP52.008E.B05, 2 processors, Intel Core 2 Duo, 2.8 GHz, 8 GB, SMC 1.42f4 Graphics: NVIDIA GeForce 9400M, NVIDIA GeForce 9400M, PCI, 256 MB Graphics: NVIDIA GeForce 9600M GT, NVIDIA GeForce 9600M GT, PCIe, 512 MB Memory Module: BANK 0/DIMM0, 4 GB, DDR3, 1333 MHz, 0x04CD, 0x46332D3130363636434C392D344742535100 Memory Module: BANK 1/DIMM0, 4 GB, DDR3, 1333 MHz, 0x04CD, 0x46332D3130363636434C392D344742535100 AirPort: spairport_wireless_card_type_airport_extreme (0x14E4, 0x8D), Broadcom BCM43xx 1.0 (5.106.98.100.22) Bluetooth: Version 4.2.0f6 12982, 3 services, 15 devices, 1 incoming serial ports Network Service: Wi-Fi, AirPort, en1 Serial ATA Device: Samsung SSD 840 Series, 120.03 GB Serial ATA Device: MATSHITADVD-R UJ-868 USB Device: Built-in iSight USB Device: BRCM2046 Hub USB Device: Bluetooth USB Host Controller USB Device: Apple Internal Keyboard / Trackpad USB Device: IR Receiver Thunderbolt Bus:

    Read the article

  • Improving SAS multipath to JBOD performance on Linux

    - by user36825
    Hello all I'm trying to optimize a storage setup on some Sun hardware with Linux. Any thoughts would be greatly appreciated. We have the following hardware: Sun Blade X6270 2* LSISAS1068E SAS controllers 2* Sun J4400 JBODs with 1 TB disks (24 disks per JBOD) Fedora Core 12 2.6.33 release kernel from FC13 (also tried with latest 2.6.31 kernel from FC12, same results) Here's the datasheet for the SAS hardware: http://www.sun.com/storage/storage_networking/hba/sas/PCIe.pdf It's using PCI Express 1.0a, 8x lanes. With a bandwidth of 250 MB/sec per lane, we should be able to do 2000 MB/sec per SAS controller. Each controller can do 3 Gb/sec per port and has two 4 port PHYs. We connect both PHYs from a controller to a JBOD. So between the JBOD and the controller we have 2 PHYs * 4 SAS ports * 3 Gb/sec = 24 Gb/sec of bandwidth, which is more than the PCI Express bandwidth. With write caching enabled and when doing big writes, each disk can sustain about 80 MB/sec (near the start of the disk). With 24 disks, that means we should be able to do 1920 MB/sec per JBOD. multipath { rr_min_io 100 uid 0 path_grouping_policy multibus failback manual path_selector "round-robin 0" rr_weight priorities alias somealias no_path_retry queue mode 0644 gid 0 wwid somewwid } I tried values of 50, 100, 1000 for rr_min_io, but it doesn't seem to make much difference. Along with varying rr_min_io I tried adding some delay between starting the dd's to prevent all of them writing over the same PHY at the same time, but this didn't make any difference, so I think the I/O's are getting properly spread out. According to /proc/interrupts, the SAS controllers are using a "IR-IO-APIC-fasteoi" interrupt scheme. For some reason only core #0 in the machine is handling these interrupts. I can improve performance slightly by assigning a separate core to handle the interrupts for each SAS controller: echo 2 /proc/irq/24/smp_affinity echo 4 /proc/irq/26/smp_affinity Using dd to write to the disk generates "Function call interrupts" (no idea what these are), which are handled by core #4, so I keep other processes off this core too. I run 48 dd's (one for each disk), assigning them to cores not dealing with interrupts like so: taskset -c somecore dd if=/dev/zero of=/dev/mapper/mpathx oflag=direct bs=128M oflag=direct prevents any kind of buffer cache from getting involved. None of my cores seem maxed out. The cores dealing with interrupts are mostly idle and all the other cores are waiting on I/O as one would expect. Cpu0 : 0.0%us, 1.0%sy, 0.0%ni, 91.2%id, 7.5%wa, 0.0%hi, 0.2%si, 0.0%st Cpu1 : 0.0%us, 0.8%sy, 0.0%ni, 93.0%id, 0.2%wa, 0.0%hi, 6.0%si, 0.0%st Cpu2 : 0.0%us, 0.6%sy, 0.0%ni, 94.4%id, 0.1%wa, 0.0%hi, 4.8%si, 0.0%st Cpu3 : 0.0%us, 7.5%sy, 0.0%ni, 36.3%id, 56.1%wa, 0.0%hi, 0.0%si, 0.0%st Cpu4 : 0.0%us, 1.3%sy, 0.0%ni, 85.7%id, 4.9%wa, 0.0%hi, 8.1%si, 0.0%st Cpu5 : 0.1%us, 5.5%sy, 0.0%ni, 36.2%id, 58.3%wa, 0.0%hi, 0.0%si, 0.0%st Cpu6 : 0.0%us, 5.0%sy, 0.0%ni, 36.3%id, 58.7%wa, 0.0%hi, 0.0%si, 0.0%st Cpu7 : 0.0%us, 5.1%sy, 0.0%ni, 36.3%id, 58.5%wa, 0.0%hi, 0.0%si, 0.0%st Cpu8 : 0.1%us, 8.3%sy, 0.0%ni, 27.2%id, 64.4%wa, 0.0%hi, 0.0%si, 0.0%st Cpu9 : 0.1%us, 7.9%sy, 0.0%ni, 36.2%id, 55.8%wa, 0.0%hi, 0.0%si, 0.0%st Cpu10 : 0.0%us, 7.8%sy, 0.0%ni, 36.2%id, 56.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu11 : 0.0%us, 7.3%sy, 0.0%ni, 36.3%id, 56.4%wa, 0.0%hi, 0.0%si, 0.0%st Cpu12 : 0.0%us, 5.6%sy, 0.0%ni, 33.1%id, 61.2%wa, 0.0%hi, 0.0%si, 0.0%st Cpu13 : 0.1%us, 5.3%sy, 0.0%ni, 36.1%id, 58.5%wa, 0.0%hi, 0.0%si, 0.0%st Cpu14 : 0.0%us, 4.9%sy, 0.0%ni, 36.4%id, 58.7%wa, 0.0%hi, 0.0%si, 0.0%st Cpu15 : 0.1%us, 5.4%sy, 0.0%ni, 36.5%id, 58.1%wa, 0.0%hi, 0.0%si, 0.0%st Given all this, the throughput reported by running "dstat 10" is in the range of 2200-2300 MB/sec. Given the math above I would expect something in the range of 2*1920 ~= 3600+ MB/sec. Does anybody have any idea where my missing bandwidth went? Thanks!

