Search Results

Search found 6001 results on 241 pages for 'requires'.

Page 10/241 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • installing old MySQL client libraries (libmysqlclient.so.15, libpq.so.4)

    - by Elijah Paul
    I'm attempting to install Nagios plugins on a Zimbra 8.0.2 server running CentOS 6.4, but have run into the following error when I run yum install nagios-plugins-all Error: Package: nagios-plugins-mysql-1.4.15-2.el5.x86_64 (epel) Requires: libmysqlclient.so.15()(64bit) Error: Package: nagios-plugins-pgsql-1.4.15-2.el5.x86_64 (epel) Requires: libpq.so.4()(64bit) Error: Package: nagios-plugins-mysql-1.4.15-2.el5.x86_64 (epel) Requires: libmysqlclient.so.15(libmysqlclient_15)(64bit) You could try using --skip-broken to work around the problem You could try running: rpm -Va --nofiles --nodigest How can I install these libraries (libmysqlclient.so.15 & libpq.so.4)? Will installing these libraries possibly break Zimbra?

    Read the article

  • Compiler issues on VC++ 2008 Express, Seemingly correct code throws errors.

    - by Anthony Clever
    Hi there, I've been trying to get back into coding for a while, so I figured I'd start with some simple SDL, now, without the file i/o, this compiles fine, but when I throw in the stdio code, it starts throwing errors. This I'm not sure about, I don't see any problem with the code itself, however, like I said, I might as well be a newbie, and figured I'd come here to get someone with a little more experience with this type of thing to look at it. I guess my question boils down to: "Why doesn't this compile under Microsoft's Visual C++ 2008 Express?" I've attached the error log at the bottom of the code snippet. Thanks in advance for any help. #include "SDL/SDL.h" #include "stdio.h" int main(int argc, char *argv[]) { FILE *stderr; FILE *stdout; stderr = fopen("stderr", "wb"); stdout = fopen("stdout", "wb"); SDL_Init(SDL_INIT_EVERYTHING); fprintf(stdout, "SDL INITIALIZED SUCCESSFULLY\n"); SDL_Quit(); fprintf(stderr, "SDL QUIT.\n"); fclose(stderr); fclose(stdout); return 0; } /* 1>------ Build started: Project: opengl_crap, Configuration: Debug Win32 ------ 1>Compiling... 1>main.cpp 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(6) : error C2090: function returns array 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(6) : error C2528: '__iob_func' : pointer to reference is illegal 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(6) : error C2556: 'FILE ***__iob_func(void)' : overloaded function differs only by return type from 'FILE *__iob_func(void)' 1> c:\program files\microsoft visual studio 9.0\vc\include\stdio.h(132) : see declaration of '__iob_func' 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(7) : error C2090: function returns array 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(7) : error C2528: '__iob_func' : pointer to reference is illegal 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(9) : error C2440: '=' : cannot convert from 'FILE *' to 'FILE ***' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(10) : error C2440: '=' : cannot convert from 'FILE *' to 'FILE ***' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(13) : error C2664: 'fprintf' : cannot convert parameter 1 from 'FILE ***' to 'FILE *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(15) : error C2664: 'fprintf' : cannot convert parameter 1 from 'FILE ***' to 'FILE *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(17) : error C2664: 'fclose' : cannot convert parameter 1 from 'FILE ***' to 'FILE *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(18) : error C2664: 'fclose' : cannot convert parameter 1 from 'FILE ***' to 'FILE *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>Build log was saved at "file://c:\Documents and Settings\Owner\My Documents\Visual Studio 2008\Projects\opengl_crap\opengl_crap\Debug\BuildLog.htm" 1>opengl_crap - 11 error(s), 0 warning(s) ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ========== */

    Read the article

  • How can I install VLC on RHEL 6.3?

    - by holddame
    I'm having a problem installing VLC on Red hat 6.3 When I try to use yum install vlc all goes well until it shows me this in the end: Error: Package: vlc-2.0.3-6.el6.x86_64 (linuxtech-release) Requires: libminizip.so.1()(64bit) Error: Package: liblrdf-0.5.0-2.el6.x86_64 (linuxtech-release) Requires: ladspa Error: Package: libffado-2.1.0-0.8.20120325.svn2088.el6.x86_64 (linuxtech-release) Requires: libconfig++.so.8()(64bit) also I can't use yum update I'm running on a 32-bit processor and I don't know what's wrong. ok I'v installed live555 and tried again nothing really happened here is my yum whatprovides *BasicUsageEnviroment `live555-devel-0-0.34.2012.01.25.el6.x86_64 : Development files for live555.com streaming : libraries Repo : linuxtech-release Matched from: Filename : /usr/include/BasicUsageEnvironment live555-devel-0-0.34.2012.01.25.el6.i686 : Development files for live555.com streaming : libraries Repo : linuxtech-release Matched from: Filename : /usr/include/BasicUsageEnvironment live555-devel-0-0.27.2010.04.09.el6.rf.x86_64 : Development files for live555.com streaming : libraries Repo : rpmforge Matched from: Filename : /usr/include/BasicUsageEnvironment live555-devel-0-0.27.2012.02.04.el6.rf.x86_64 : Development files for live555.com streaming : libraries Repo : rpmforge Matched from: Filename : /usr/include/BasicUsageEnvironment

    Read the article

  • Is there a way to control two instantiated systemd services as a single unit?

    - by rascalking
    I've got a couple python web services I'm trying to run on a Fedora 15 box. They're being run by paster, and the only difference in starting them is the config file they read. This seems like a good fit for systemd's instantiated services, but I'd like to be able to control them as a single unit. A systemd target that requires both services seems like the way to approach that. Starting the target does start both services, but stopping the target leaves them running. Here's the service file: [Unit] Description=AUI Instance on Port %i After=syslog.target [Service] WorkingDirectory=/usr/local/share/aui ExecStart=/opt/cogo/bin/paster serve --log-file=/var/log/aui/%i deploy-%i.ini Restart=always RestartSec=2 User=aui Group=aui [Install] WantedBy=multi-user.target And here's the target file: [Unit] Description=AUI [email protected] [email protected] After=syslog.target [Install] WantedBy=multi-user.target Is this kind of grouping even possible with systemd?

    Read the article

  • Can you say "Architect?"

    - by Bob Rhubart
    Photo by Jennifer Ortiz In his article, It's Time To Occupy IT, AIIM CEO and president John Mancini examines the evolution of "Systems of Engagement," the social technologies that are transforming how customers and employees relate to and interact with companies. Surviving the disruption that transformation entails is a matter of when, rather than if, a given organization embraces the change. But as Mancini points out, that transformation will require a "new breed" of IT professional: "While addressing this kind of challenge requires technical skills, it also requires process and customer acumen more often found in the business than in our IT departments. It requires a new type of information professional, whose expertise includes technical and domain knowledge, but who also has an idea of how the pieces of a process that spans the worlds of Systems of Record and Systems of Engagement should fit together. Gartner estimates that the demand for this new breed of information professional will grow by 50 percent by 2015." Though Mancini makes no reference to the title, the skills he desribes are those of the IT architect. While the specific definition of the role remains fodder for seemingly endless discussion and debate on various social networks and forums, the fact remains that the skills required for success in the evolving world of IT will increasingly involve a deep understanding of how all the pieces fit together.

    Read the article

  • OpenGL : sluggish performance in extracting texture from GPU

    - by Cyan
    I'm currently working on an algorithm which creates a texture within a render buffer. The operations are pretty complex, but for the GPU this is a simple task, done very quickly. The problem is that, after creating the texture, i would like to save it. This requires to extract it from GPU memory. For this operation, i'm using glGetTexImage(). It works, but the performance is sluggish. No, i mean even slower than that. For example, an 8MB texture (uncompressed) requires 3 seconds (yes, seconds) to be extracted. That's mind puzzling. I'm almost wondering if my graphic card is connected by a serial link... Well, anyway, i've looked around, and found some people complaining about the same, but no working solution so far. The most promising advise was to "extract data in the native format of the GPU". Which i've tried and tried, but failed so far. Edit : by moving the call to glGetTexImage() in a different place, the speed has been a bit improved for the most dramatic samples : looking again at the 8MB texture, it knows requires 500ms, instead of 3sec. It's better, but still much too slow. Smaller texture sizes were not affected by the change (typical timing remained into the 60-80ms range). Using glFinish() didn't help either. Note that, if i call glFinish() (without glGetTexImage), i'm getting a fixed 16ms result, whatever the texture size or complexity. It really looks like the timing for a frame at 60fps. The timing is measured for the full rendering + saving sequence. The call to glGetTexImage() alone does not really matter. That being said, it is this call which changes the performance. And yes, of course, as stated at the beginning, the texture is "created into the GPU", hence the need to save it.

    Read the article

  • ReSharper - Possible Null Assignment when using Microsoft.Contracts

    - by HVS
    Is there any way to indicate to ReSharper that a null reference won't occur because of Design-by-Contract Requires checking? For example, the following code will raise the warning (Possible 'null' assignment to entity marked with 'NotNull' attribute) in ReSharper on lines 7 and 8: private Dictionary<string, string> _Lookup = new Dictionary<string, string>(); public void Foo(string s) { Contract.Requires(!String.IsNullOrEmpty(s)); if (_Lookup.ContainsKey(s)) _Lookup.Remove(s); } What is really odd is that if you remove the Contract.Requires(...) line, the ReSharper message goes away. Update I found the solution through ExternalAnnotations which was also mentioned by Mike below. Here's an example of how to do it for a function in Microsoft.Contracts: Create a directory called Microsoft.Contracts under the ExternalAnnotations ReSharper directory. Next, Create a file called Microsoft.Contracts.xml and populate like so: <assembly name="Microsoft.Contracts"> <member name="M:System.Diagnostics.Contracts.Contract.Requires(System.Boolean)"> <attribute ctor="M:JetBrains.Annotations.AssertionMethodAttribute.#ctor"/> <parameter name="condition"> <attribute ctor="M:JetBrains.Annotations.AssertionConditionAttribute.#ctor(JetBrains.Annotations.AssertionConditionType)"> <argument>0</argument> </attribute> </parameter> </member> </assembly> Restart Visual Studio, and the message goes away!

    Read the article

  • Choosing an installer product that is free and will download/install the .NET Framework

    - by Coder7862396
    I'm currently using the Visual Studio Installer (Setup Project) in Visual Studio 2010 as the installer for MyProgram. It has some quirky bugs and is not very customizable so I would like to switch to another installer product. Here are my requirements: Must be free (and licensed for commercial use) Must install the Windows Installer 3.1 and .NET Framework 4.0 if the client doesn't have them The installer will download them if they are not available The code for detecting the .NET Framework and downloading it must be written by Microsoft (I do not want to have to update hard-coded URLs and registry keys in the future). I know that the Windows SDK includes a setup bootstrap that does this (C:\Program Files\Microsoft SDKs\Windows\v7.0A\Bootstrapper) In the future, when .NET Framework 5 is released and MyProgram uses it, no installer code will need to be changed, the updated installer product should see that MyProgram now uses the .NET Framework version 5 and will install that Here are my current choices: Visual Studio Installer: Automatically detects/downloads/installs Windows Installer and .NET Framework using a bootstrapper Setup.exe (Good!) Limited/buggy functionality (Uninstall shortcuts in the Start Menu cause empty folders to be left behind during uninstall, asking the user if they want a desktop shortcut requires a lot of work, etc.) NSIS: Doesn't natively support the .NET Framework so adding it as a prerequisite requires excessive coding, hardcoded URLS, etc. Inno Setup: Doesn't natively support the .NET Framework so adding it as a prerequisite requires excessive coding, hardcoded URLs, etc. WiX: Steep learning curve... not sure if I want to spend weeks learning it only to find out that it has the same uninstall problem as the Visual Studio Installer (because they both use MSI files) InstallShield LE 2010: Downloading it requires me to setup a fake email account to register just to download it. Then once it is installed it has to contact the company's servers and transmit some private information to them before I'm even allowed to try the free version. This is the most insidious form of DRM that there is and I will not accept it.

    Read the article

  • Code Contracts: Hiding ContractException

    - by DigiMortal
    It’s time to move on and improve my randomizer I wrote for an example of static checking of code contracts. In this posting I will modify contracts and give some explanations about pre-conditions and post-conditions. Also I will show you how to avoid ContractExceptions and how to replace them with your own exceptions. As a first thing let’s take a look at my randomizer. public class Randomizer {     public static int GetRandomFromRange(int min, int max)     {         var rnd = new Random();         return rnd.Next(min, max);     }       public static int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires(min < max, "Min must be less than max");           var rnd = new Random();         return rnd.Next(min, max);     } } We have some problems here. We need contract for method output and we also need some better exception handling mechanism. As ContractException as type is hidden from us we have to switch from ContractException to some other Exception type that we can catch. Adding post-condition Pre-conditions are contracts for method’s input interface. Read it as follows: pre-conditions make sure that all conditions for method’s successful run are met. Post-conditions are contracts for output interface of method. So, post-conditions are for output arguments and return value. My code misses the post-condition that checks return value. Return value in this case must be greater or equal to minimum value and less or equal to maximum value. To make sure that method can run only the correct value I added call to Contract.Ensures() method. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires(min < max, "Min must be less than max");       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );       var rnd = new Random();     return rnd.Next(min, max); } I think that the line I added does not need any further comments. Avoiding ContractException for input interface ContractException lives in hidden namespace and we cannot see it at design time. But it is common exception type for all contract exceptions that we do not switch over to some other type. The case of Contract.Requires() method is simple: we can tell it what kind of exception we need if something goes wrong with contract it ensures. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires<ArgumentOutOfRangeException>(         min < max,         "Min must be less than max"     );       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );       var rnd = new Random();     return rnd.Next(min, max); } Now, if we violate the input interface contract giving min value that is not less than max value we get ArgumentOutOfRangeException. Avoiding ContractException for output interface Output interface is more complex to control. We cannot give exception type there and hope that this type of exception will be thrown if something goes wrong. Instead we have to use delegate that gathers information about problem and throws the exception we expect to be thrown. From documentation you can find the following example about the delegate I mentioned. Contract.ContractFailed += (sender, e) => {     e.SetHandled();     e.SetUnwind(); // cause code to abort after event     Assert.Fail(e.FailureKind.ToString() + ":" + e.DebugMessage); }; We can use this delegate to throw the Exception. Let’s move the code to separate method too. Here is our method that uses now ContractException hiding. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires(min < max, "Min must be less than max");       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );     Contract.ContractFailed += Contract_ContractFailed;       var rnd = new Random();     return rnd.Next(min, max)+1000; } And here is the delegate that creates exception. public static void Contract_ContractFailed(object sender,     ContractFailedEventArgs e) {     e.SetHandled();     e.SetUnwind();       throw new Exception(e.FailureKind.ToString() + ":" + e.Message); } Basically we can do in this delegate whatever we like to do with output interface errors. We can even introduce our own contract exception type. As you can see later then ContractFailed event is very useful at unit testing.