    Read the article

  • OpenVPN on ec2 bridged mode connects but no Ping, DNS or forwarding

    - by michael
    I am trying to use OpenVPN to access the internet over a secure connection. I have openVPN configured and running on Amazon EC2 in bridge mode with client certs. I can successfully connect from the client, but I cannot get access to the internet or ping anything from the client I checked the following and everything seems to shows a successful connection between the vpn client/server and UDP traffic on 1194 [server] sudo tcpdump -i eth0 udp port 1194 (shows UDP traffic after establishing connection) [server] sudo iptables -L Chain INPUT (policy ACCEPT) target prot opt source destination ACCEPT all -- anywhere anywhere ACCEPT all -- anywhere anywhere Chain FORWARD (policy ACCEPT) target prot opt source destination ACCEPT all -- anywhere anywhere Chain OUTPUT (policy ACCEPT) target prot opt source destination [server] sudo iptables -L -t nat Chain PREROUTING (policy ACCEPT) target prot opt source destination Chain POSTROUTING (policy ACCEPT) target prot opt source destination MASQUERADE all -- ip-W-X-Y-0.us-west-1.compute.internal/24 anywhere Chain OUTPUT (policy ACCEPT) target prot opt source destination [server] openvpn.log Wed Oct 19 03:11:26 2011 localhost/a.b.c.d:61905 [localhost] Inactivity timeout (--ping-restart), restarting Wed Oct 19 03:11:26 2011 localhost/a.b.c.d:61905 SIGUSR1[soft,ping-restart] received, client-instance restarting Wed Oct 19 03:41:31 2011 MULTI: multi_create_instance called Wed Oct 19 03:41:31 2011 a.b.c.d:57889 Re-using SSL/TLS context Wed Oct 19 03:41:31 2011 a.b.c.d:57889 LZO compression initialized Wed Oct 19 03:41:31 2011 a.b.c.d:57889 Control Channel MTU parms [ L:1574 D:166 EF:66 EB:0 ET:0 EL:0 ] Wed Oct 19 03:41:31 2011 a.b.c.d:57889 Data Channel MTU parms [ L:1574 D:1450 EF:42 EB:135 ET:32 EL:0 AF:3/1 ] Wed Oct 19 03:41:31 2011 a.b.c.d:57889 Local Options hash (VER=V4): '360696c5' Wed Oct 19 03:41:31 2011 a.b.c.d:57889 Expected Remote Options hash (VER=V4): '13a273ba' Wed Oct 19 03:41:31 2011 a.b.c.d:57889 TLS: Initial packet from [AF_INET]a.b.c.d:57889, sid=dd886604 ab6ebb38 Wed Oct 19 03:41:35 2011 a.b.c.d:57889 VERIFY OK: depth=1, /C=US/ST=CA/L=SanFrancisco/O=EXAMPLE/CN=EXAMPLE_CA/[email protected] Wed Oct 19 03:41:35 2011 a.b.c.d:57889 VERIFY OK: depth=0, /C=US/ST=CA/L=SanFrancisco/O=EXAMPLE/CN=localhost/[email protected] Wed Oct 19 03:41:37 2011 a.b.c.d:57889 Data Channel Encrypt: Cipher 'BF-CBC' initialized with 128 bit key Wed Oct 19 03:41:37 2011 a.b.c.d:57889 Data Channel Encrypt: Using 160 bit message hash 'SHA1' for HMAC authentication Wed Oct 19 03:41:37 2011 a.b.c.d:57889 Data Channel Decrypt: Cipher 'BF-CBC' initialized with 128 bit key Wed Oct 19 03:41:37 2011 a.b.c.d:57889 Data Channel Decrypt: Using 160 bit message hash 'SHA1' for HMAC authentication Wed Oct 19 03:41:37 2011 a.b.c.d:57889 Control Channel: TLSv1, cipher TLSv1/SSLv3 DHE-RSA-AES256-SHA, 1024 bit RSA Wed Oct 19 03:41:37 2011 a.b.c.d:57889 [localhost] Peer Connection Initiated with [AF_INET]a.b.c.d:57889 Wed Oct 19 03:41:39 2011 localhost/a.b.c.d:57889 PUSH: Received control message: 'PUSH_REQUEST' Wed Oct 19 03:41:39 2011 localhost/a.b.c.d:57889 SENT CONTROL [localhost]: 'PUSH_REPLY,redirect-gateway def1 bypass-dhcp,route-gateway