    Read the article

  • Security in Software

    The term security has many meanings based on the context and perspective in which it is used. Security from the perspective of software/system development is the continuous process of maintaining confidentiality, integrity, and availability of a system, sub-system, and system data. This definition at a very high level can be restated as the following: Computer security is a continuous process dealing with confidentiality, integrity, and availability on multiple layers of a system. Key Aspects of Software Security Integrity Confidentiality Availability Integrity within a system is the concept of ensuring only authorized users can only manipulate information through authorized methods and procedures. An example of this can be seen in a simple lead management application.  If the business decided to allow each sales member to only update their own leads in the system and sales managers can update all leads in the system then an integrity violation would occur if a sales member attempted to update someone else’s leads. An integrity violation occurs when a team member attempts to update someone else’s lead because it was not entered by the sales member.  This violates the business rule that leads can only be update by the originating sales member. Confidentiality within a system is the concept of preventing unauthorized access to specific information or tools.  In a perfect world the knowledge of the existence of confidential information/tools would be unknown to all those who do not have access. When this this concept is applied within the context of an application only the authorized information/tools will be available. If we look at the sales lead management system again, leads can only be updated by originating sales members. If we look at this rule then we can say that all sales leads are confidential between the system and the sales person who entered the lead in to the system. The other sales team members would not need to know about the leads let alone need to access it. Availability within a system is the concept of authorized users being able to access the system. A real world example can be seen again from the lead management system. If that system was hosted on a web server then IP restriction can be put in place to limit access to the system based on the requesting IP address. If in this example all of the sales members where accessing the system from the 192.168.1.23 IP address then removing access from all other IPs would be need to ensure that improper access to the system is prevented while approved users can access the system from an authorized location. In essence if the requesting user is not coming from an authorized IP address then the system will appear unavailable to them. This is one way of controlling where a system is accessed. Through the years several design principles have been identified as being beneficial when integrating security aspects into a system. These principles in various combinations allow for a system to achieve the previously defined aspects of security based on generic architectural models. Security Design Principles Least Privilege Fail-Safe Defaults Economy of Mechanism Complete Mediation Open Design Separation Privilege Least Common Mechanism Psychological Acceptability Defense in Depth Least Privilege Design PrincipleThe Least Privilege design principle requires a minimalistic approach to granting user access rights to specific information and tools. Additionally, access rights should be time based as to limit resources access bound to the time needed to complete necessary tasks. The implications of granting access beyond this scope will allow for unnecessary access and the potential for data to be updated out of the approved context. The assigning of access rights will limit system damaging attacks from users whether they are intentional or not. This principle attempts to limit data changes and prevents potential damage from occurring by accident or error by reducing the amount of potential interactions with a resource. Fail-Safe Defaults Design PrincipleThe Fail-Safe Defaults design principle pertains to allowing access to resources based on granted access over access exclusion. This principle is a methodology for allowing resources to be accessed only if explicit access is granted to a user. By default users do not have access to any resources until access has been granted. This approach prevents unauthorized users from gaining access to resource until access is given. Economy of Mechanism Design PrincipleThe Economy of mechanism design principle requires that systems should be designed as simple and small as possible. Design and implementation errors result in unauthorized access to resources that would not be noticed during normal use. Complete Mediation Design PrincipleThe Complete Mediation design principle states that every access to every resource must be validated for authorization. Open Design Design PrincipleThe Open Design Design Principle is a concept that the security of a system and its algorithms should not be dependent on secrecy of its design or implementation Separation Privilege Design PrincipleThe separation privilege design principle requires that all resource approved resource access attempts be granted based on more than a single condition. For example a user should be validated for active status and has access to the specific resource. Least Common Mechanism Design PrincipleThe Least Common Mechanism design principle declares that mechanisms used to access resources should not be shared. Psychological Acceptability Design PrincipleThe Psychological Acceptability design principle refers to security mechanisms not make resources more difficult to access than if the security mechanisms were not present Defense in Depth Design PrincipleThe Defense in Depth design principle is a concept of layering resource access authorization verification in a system reduces the chance of a successful attack. This layered approach to resource authorization requires unauthorized users to circumvent each authorization attempt to gain access to a resource. When designing a system that requires meeting a security quality attribute architects need consider the scope of security needs and the minimum required security qualities. Not every system will need to use all of the basic security design principles but will use one or more in combination based on a company’s and architect’s threshold for system security because the existence of security in an application adds an additional layer to the overall system and can affect performance. That is why the definition of minimum security acceptably is need when a system is design because this quality attributes needs to be factored in with the other system quality attributes so that the system in question adheres to all qualities based on the priorities of the qualities. Resources: Barnum, Sean. Gegick, Michael. (2005). Least Privilege. Retrieved on August 28, 2011 from https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/351-BSI.html Saltzer, Jerry. (2011). BASIC PRINCIPLES OF INFORMATION PROTECTION. Retrieved on August 28, 2011 from  http://web.mit.edu/Saltzer/www/publications/protection/Basic.html Barnum, Sean. Gegick, Michael. (2005). Defense in Depth. Retrieved on August 28, 2011 from  https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/347-BSI.html Bertino, Elisa. (2005). Design Principles for Security. Retrieved on August 28, 2011 from  http://homes.cerias.purdue.edu/~bhargav/cs526/security-9.pdf

    Read the article

  • how to install zope on windows?

    - by dtrosset
    I am currently trying to setup buildbot. buildbot requires twistedmatrix, which in turn requires zope. I cannot manage to setup this zope stuff. I have the full source zope-3.4.0, nothing goes as the readme says. I also have a zip that is an egg. What are Eggs?

    Read the article

  • How can I install both mod-perl2 and mod-php5 on Ubuntu?

    - by RickMeasham
    From Ubuntu's package libary, I find the two modules I need. However: mod-perl2 requires apache2-mpm-worker mod-php5 requires apache2-mpm-prefork The two apache modules are mutually exclusive and ask me to un-install the other in order to install each. Which means I can't get a server running with both mod-perl2 and mod-php5. Any help greatly appreciated.

    Read the article

  • Quickly switch Win7 volume normalization on/off?

    - by romkyns
    Is there some way to quickly toggle the state of volume normalization in Windows 7? When it's off watching movies late is tricky, and when it's on it messes with music in a bad way. It's a great feature, but argh, it requires me to make my way through so many dialogs... Any solution that requires no more than a couple of clicks or keystrokes is welcome - shortcuts, AutoHotkey, tray icon apps.

    Read the article

  • Compiling PHP with cURL and SSL support on Redhat EC5

    - by Kevin Sedgley
    I don't even know where to begin to be honest. Trying to use an external API that requires SSL connections, I discover that SSL in needed on cURL, but this (apparently) requires PHP to be reinstalled and compiled with cURL / SSL support. Not really experienced with compiling PHP, and I'm not sure if our server even has make or build, the only luck I've had is with rpm's before. This really isn't in my job description. Any help most most welcome!

    Read the article

  • What's the difference between one-dash and two-dashes for command prompt parameters?

    - by Pacerier
    I was wondering why is it that some programs requires their command prompt parameters to have two dashes in front whereas some (most) only require one dash in front? For example most programs look like this: relaxer -dtd toc.xml toc_gr.xml toc_jp.xml Whereas some programs look like this: xmllint --valid toc.xml --noout What's the reason that some requires two dashes instead of one? Doesn't it make sense for everyone to stick to one standard (i.e. a single dash will do).

    Read the article

  • Compiling PHP with cURL and SSL support on Redhat EC5

    - by Kevin Sedgley
    I don't even know where to begin to be honest. Trying to use an external API that requires SSL connections, I discover that SSL in needed on cURL, but this (apparently) requires PHP to be reinstalled and compiled with cURL / SSL support. Not really experienced with compiling PHP, and I'm not sure if our server even has make or build, the only luck I've had is with rpm's before. This really isn't in my job description. Any help most most welcome!

    Read the article

  • WPF & RenderTierCapability, what could cause a machine to be dropped from Tier 2 to 0?

    - by Erode
    I'm having an issue on some imaged machines where they will started out on Tier 2 and after some time of use (they are well spec'd kiosk machines, quad-core, Nvidia 550Ti), they drop to Tier 0 and effectively become useless. Restarting the machine doesn't seem to help. This is a problem more than just "missing hardware acceleration" because my application requires D3DImage to function (which requires Tier 2). Thanks for any help!

    Read the article

  • Best practice for Python & Django constants

    - by Dylan Klomparens
    I have a Django model that relies on a tuple. I'm wondering what the best practice is for refering to constants within that tuple for my Django program. Here, for example, I'd like to specify "default=0" as something that is more readable and does not require commenting. Any suggestions? Status = ( (-1, 'Cancelled'), (0, 'Requires attention'), (1, 'Work in progress'), (2, 'Complete'), ) class Task(models.Model): status = models.IntegerField(choices=Status, default=0) # Status is 'Requires attention' (0) by default. EDIT: If possible I'd like to avoid using a number altogether. Somehow using the string 'Requires attention' instead would be more readable.

    Read the article

  • problem with HttpWebRequest.GetResponse perfomance in multithread applcation

    - by Nikita
    I have very bad perfomance of HttpWebRequest.GetResponse method when it is called from different thread for different URLs. For example if we have one thread and execute url1 it requires 3sec. If we ececute url1 and url2 in parallet it requires 10sec, first request ended after 8sec and second after 10sec. If we exutet 10 URLs url1, url2, ... url0 it requires 1min 4 sec!!! first request ended after 50 secs! I use GetResponse method. I tried te set DefaultConnectionLimit but it doesn't help. If use BeginGetRequest/EndGetResponse methods it works very fast but only if this methods called from one thread. If from different it is also very slowly. I need to execute Http requests from many threads at one time. ?an anyone ever encountered such a problem? Thank you for any suggestions.

    Read the article

  • Can't run the ActionBarCompat sample

    - by David Miler
    I am having trouble compiling and running the ActionBarCompat sample of Android 16. I have API level 16 as the build target selected, which seems to build fine, but when I try to debug these errors pop up. Of course I could change the min API level in the manifest, but what would be the point of that? I have made no changes to the sample, so how come it is not working properly? Class requires API level 14 (current min is 3): android.view.ActionProvider SimpleMenuItem.java /ActionBarCompat/src/com/example/android/actionbarcompat line 129 Android Lint Problem Class requires API level 14 (current min is 3): android.view.ActionProvider SimpleMenuItem.java /ActionBarCompat/src/com/example/android/actionbarcompat line 134 Android Lint Problem Class requires API level 14 (current min is 3): android.view.MenuItem.OnActionExpandListener SimpleMenuItem.java /ActionBarCompat/src/com/example/android/actionbarcompat line 155 Android Lint Problem I am thoroughly confused, any help would be appreciated.

    Read the article

  • Will I have legal issues if I attach this 'free' font using @font-face?

    - by janoChen
    *(I'm not sure if StackOverflow is the best place to ask this. But previously, I asked a similar question and it was well received).* I just found this awesome free font (Aller). It is free but it has the following written in the license file: Use by more than 25 Users, or equivalent Website Visitors, is a breach of this Free Licence Agreement, and instead requires a commercial licence. This is what I understand: If it is used in a company with more than 25 employees then it requires commercial license? If the website gets more than 25 visits per month it requires commercial license? Not sure if I got it wrong, but it doesn't make too much sense to me (specially the second statement. I want to use it in my personal portfolio were I provide web design services. Do I need a commercial license?