W.X.Y.Z,ping 10,ping-restart 120,ifconfig W.X.Y.Z 255.255.255.0' (status=1) Wed Oct 19 03:41:40 2011 localhost/a.b.c.d:57889 MULTI: Learn: (IPV6) -> localhost/a.b.c.d:57889 [client] tracert google.com Tracing route to google.com [74.125.71.104] over a maximum of 30 hops: 1 347 ms 349 ms 348 ms PC [w.X.Y.Z] 2 * * * Request timed out. I can also successfully ping the server IP address from the client, and ping google.com from an SSH shell on the server. What am I doing wrong? Here is my config (Note: W.X.Y.Z == amazon EC2 private ipaddress) bridge config on br0 ifconfig eth0 0.0.0.0 promisc up brctl addbr br0 brctl addif br0 eth0 ifconfig br0 W.X.Y.X netmask 255.255.255.0 broadcast W.X.Y.255 up route add default gw W.X.Y.1 br0 /etc/openvpn/server.conf (from https://help.ubuntu.com/10.04/serverguide/C/openvpn.html) local W.X.Y.Z dev tap0 up "/etc/openvpn/up.sh br0" down "/etc/openvpn/down.sh br0" ;server W.X.Y.0 255.255.255.0 server-bridge W.X.Y.Z 255.255.255.0 W.X.Y.105 W.X.Y.200 ;push "route W.X.Y.0 255.255.255.0" push "redirect-gateway def1 bypass-dhcp" push "dhcp-option DNS 208.67.222.222" push "dhcp-option DNS 208.67.220.220" tls-auth ta.key 0 # This file is secret user nobody group nogroup log-append openvpn.log iptables config sudo iptables -A INPUT -i tap0 -j ACCEPT sudo iptables -A INPUT -i br0 -j ACCEPT sudo iptables -A FORWARD -i br0 -j ACCEPT sudo iptables -t nat -A POSTROUTING -s W.X.Y.0/24 -o eth0 -j MASQUERADE echo 1 > /proc/sys/net/ipv4/ip_forward Routing Tables added route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface W.X.Y.0 0.0.0.0 255.255.255.0 U 0 0 0 br0 0.0.0.0 W.X.Y.1 0.0.0.0 UG 0 0 0 br0 C:>route print =========================================================================== Interface List 32...00 ff ac d6 f7 04 ......TAP-Win32 Adapter V9 15...00 14 d1 e9 57 49 ......Microsoft Virtual WiFi Miniport Adapter #2 14...00 14 d1 e9 57 49 ......Realtek RTL8191SU Wireless LAN 802.11n USB 2.0 Net work Adapter 10...00 1f d0 50 1b ca ......Realtek PCIe GBE Family Controller 1...........................Software Loopback Interface 1 11...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface 16...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter 17...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter #2 18...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter #3 36...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter #5 =========================================================================== IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 10.1.2.1 10.1.2.201 25 10.1.2.0 255.255.255.0 On-link 10.1.2.201 281 10.1.2.201 255.255.255.255 On-link 10.1.2.201 281 10.1.2.255 255.255.255.255 On-link 10.1.2.201 281 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 10.1.2.201 281 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 10.1.2.201 281 =========================================================================== Persistent Routes: Network Address Netmask Gateway Address Metric 0.0.0.0 0.0.0.0 10.1.2.1 Default =========================================================================== C:>tracert google.com Tracing route to google.com [74.125.71.147] over a maximum of 30 hops: 1 344 ms 345 ms 343 ms PC [W.X.Y.221] 2 * * * Request timed out.

    Read the article

< Previous Page | 6 7 8 9 10 11  | Next Page >