    Read the article

  • Troubleshoot Perl module installation on Mac OS X

    - by Daniel Standage
    I'm trying to install the Perl module Set::IntervalTree on Mac OS X. I recently installed it today on an Ubuntu box with no problem. I simply started cpan, entered install Set:IntervalTree, and it all worked out. However, the installation failed on Mac OS X--it spits out a huge list of compiler errors (below). How would I troubleshoot this. I don't even know where to begin. cpan[1]> install Set::IntervalTree CPAN: Storable loaded ok (v2.18) Going to read /Users/standage/.cpan/Metadata Database was generated on Fri, 14 Jan 2011 02:58:42 GMT CPAN: YAML loaded ok (v0.72) Going to read /Users/standage/.cpan/build/ ............................................................................DONE Found 1 old build, restored the state of 1 Running install for module 'Set::IntervalTree' Running make for B/BE/BENBOOTH/Set-IntervalTree-0.01.tar.gz CPAN: Digest::SHA loaded ok (v5.45) CPAN: Compress::Zlib loaded ok (v2.008) Checksum for /Users/standage/.cpan/sources/authors/id/B/BE/BENBOOTH/Set-IntervalTree-0.01.tar.gz ok Scanning cache /Users/standage/.cpan/build for sizes ............................................................................DONE x Set-IntervalTree-0.01/ x Set-IntervalTree-0.01/src/ x Set-IntervalTree-0.01/src/Makefile x Set-IntervalTree-0.01/src/interval_tree.h x Set-IntervalTree-0.01/src/test_main.cc x Set-IntervalTree-0.01/lib/ x Set-IntervalTree-0.01/lib/Set/ x Set-IntervalTree-0.01/lib/Set/IntervalTree.pm x Set-IntervalTree-0.01/Changes x Set-IntervalTree-0.01/MANIFEST x Set-IntervalTree-0.01/t/ x Set-IntervalTree-0.01/t/Set-IntervalTree.t x Set-IntervalTree-0.01/typemap x Set-IntervalTree-0.01/perlobject.map x Set-IntervalTree-0.01/IntervalTree.xs x Set-IntervalTree-0.01/Makefile.PL x Set-IntervalTree-0.01/README x Set-IntervalTree-0.01/META.yml CPAN: File::Temp loaded ok (v0.18) CPAN.pm: Going to build B/BE/BENBOOTH/Set-IntervalTree-0.01.tar.gz Checking if your kit is complete... Looks good Writing Makefile for Set::IntervalTree cp lib/Set/IntervalTree.pm blib/lib/Set/IntervalTree.pm AutoSplitting blib/lib/Set/IntervalTree.pm (blib/lib/auto/Set/IntervalTree) /usr/bin/perl /System/Library/Perl/5.10.0/ExtUtils/xsubpp -C++ -typemap /System/Library/Perl/5.10.0/ExtUtils/typemap -typemap perlobject.map -typemap typemap IntervalTree.xs > IntervalTree.xsc && mv IntervalTree.xsc IntervalTree.c g++ -c -Isrc -arch x86_64 -arch i386 -arch ppc -g -pipe -fno-common -DPERL_DARWIN -fno-strict-aliasing -I/usr/local/include -g -O0 -DVERSION=\"0.01\" -DXS_VERSION=\"0.01\" "-I/System/Library/Perl/5.10.0/darwin-thread-multi-2level/CORE" -Isrc IntervalTree.c In file included from /usr/include/c++/4.2.1/bits/basic_ios.h:44, from /usr/include/c++/4.2.1/ios:50, from /usr/include/c++/4.2.1/ostream:45, from /usr/include/c++/4.2.1/iostream:45, from IntervalTree.xs:16: /usr/include/c++/4.2.1/bits/locale_facets.h:4420:40: error: macro "do_open" requires 7 arguments, but only 2 given /usr/include/c++/4.2.1/bits/locale_facets.h:4467:34: error: macro "do_close" requires 2 arguments, but only 1 given /usr/include/c++/4.2.1/bits/locale_facets.h:4486:55: error: macro "do_open" requires 7 arguments, but only 2 given /usr/include/c++/4.2.1/bits/locale_facets.h:4513:23: error: macro "do_close" requires 2 arguments, but only 1 given In file included from /usr/include/c++/4.2.1/bits/locale_facets.h:4599, from /usr/include/c++/4.2.1/bits/basic_ios.h:44, from /usr/include/c++/4.2.1/ios:50, from /usr/include/c++/4.2.1/ostream:45, from /usr/include/c++/4.2.1/iostream:45, from IntervalTree.xs:16: /usr/include/c++/4.2.1/i686-apple-darwin10/x86_64/bits/messages_members.h:58:38: error: macro "do_open" requires 7 arguments, but only 2 given /usr/include/c++/4.2.1/i686-apple-darwin10/x86_64/bits/messages_members.h:67:71: error: macro "do_open" requires 7 arguments, but only 2 given /usr/include/c++/4.2.1/i686-apple-darwin10/x86_64/bits/messages_members.h:78:39: error: macro "do_close" requires 2 arguments, but only 1 given In file included from /usr/include/c++/4.2.1/bits/basic_ios.h:44, from /usr/include/c++/4.2.1/ios:50, from /usr/include/c++/4.2.1/ostream:45, from /usr/include/c++/4.2.1/iostream:45, from IntervalTree.xs:16: /usr/include/c++/4.2.1/bits/locale_facets.h:4486: error: ‘do_open’ declared as a ‘virtual’ field /usr/include/c++/4.2.1/bits/locale_facets.h:4486: error: expected ‘;’ before ‘const’ /usr/include/c++/4.2.1/bits/locale_facets.h:4513: error: variable or field ‘do_close’ declared void /usr/include/c++/4.2.1/bits/locale_facets.h:4513: error: expected ‘;’ before ‘const’ In file included from /usr/include/c++/4.2.1/bits/locale_facets.h:4599, from /usr/include/c++/4.2.1/bits/basic_ios.h:44, from /usr/include/c++/4.2.1/ios:50, from /usr/include/c++/4.2.1/ostream:45, from /usr/include/c++/4.2.1/iostream:45, from IntervalTree.xs:16: /usr/include/c++/4.2.1/i686-apple-darwin10/x86_64/bits/messages_members.h:67: error: expected initializer before ‘const’ /usr/include/c++/4.2.1/i686-apple-darwin10/x86_64/bits/messages_members.h:78: error: expected initializer before ‘const’ In file included from IntervalTree.xs:19: src/interval_tree.h:95: error: type/value mismatch at argument 1 in template parameter list for ‘template<class _Tp, class _Alloc> class std::vector’ src/interval_tree.h:95: error: expected a type, got ‘IntervalTree<T,N>::it_recursion_node’ src/interval_tree.h:95: error: template argument 2 is invalid src/interval_tree.h: In constructor ‘IntervalTree<T, N>::IntervalTree()’: src/interval_tree.h:130: error: expected type-specifier src/interval_tree.h:130: error: expected `;' src/interval_tree.h:135: error: expected type-specifier src/interval_tree.h:135: error: expected `;' src/interval_tree.h:141: error: request for member ‘push_back’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h: In member function ‘void IntervalTree<T, N>::LeftRotate(IntervalTree<T, N>::Node*)’: src/interval_tree.h:178: error: ‘y’ was not declared in this scope src/interval_tree.h: In member function ‘void IntervalTree<T, N>::RightRotate(IntervalTree<T, N>::Node*)’: src/interval_tree.h:240: error: ‘x’ was not declared in this scope src/interval_tree.h: In member function ‘void IntervalTree<T, N>::TreeInsertHelp(IntervalTree<T, N>::Node*)’: src/interval_tree.h:298: error: ‘x’ was not declared in this scope src/interval_tree.h:299: error: ‘y’ was not declared in this scope src/interval_tree.h: In member function ‘typename IntervalTree<T, N>::Node* IntervalTree<T, N>::insert(const T&, N, N)’: src/interval_tree.h:375: error: ‘y’ was not declared in this scope src/interval_tree.h:376: error: ‘x’ was not declared in this scope src/interval_tree.h:377: error: ‘newNode’ was not declared in this scope src/interval_tree.h:379: error: expected type-specifier src/interval_tree.h:379: error: expected `;' src/interval_tree.h: In member function ‘typename IntervalTree<T, N>::Node* IntervalTree<T, N>::GetSuccessorOf(IntervalTree<T, N>::Node*) const’: src/interval_tree.h:450: error: ‘y’ was not declared in this scope src/interval_tree.h: In member function ‘typename IntervalTree<T, N>::Node* IntervalTree<T, N>::GetPredecessorOf(IntervalTree<T, N>::Node*) const’: src/interval_tree.h:483: error: ‘y’ was not declared in this scope src/interval_tree.h: In destructor ‘IntervalTree<T, N>::~IntervalTree()’: src/interval_tree.h:546: error: ‘x’ was not declared in this scope src/interval_tree.h:547: error: type/value mismatch at argument 1 in template parameter list for ‘template<class _Tp, class _Alloc> class std::vector’ src/interval_tree.h:547: error: expected a type, got ‘(IntervalTree<T,N>::Node * <expression error>)’ src/interval_tree.h:547: error: template argument 2 is invalid src/interval_tree.h:547: error: invalid type in declaration before ‘;’ token src/interval_tree.h:551: error: request for member ‘push_back’ in ‘stuffToFree’, which is of non-class type ‘int’ src/interval_tree.h:554: error: request for member ‘push_back’ in ‘stuffToFree’, which is of non-class type ‘int’ src/interval_tree.h:557: error: request for member ‘empty’ in ‘stuffToFree’, which is of non-class type ‘int’ src/interval_tree.h:558: error: request for member ‘back’ in ‘stuffToFree’, which is of non-class type ‘int’ src/interval_tree.h:559: error: request for member ‘pop_back’ in ‘stuffToFree’, which is of non-class type ‘int’ src/interval_tree.h:561: error: request for member ‘push_back’ in ‘stuffToFree’, which is of non-class type ‘int’ src/interval_tree.h:564: error: request for member ‘push_back’ in ‘stuffToFree’, which is of non-class type ‘int’ src/interval_tree.h: In member function ‘void IntervalTree<T, N>::DeleteFixUp(IntervalTree<T, N>::Node*)’: src/interval_tree.h:613: error: ‘w’ was not declared in this scope src/interval_tree.h:614: error: ‘rootLeft’ was not declared in this scope src/interval_tree.h: In member function ‘T IntervalTree<T, N>::remove(IntervalTree<T, N>::Node*)’: src/interval_tree.h:697: error: ‘y’ was not declared in this scope src/interval_tree.h:698: error: ‘x’ was not declared in this scope src/interval_tree.h: In member function ‘std::vector<T, std::allocator<_CharT> > IntervalTree<T, N>::fetch(N, N)’: src/interval_tree.h:819: error: ‘x’ was not declared in this scope src/interval_tree.h:833: error: invalid types ‘int[size_t]’ for array subscript src/interval_tree.h:836: error: request for member ‘push_back’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h:837: error: request for member ‘back’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h:838: error: request for member ‘back’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h:839: error: request for member ‘back’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h:840: error: request for member ‘size’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h:846: error: request for member ‘size’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h:847: error: expected `;' before ‘back’ src/interval_tree.h:848: error: request for member ‘pop_back’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h:850: error: ‘back’ was not declared in this scope src/interval_tree.h:853: error: invalid types ‘int[size_t]’ for array subscript IntervalTree.c: In function ‘void boot_Set__IntervalTree(PerlInterpreter*, CV*)’: IntervalTree.c:365: warning: deprecated conversion from string constant to ‘char*’ src/interval_tree.h: In constructor ‘IntervalTree<T, N>::IntervalTree() [with T = std::tr1::shared_ptr<sv>, N = long int]’: IntervalTree.c:67: instantiated from here src/interval_tree.h:130: error: cannot convert ‘int*’ to ‘IntervalTree<std::tr1::shared_ptr<sv>, long int>::Node*’ in assignment src/interval_tree.h:135: error: cannot convert ‘int*’ to ‘IntervalTree<std::tr1::shared_ptr<sv>, long int>::Node*’ in assignment ...blah blah blah... ...blah blah blah... ...blah blah blah... ...blah blah blah... ...blah blah blah... ...blah blah blah... src/interval_tree.h:848: error: request for member ‘pop_back’ in ‘((IntervalTree<T, N>*)this)->IntervalTree<T, N>::recursionNodeStack’, which is of non-class type ‘int’ src/interval_tree.h:850: error: ‘back’ was not declared in this scope src/interval_tree.h:853: error: invalid types ‘int[size_t]’ for array subscript IntervalTree.c: In function ‘void boot_Set__IntervalTree(PerlInterpreter*, CV*)’: IntervalTree.c:365: warning: deprecated conversion from string constant to ‘char*’ src/interval_tree.h: In constructor ‘IntervalTree<T, N>::IntervalTree() [with T = std::tr1::shared_ptr<sv>, N = long int]’: IntervalTree.c:67: instantiated from here src/interval_tree.h:130: error: cannot convert ‘int*’ to ‘IntervalTree<std::tr1::shared_ptr<sv>, long int>::Node*’ in assignment src/interval_tree.h:135: error: cannot convert ‘int*’ to ‘IntervalTree<std::tr1::shared_ptr<sv>, long int>::Node*’ in assignment src/interval_tree.h: In member function ‘typename IntervalTree<T, N>::Node* IntervalTree<T, N>::insert(const T&, N, N) [with T = std::tr1::shared_ptr<sv>, N = long int]’: IntervalTree.xs:57: instantiated from here src/interval_tree.h:375: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:375: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant src/interval_tree.h:376: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:376: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant src/interval_tree.h:377: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:377: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant src/interval_tree.h: In member function ‘std::vector<T, std::allocator<_CharT> > IntervalTree<T, N>::fetch(N, N) [with T = std::tr1::shared_ptr<sv>, N = long int]’: IntervalTree.xs:65: instantiated from here src/interval_tree.h:819: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:819: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant IntervalTree.xs:65: instantiated from here src/interval_tree.h:847: error: dependent-name ‘IntervalTree<T,N>::it_recursion_node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:847: note: say ‘typename IntervalTree<T,N>::it_recursion_node’ if a type is meant src/interval_tree.h: In destructor ‘IntervalTree<T, N>::~IntervalTree() [with T = std::tr1::shared_ptr<sv>, N = long int]’: IntervalTree.c:205: instantiated from here src/interval_tree.h:546: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:546: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant src/interval_tree.h: In member function ‘void IntervalTree<T, N>::TreeInsertHelp(IntervalTree<T, N>::Node*) [with T = std::tr1::shared_ptr<sv>, N = long int]’: src/interval_tree.h:380: instantiated from ‘typename IntervalTree<T, N>::Node* IntervalTree<T, N>::insert(const T&, N, N) [with T = std::tr1::shared_ptr<sv>, N = long int]’ IntervalTree.xs:57: instantiated from here src/interval_tree.h:298: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:298: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant src/interval_tree.h:299: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:299: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant src/interval_tree.h: In member function ‘void IntervalTree<T, N>::LeftRotate(IntervalTree<T, N>::Node*) [with T = std::tr1::shared_ptr<sv>, N = long int]’: src/interval_tree.h:395: instantiated from ‘typename IntervalTree<T, N>::Node* IntervalTree<T, N>::insert(const T&, N, N) [with T = std::tr1::shared_ptr<sv>, N = long int]’ IntervalTree.xs:57: instantiated from here src/interval_tree.h:178: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:178: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant src/interval_tree.h: In member function ‘void IntervalTree<T, N>::RightRotate(IntervalTree<T, N>::Node*) [with T = std::tr1::shared_ptr<sv>, N = long int]’: src/interval_tree.h:399: instantiated from ‘typename IntervalTree<T, N>::Node* IntervalTree<T, N>::insert(const T&, N, N) [with T = std::tr1::shared_ptr<sv>, N = long int]’ IntervalTree.xs:57: instantiated from here src/interval_tree.h:240: error: dependent-name ‘IntervalTree<T,N>::Node’ is parsed as a non-type, but instantiation yields a type src/interval_tree.h:240: note: say ‘typename IntervalTree<T,N>::Node’ if a type is meant lipo: can't open input file: /var/tmp//ccLthuaw.out (No such file or directory) make: *** [IntervalTree.o] Error 1 BENBOOTH/Set-IntervalTree-0.01.tar.gz make -- NOT OK Running make test Can't test without successful make Running make install Make had returned bad status, install seems impossible Failed during this command: BENBOOTH/Set-IntervalTree-0.01.tar.gz : make NO

    Read the article

  • SimpleMembership, Membership Providers, Universal Providers and the new ASP.NET 4.5 Web Forms and ASP.NET MVC 4 templates

    - by Jon Galloway
    The ASP.NET MVC 4 Internet template adds some new, very useful features which are built on top of SimpleMembership. These changes add some great features, like a much simpler and extensible membership API and support for OAuth. However, the new account management features require SimpleMembership and won't work against existing ASP.NET Membership Providers. I'll start with a summary of top things you need to know, then dig into a lot more detail. Summary: SimpleMembership has been designed as a replacement for traditional the previous ASP.NET Role and Membership provider system SimpleMembership solves common problems people ran into with the Membership provider system and was designed for modern user / membership / storage needs SimpleMembership integrates with the previous membership system, but you can't use a MembershipProvider with SimpleMembership The new ASP.NET MVC 4 Internet application template AccountController requires SimpleMembership and is not compatible with previous MembershipProviders You can continue to use existing ASP.NET Role and Membership providers in ASP.NET 4.5 and ASP.NET MVC 4 - just not with the ASP.NET MVC 4 AccountController The existing ASP.NET Role and Membership provider system remains supported as is part of the ASP.NET core ASP.NET 4.5 Web Forms does not use SimpleMembership; it implements OAuth on top of ASP.NET Membership The ASP.NET Web Site Administration Tool (WSAT) is not compatible with SimpleMembership The following is the result of a few conversations with Erik Porter (PM for ASP.NET MVC) to make sure I had some the overall details straight, combined with a lot of time digging around in ILSpy and Visual Studio's assembly browsing tools. SimpleMembership: The future of membership for ASP.NET The ASP.NET Membership system was introduces with ASP.NET 2.0 back in 2005. It was designed to solve common site membership requirements at the time, which generally involved username / password based registration and profile storage in SQL Server. It was designed with a few extensibility mechanisms - notably a provider system (which allowed you override some specifics like backing storage) and the ability to store additional profile information (although the additional  profile information was packed into a single column which usually required access through the API). While it's sometimes frustrating to work with, it's held up for seven years - probably since it handles the main use case (username / password based membership in a SQL Server database) smoothly and can be adapted to most other needs (again, often frustrating, but it can work). The ASP.NET Web Pages and WebMatrix efforts allowed the team an opportunity to take a new look at a lot of things - e.g. the Razor syntax started with ASP.NET Web Pages, not ASP.NET MVC. The ASP.NET Web Pages team designed SimpleMembership to (wait for it) simplify the task of dealing with membership. As Matthew Osborn said in his post Using SimpleMembership With ASP.NET WebPages: With the introduction of ASP.NET WebPages and the WebMatrix stack our team has really be focusing on making things simpler for the developer. Based on a lot of customer feedback one of the areas that we wanted to improve was the built in security in ASP.NET. So with this release we took that time to create a new built in (and default for ASP.NET WebPages) security provider. I say provider because the new stuff is still built on the existing ASP.NET framework. So what do we call this new hotness that we have created? Well, none other than SimpleMembership. SimpleMembership is an umbrella term for both SimpleMembership and SimpleRoles. Part of simplifying membership involved fixing some common problems with ASP.NET Membership. Problems with ASP.NET Membership ASP.NET Membership was very obviously designed around a set of assumptions: Users and user information would most likely be stored in a full SQL Server database or in Active Directory User and profile information would be optimized around a set of common attributes (UserName, Password, IsApproved, CreationDate, Comment, Role membership...) and other user profile information would be accessed through a profile provider Some problems fall out of these assumptions. Requires Full SQL Server for default cases The default, and most fully featured providers ASP.NET Membership providers (SQL Membership Provider, SQL Role Provider, SQL Profile Provider) require full SQL Server. They depend on stored procedure support, and they rely on SQL Server cache dependencies, they depend on agents for clean up and maintenance. So the main SQL Server based providers don't work well on SQL Server CE, won't work out of the box on SQL Azure, etc. Note: Cory Fowler recently let me know about these Updated ASP.net scripts for use with Microsoft SQL Azure which do support membership, personalization, profile, and roles. But the fact that we need a support page with a set of separate SQL scripts underscores the underlying problem. Aha, you say! Jon's forgetting the Universal Providers, a.k.a. System.Web.Providers! Hold on a bit, we'll get to those... Custom Membership Providers have to work with a SQL-Server-centric API If you want to work with another database or other membership storage system, you need to to inherit from the provider base classes and override a bunch of methods which are tightly focused on storing a MembershipUser in a relational database. It can be done (and you can often find pretty good ones that have already been written), but it's a good amount of work and often leaves you with ugly code that has a bunch of System.NotImplementedException fun since there are a lot of methods that just don't apply. Designed around a specific view of users, roles and profiles The existing providers are focused on traditional membership - a user has a username and a password, some specific roles on the site (e.g. administrator, premium user), and may have some additional "nice to have" optional information that can be accessed via an API in your application. This doesn't fit well with some modern usage patterns: In OAuth and OpenID, the user doesn't have a password Often these kinds of scenarios map better to user claims or rights instead of monolithic user roles For many sites, profile or other non-traditional information is very important and needs to come from somewhere other than an API call that maps to a database blob What would work a lot better here is a system in which you were able to define your users, rights, and other attributes however you wanted and the membership system worked with your model - not the other way around. Requires specific schema, overflow in blob columns I've already mentioned this a few times, but it bears calling out separately - ASP.NET Membership focuses on SQL Server storage, and that storage is based on a very specific database schema. SimpleMembership as a better membership system As you might have guessed, SimpleMembership was designed to address the above problems. Works with your Schema As Matthew Osborn explains in his Using SimpleMembership With ASP.NET WebPages post, SimpleMembership is designed to integrate with your database schema: All SimpleMembership requires is that there are two columns on your users table so that we can hook up to it – an “ID” column and a “username” column. The important part here is that they can be named whatever you want. For instance username doesn't have to be an alias it could be an email column you just have to tell SimpleMembership to treat that as the “username” used to log in. Matthew's example shows using a very simple user table named Users (it could be named anything) with a UserID and Username column, then a bunch of other columns he wanted in his app. Then we point SimpleMemberhip at that table with a one-liner: WebSecurity.InitializeDatabaseFile("SecurityDemo.sdf", "Users", "UserID", "Username", true); No other tables are needed, the table can be named anything we want, and can have pretty much any schema we want as long as we've got an ID and something that we can map to a username. Broaden database support to the whole SQL Server family While SimpleMembership is not database agnostic, it works across the SQL Server family. It continues to support full SQL Server, but it also works with SQL Azure, SQL Server CE, SQL Server Express, and LocalDB. Everything's implemented as SQL calls rather than requiring stored procedures, views, agents, and change notifications. Note that SimpleMembership still requires some flavor of SQL Server - it won't work with MySQL, NoSQL databases, etc. You can take a look at the code in WebMatrix.WebData.dll using a tool like ILSpy if you'd like to see why - there places where SQL Server specific SQL statements are being executed, especially when creating and initializing tables. It seems like you might be able to work with another database if you created the tables separately, but I haven't tried it and it's not supported at this point. Note: I'm thinking it would be possible for SimpleMembership (or something compatible) to run Entity Framework so it would work with any database EF supports. That seems useful to me - thoughts? Note: SimpleMembership has the same database support - anything in the SQL Server family - that Universal Providers brings to the ASP.NET Membership system. Easy to with Entity Framework Code First The problem with with ASP.NET Membership's system for storing additional account information is that it's the gate keeper. That means you're stuck with its schema and accessing profile information through its API. SimpleMembership flips that around by allowing you to use any table as a user store. That means you're in control of the user profile information, and you can access it however you'd like - it's just data. Let's look at a practical based on the AccountModel.cs class in an ASP.NET MVC 4 Internet project. Here I'm adding a Birthday property to the UserProfile class. [Table("UserProfile")] public class UserProfile { [Key] [DatabaseGeneratedAttribute(DatabaseGeneratedOption.Identity)] public int UserId { get; set; } public string UserName { get; set; } public DateTime Birthday { get; set; } } Now if I want to access that information, I can just grab the account by username and read the value. var context = new UsersContext(); var username = User.Identity.Name; var user = context.UserProfiles.SingleOrDefault(u => u.UserName == username); var birthday = user.Birthday; So instead of thinking of SimpleMembership as a big membership API, think of it as something that handles membership based on your user database. In SimpleMembership, everything's keyed off a user row in a table you define rather than a bunch of entries in membership tables that were out of your control. How SimpleMembership integrates with ASP.NET Membership Okay, enough sales pitch (and hopefully background) on why things have changed. How does this affect you? Let's start with a diagram to show the relationship (note: I've simplified by removing a few classes to show the important relationships): So SimpleMembershipProvider is an implementaiton of an ExtendedMembershipProvider, which inherits from MembershipProvider and adds some other account / OAuth related things. Here's what ExtendedMembershipProvider adds to MembershipProvider: The important thing to take away here is that a SimpleMembershipProvider is a MembershipProvider, but a MembershipProvider is not a SimpleMembershipProvider. This distinction is important in practice: you cannot use an existing MembershipProvider (including the Universal Providers found in System.Web.Providers) with an API that requires a SimpleMembershipProvider, including any of the calls in WebMatrix.WebData.WebSecurity or Microsoft.Web.WebPages.OAuth.OAuthWebSecurity. However, that's as far as it goes. Membership Providers still work if you're accessing them through the standard Membership API, and all of the core stuff  - including the AuthorizeAttribute, role enforcement, etc. - will work just fine and without any change. Let's look at how that affects you in terms of the new templates. Membership in the ASP.NET MVC 4 project templates ASP.NET MVC 4 offers six Project Templates: Empty - Really empty, just the assemblies, folder structure and a tiny bit of basic configuration. Basic - Like Empty, but with a bit of UI preconfigured (css / images / bundling). Internet - This has both a Home and Account controller and associated views. The Account Controller supports registration and login via either local accounts and via OAuth / OpenID providers. Intranet - Like the Internet template, but it's preconfigured for Windows Authentication. Mobile - This is preconfigured using jQuery Mobile and is intended for mobile-only sites. Web API - This is preconfigured for a service backend built on ASP.NET Web API. Out of these templates, only one (the Internet template) uses SimpleMembership. ASP.NET MVC 4 Basic template The Basic template has configuration in place to use ASP.NET Membership with the Universal Providers. You can see that configuration in the ASP.NET MVC 4 Basic template's web.config: <profile defaultProvider="DefaultProfileProvider"> <providers> <add name="DefaultProfileProvider" type="System.Web.Providers.DefaultProfileProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </profile> <membership defaultProvider="DefaultMembershipProvider"> <providers> <add name="DefaultMembershipProvider" type="System.Web.Providers.DefaultMembershipProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="false" requiresUniqueEmail="false" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10" applicationName="/" /> </providers> </membership> <roleManager defaultProvider="DefaultRoleProvider"> <providers> <add name="DefaultRoleProvider" type="System.Web.Providers.DefaultRoleProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </roleManager> <sessionState mode="InProc" customProvider="DefaultSessionProvider"> <providers> <add name="DefaultSessionProvider" type="System.Web.Providers.DefaultSessionStateProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" /> </providers> </sessionState> This means that it's business as usual for the Basic template as far as ASP.NET Membership works. ASP.NET MVC 4 Internet template The Internet template has a few things set up to bootstrap SimpleMembership: \Models\AccountModels.cs defines a basic user account and includes data annotations to define keys and such \Filters\InitializeSimpleMembershipAttribute.cs creates the membership database using the above model, then calls WebSecurity.InitializeDatabaseConnection which verifies that the underlying tables are in place and marks initialization as complete (for the application's lifetime) \Controllers\AccountController.cs makes heavy use of OAuthWebSecurity (for OAuth account registration / login / management) and WebSecurity. WebSecurity provides account management services for ASP.NET MVC (and Web Pages) WebSecurity can work with any ExtendedMembershipProvider. There's one in the box (SimpleMembershipProvider) but you can write your own. Since a standard MembershipProvider is not an ExtendedMembershipProvider, WebSecurity will throw exceptions if the default membership provider is a MembershipProvider rather than an ExtendedMembershipProvider. Practical example: Create a new ASP.NET MVC 4 application using the Internet application template Install the Microsoft ASP.NET Universal Providers for LocalDB NuGet package Run the application, click on Register, add a username and password, and click submit You'll get the following execption in AccountController.cs::Register: To call this method, the "Membership.Provider" property must be an instance of "ExtendedMembershipProvider". This occurs because the ASP.NET Universal Providers packages include a web.config transform that will update your web.config to add the Universal Provider configuration I showed in the Basic template example above. When WebSecurity tries to use the configured ASP.NET Membership Provider, it checks if it can be cast to an ExtendedMembershipProvider before doing anything else. So, what do you do? Options: If you want to use the new AccountController, you'll either need to use the SimpleMembershipProvider or another valid ExtendedMembershipProvider. This is pretty straightforward. If you want to use an existing ASP.NET Membership Provider in ASP.NET MVC 4, you can't use the new AccountController. You can do a few things: Replace  the AccountController.cs and AccountModels.cs in an ASP.NET MVC 4 Internet project with one from an ASP.NET MVC 3 application (you of course won't have OAuth support). Then, if you want, you can go through and remove other things that were built around SimpleMembership - the OAuth partial view, the NuGet packages (e.g. the DotNetOpenAuthAuth package, etc.) Use an ASP.NET MVC 4 Internet application template and add in a Universal Providers NuGet package. Then copy in the AccountController and AccountModel classes. Create an ASP.NET MVC 3 project and upgrade it to ASP.NET MVC 4 using the steps shown in the ASP.NET MVC 4 release notes. None of these are particularly elegant or simple. Maybe we (or just me?) can do something to make this simpler - perhaps a NuGet package. However, this should be an edge case - hopefully the cases where you'd need to create a new ASP.NET but use legacy ASP.NET Membership Providers should be pretty rare. Please let me (or, preferably the team) know if that's an incorrect assumption. Membership in the ASP.NET 4.5 project template ASP.NET 4.5 Web Forms took a different approach which builds off ASP.NET Membership. Instead of using the WebMatrix security assemblies, Web Forms uses Microsoft.AspNet.Membership.OpenAuth assembly. I'm no expert on this, but from a bit of time in ILSpy and Visual Studio's (very pretty) dependency graphs, this uses a Membership Adapter to save OAuth data into an EF managed database while still running on top of ASP.NET Membership. Note: There may be a way to use this in ASP.NET MVC 4, although it would probably take some plumbing work to hook it up. How does this fit in with Universal Providers (System.Web.Providers)? Just to summarize: Universal Providers are intended for cases where you have an existing ASP.NET Membership Provider and you want to use it with another SQL Server database backend (other than SQL Server). It doesn't require agents to handle expired session cleanup and other background tasks, it piggybacks these tasks on other calls. Universal Providers are not really, strictly speaking, universal - at least to my way of thinking. They only work with databases in the SQL Server family. Universal Providers do not work with Simple Membership. The Universal Providers packages include some web config transforms which you would normally want when you're using them. What about the Web Site Administration Tool? Visual Studio includes tooling to launch the Web Site Administration Tool (WSAT) to configure users and roles in your application. WSAT is built to work with ASP.NET Membership, and is not compatible with Simple Membership. There are two main options there: Use the WebSecurity and OAuthWebSecurity API to manage the users and roles Create a web admin using the above APIs Since SimpleMembership runs on top of your database, you can update your users as you would any other data - via EF or even in direct database edits (in development, of course)

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • BizTalk Server 2009 - Architecture Options

    - by StuartBrierley
    I recently needed to put forward a proposal for a BizTalk 2009 implementation and as a part of this needed to describe some of the basic architecture options available for consideration.  While I already had an idea of the type of environment that I would be looking to recommend, I felt that presenting a range of options while trying to explain some of the strengths and weaknesses of those options was a good place to start.  These outline architecture options should be equally valid for any version of BizTalk Server from 2004, through 2006 and R2, up to 2009.   The following diagram shows a crude representation of the common implementation options to consider when designing a BizTalk environment.         Each of these options provides differing levels of resilience in the case of failure or disaster, with the later options also providing more scope for performance tuning and scalability.   Some of the options presented above make use of clustering. Clustering may best be described as a technology that automatically allows one physical server to take over the tasks and responsibilities of another physical server that has failed. Given that all computer hardware and software will eventually fail, the goal of clustering is to ensure that mission-critical applications will have little or no downtime when such a failure occurs. Clustering can also be configured to provide load balancing, which should generally lead to performance gains and increased capacity and throughput.   (A) Single Servers   This option is the most basic BizTalk implementation that should be considered. It involves the deployment of a single BizTalk server in conjunction with a single SQL server. This configuration does not provide for any resilience in the case of the failure of either server. It is however the cheapest and easiest to implement option of those available.   Using a single BizTalk server does not provide for the level of performance tuning that is otherwise available when using more than one BizTalk server in a cluster.   The common edition of BizTalk used in single server implementations is the standard edition. It should be noted however that if future demand requires increased capacity for a solution, this BizTalk edition is limited to scaling up the implementation and not scaling out the number of servers in use. Any need to scale out the solution would require an upgrade to the enterprise edition of BizTalk.   (B) Single BizTalk Server with Clustered SQL Servers   This option uses a single BizTalk server with a cluster of SQL servers. By utilising clustered SQL servers we can ensure that there is some resilience to the implementation in respect of the databases that BizTalk relies on to operate. The clustering of two SQL servers is possible with the standard edition but to go beyond this would require the enterprise level edition. While this option offers improved resilience over option (A) it does still present a potential single point of failure at the BizTalk server.   Using a single BizTalk server does not provide for the level of performance tuning that is otherwise available when using more than one BizTalk server in a cluster.   The common edition of BizTalk used in single server implementations is the standard edition. It should be noted however that if future demand requires increased capacity for a solution, this BizTalk edition is limited to scaling up the implementation and not scaling out the number of servers in use. You are also unable to take advantage of multiple message boxes, which would allow us to balance the SQL load in the event of any bottlenecks in this area of the implementation. Any need to scale out the solution would require an upgrade to the enterprise edition of BizTalk.   (C) Clustered BizTalk Servers with Clustered SQL Servers   This option makes use of a cluster of BizTalk servers with a cluster of SQL servers to offer high availability and resilience in the case of failure of either of the server types involved. Clustering of BizTalk is only available with the enterprise edition of the product. Clustering of two SQL servers is possible with the standard edition but to go beyond this would require the enterprise level edition.    The use of a BizTalk cluster also provides for the ability to balance load across the servers and gives more scope for performance tuning any implemented solutions. It is also possible to add more BizTalk servers to an existing cluster, giving scope for scaling out the solution as future demand requires.   This might be seen as the middle cost option, providing a good level of protection in the case of failure, a decent level of future proofing, but at a higher cost than the single BizTalk server implementations.   (D) Clustered BizTalk Servers with Clustered SQL Servers – with disaster recovery/service continuity   This option is similar to that offered by (C) and makes use of a cluster of BizTalk servers with a cluster of SQL servers to offer high availability and resilience in case of failure of either of the server types involved. Clustering of BizTalk is only available with the enterprise edition of the product. Clustering of two SQL servers is possible with the standard edition but to go beyond this would require the enterprise level edition.    As with (C) the use of a BizTalk cluster also provides for the ability to balance load across the servers and gives more scope for performance tuning the implemented solution. It is also possible to add more BizTalk servers to an existing cluster, giving scope for scaling the solution out as future demand requires.   In this scenario however, we would be including some form of disaster recovery or service continuity. An example of this would be making use of multiple sites, with the BizTalk server cluster operating across sites to offer resilience in case of the loss of one or more sites. In this scenario there are options available for the SQL implementation depending on the network implementation; making use of either one cluster per site or a single SQL cluster across the network. A multi-site SQL implementation would require some form of data replication across the sites involved.   This is obviously an expensive and complex option, but does provide an extraordinary amount of protection in the case of failure.

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >