Search Results

Search found 13880 results on 556 pages for 'explicit interface'.

Page 100/556 | < Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >

  • How to remove unwanted charecters using split in tcl

    - by Mallikarjunarao
    Here is an example Interface {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} IP-Address {} {} {} {} {} OK? Method Status {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {Protocol FastEthernet0/0} {} {} {} {} {} {} {} {} {} {} {} unassigned {} {} {} {} {} YES unset {} administratively down down {} {} {} { FastEthernet0/1} {} {} {} {} {} {} {} {} {} {} {} unassigned {} {} {} {} {} YES unset {} administratively down down I want remove {} in this. I assumed all the above string interface variable set interface [string trimright [string trimleft $interface "{}"] "{}"] but it doesn't work. How to remove the {} in my example?

    Read the article

  • byte and short data types in Java can accept the value outside the range by explicit cast. The higher data types however can not. Why?

    - by Lion
    Let's consider the following expressions in Java. byte a = 32; byte b = (byte) 250; int i = a + b; This is valid in Java even though the expression byte b = (byte) 250; is forced to assign the value 250 to b which is outside the range of the type byte. Therefore, b is assigned -6 and consequently i is assigned the value 26 through the statement int i = a + b;. The same thing is possible with short as follows. short s1=(short) 567889999; Although the specified value is outside the range of short, this statement is legal. The same thing is however wrong with higher data types such int, double, folat etc and hence, the following case is invalid and causes a compile-time error. int z=2147483648; This is illegal, since the range of int in Java is from -2,147,483,648 to 2147483647 which the above statement exceeds and issues a compile-time error. Why is such not wrong with byte and short data types in Java?

    Read the article

  • Why are interfaces unusable in PHP?

    - by streetparade
    I mean an interface definition without defining the return type makes it unusable? This makes more Clear Interface run { public function getInteger(); } class MyString implements run { public function myNumber() { } public function getInteger() { return "Not a number"; } } In Java every Interface has a return type like Integer,String,Void I know that PHP is unfortunately a loosly typed Language but isnt there a Solution for that Problem? Is it Possible to defining a Interface with a Return type like Integer?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Static route works on one computer, not the other

    - by Dan
    I have been struggling with this for a couple days now, maybe I just need some people with a fresh perspective to figure out what the issue is. Basically I have a bunch of computers that are being routed through a specific gateway in order to access a web page that is hosted internally on a separate subnet. I set up static routes on all of the computers, and they all work... except one. Here's what a route print -4 looks like for a working computer (Windows 7): =========================================================================== Interface List 14...xx xx xx xx xx xx ......Broadcom 802.11n Network Adapter 11...xx xx xx xx xx xx ......Realtek PCIe GBE Family Controller 1...........................Software Loopback Interface 1 12...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter 13...00 00 00 00 00 00 00 e0 Microsoft 6to4 Adapter 17...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface =========================================================================== IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 10.xxx.xxx.230 10.xxx.xxx.94 20 10.zzz.zzz.0 255.255.255.0 10.xxx.xxx.147 10.xxx.xxx.94 21 10.xxx.xxx.0 255.255.255.0 On-link 10.xxx.xxx.94 276 10.xxx.xxx.94 255.255.255.255 On-link 10.xxx.xxx.94 276 10.xxx.xxx.255 255.255.255.255 On-link 10.xxx.xxx.94 276 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 10.xxx.xxx.94 276 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 10.xxx.xxx.94 276 =========================================================================== Persistent Routes: Network Address Netmask Gateway Address Metric 10.zzz.zzz.0 255.255.255.0 10.xxx.xxx.147 1 =========================================================================== And here's a route print -4 from the station that doesn't work (also Windows 7): =========================================================================== Interface List 10...xx xx xx xx xx xx ......Realtek PCIe GBE Family Controller 1...........................Software Loopback Interface 1 12...00 00 00 00 00 00 00 e0 Microsoft 6to4 Adapter 14...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter #2 16...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface =========================================================================== IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 10.xxx.xxx.230 10.xxx.xxx.132 276 10.zzz.zzz.0 255.255.255.0 10.xxx.xxx.147 10.xxx.xxx.132 21 10.xxx.xxx.0 255.255.255.0 On-link 10.xxx.xxx.132 276 10.xxx.xxx.132 255.255.255.255 On-link 10.xxx.xxx.132 276 10.xxx.xxx.255 255.255.255.255 On-link 10.xxx.xxx.132 276 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 10.xxx.xxx.132 276 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 10.xxx.xxx.132 276 =========================================================================== Persistent Routes: Network Address Netmask Gateway Address Metric 10.zzz.zzz.0 255.255.255.0 10.xxx.xxx.147 1 =========================================================================== Both of these stations are running Windows 7. So essentially what I am trying to do here is route all traffic to the 10.zzz.zzz.0 subnet through the 10.xxx.xxx.147 gateway. Everything else should go through the 10.xxx.xxx.230 gateway. This is the intended behavior, and again it is working everywhere but that one station. I noticed that the Active Route metric costs differ between the two stations, but I am new to the routing table and I am not sure how that is impacting the behavior. I hope I have been able to explain the situation clearly. Any help would be much appreciated. I can provide any additional information if needed!

    Read the article

  • Cisco Pix how to add an additional block of static ip addresses for nat?

    - by Scott Szretter
    I have a pix 501 with 5 static ip addresses. My isp just gave me 5 more. I am trying to figure out how to add the new block and then how to nat/open at least one of them to an inside machine. So far, I named a new interface "intf2", ip range is 71.11.11.58 - 62 (gateway should 71.11.11.57) imgsvr is the machine I want to nat to one of the (71.11.11.59) new ip addresses. mail (.123) is an example of a machine that is mapped to the current existing 5 ip block (96.11.11.121 gate / 96.11.11.122-127) and working fine. Building configuration... : Saved : PIX Version 6.3(4) interface ethernet0 auto interface ethernet0 vlan1 logical interface ethernet1 auto nameif ethernet0 outside security0 nameif ethernet1 inside security100 nameif vlan1 intf2 security1 enable password xxxxxxxxx encrypted passwd xxxxxxxxx encrypted hostname xxxxxxxPIX domain-name xxxxxxxxxxx no fixup protocol dns fixup protocol ftp 21 fixup protocol h323 h225 1720 fixup protocol h323 ras 1718-1719 fixup protocol http 80 fixup protocol rsh 514 fixup protocol rtsp 554 fixup protocol sip 5060 fixup protocol sip udp 5060 fixup protocol skinny 2000 no fixup protocol smtp 25 fixup protocol sqlnet 1521 fixup protocol tftp 69 names ...snip... name 192.168.10.13 mail name 192.168.10.29 imgsvr object-group network vpn1 network-object mail 255.255.255.255 access-list outside_access_in permit tcp any host 96.11.11.124 eq www access-list outside_access_in permit tcp any host 96.11.11.124 eq https access-list outside_access_in permit tcp any host 96.11.11.124 eq 3389 access-list outside_access_in permit tcp any host 96.11.11.123 eq https access-list outside_access_in permit tcp any host 96.11.11.123 eq www access-list outside_access_in permit tcp any host 96.11.11.125 eq smtp access-list outside_access_in permit tcp any host 96.11.11.125 eq https access-list outside_access_in permit tcp any host 96.11.11.125 eq 10443 access-list outside_access_in permit tcp any host 96.11.11.126 eq smtp access-list outside_access_in permit tcp any host 96.11.11.126 eq https access-list outside_access_in permit tcp any host 96.11.11.126 eq 10443 access-list outside_access_in deny ip any any access-list inside_nat0_outbound permit ip 192.168.0.0 255.255.0.0 IPPool2 255.255.255.0 access-list inside_nat0_outbound permit ip 172.17.0.0 255.255.0.0 IPPool2 255.255.255.0 access-list inside_nat0_outbound permit ip 172.16.0.0 255.255.0.0 IPPool2 255.255.255.0 ...snip... access-list inside_access_in deny tcp any any eq smtp access-list inside_access_in permit ip any any pager lines 24 logging on logging buffered notifications mtu outside 1500 mtu inside 1500 ip address outside 96.11.11.122 255.255.255.248 ip address inside 192.168.10.15 255.255.255.0 ip address intf2 71.11.11.58 255.255.255.248 ip audit info action alarm ip audit attack action alarm pdm location exchange 255.255.255.255 inside pdm location mail 255.255.255.255 inside pdm location IPPool2 255.255.255.0 outside pdm location 96.11.11.122 255.255.255.255 inside pdm location 192.168.10.1 255.255.255.255 inside pdm location 192.168.10.6 255.255.255.255 inside pdm location mail-gate1 255.255.255.255 inside pdm location mail-gate2 255.255.255.255 inside pdm location imgsvr 255.255.255.255 inside pdm location 71.11.11.59 255.255.255.255 intf2 pdm logging informational 100 pdm history enable arp timeout 14400 global (outside) 1 interface global (outside) 2 96.11.11.123 global (intf2) 3 interface global (intf2) 4 71.11.11.59 nat (inside) 0 access-list inside_nat0_outbound nat (inside) 2 mail 255.255.255.255 0 0 nat (inside) 1 0.0.0.0 0.0.0.0 0 0 static (inside,outside) tcp 96.11.11.123 smtp mail smtp netmask 255.255.255.255 0 0 static (inside,outside) tcp 96.11.11.123 https mail https netmask 255.255.255.255 0 0 static (inside,outside) tcp 96.11.11.123 www mail www netmask 255.255.255.255 0 0 static (inside,outside) 96.11.11.124 ts netmask 255.255.255.255 0 0 static (inside,outside) 96.11.11.126 mail-gate2 netmask 255.255.255.255 0 0 static (inside,outside) 96.11.11.125 mail-gate1 netmask 255.255.255.255 0 0 access-group outside_access_in in interface outside access-group inside_access_in in interface inside route outside 0.0.0.0 0.0.0.0 96.11.11.121 1 route intf2 0.0.0.0 0.0.0.0 71.11.11.57 2 timeout xlate 0:05:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 rpc 0:10:00 h225 1:00:00 timeout h323 0:05:00 mgcp 0:05:00 sip 0:30:00 sip_media 0:02:00 timeout uauth 0:05:00 absolute floodguard enable ...snip... : end [OK] Thanks!

    Read the article

  • Proliant server will not accept new hard disks in RAID 1+0?

    - by Leigh
    I have a HP ProLiant DL380 G5, I have two logical drives configured with RAID. I have one logical drive RAID 1+0 with two 72 gb 10k sas 1 port spare no 376597-001. I had one hard disk fail and ordered a replacement. The configuration utility showed error and would not rebuild the RAID. I presumed a hard disk fault and ordered a replacement again. In the mean time I put the original failed disk back in the server and this started rebuilding. Currently shows ok status however in the log I can see hardware errors. The new disk has come and I again have the same problem of not accepting the hard disk. I have updated the P400 controller with the latest firmware 7.24 , but still no luck. The only difference I can see is the original drive has firmware 0103 (same as the RAID drive) and the new one has HPD2. Any advice would be appreciated. Thanks in advance Logs from server ctrl all show config Smart Array P400 in Slot 1 (sn: PAFGK0P9VWO0UQ) array A (SAS, Unused Space: 0 MB) logicaldrive 1 (68.5 GB, RAID 1, Interim Recovery Mode) physicaldrive 2I:1:1 (port 2I:box 1:bay 1, SAS, 73.5 GB, OK) physicaldrive 2I:1:2 (port 2I:box 1:bay 2, SAS, 72 GB, Failed array B (SAS, Unused Space: 0 MB) logicaldrive 2 (558.7 GB, RAID 5, OK) physicaldrive 1I:1:5 (port 1I:box 1:bay 5, SAS, 300 GB, OK) physicaldrive 2I:1:3 (port 2I:box 1:bay 3, SAS, 300 GB, OK) physicaldrive 2I:1:4 (port 2I:box 1:bay 4, SAS, 300 GB, OK) ctrl all show config detail Smart Array P400 in Slot 1 Bus Interface: PCI Slot: 1 Serial Number: PAFGK0P9VWO0UQ Cache Serial Number: PA82C0J9VWL8I7 RAID 6 (ADG) Status: Disabled Controller Status: OK Hardware Revision: E Firmware Version: 7.24 Rebuild Priority: Medium Expand Priority: Medium Surface Scan Delay: 15 secs Surface Scan Mode: Idle Wait for Cache Room: Disabled Surface Analysis Inconsistency Notification: Disabled Post Prompt Timeout: 0 secs Cache Board Present: True Cache Status: OK Cache Status Details: A cache error was detected. Run more information. Cache Ratio: 100% Read / 0% Write Drive Write Cache: Disabled Total Cache Size: 256 MB Total Cache Memory Available: 208 MB No-Battery Write Cache: Disabled Battery/Capacitor Count: 0 SATA NCQ Supported: True Array: A Interface Type: SAS Unused Space: 0 MB Status: Failed Physical Drive Array Type: Data One of the drives on this array have failed or has Logical Drive: 1 Size: 68.5 GB Fault Tolerance: RAID 1 Heads: 255 Sectors Per Track: 32 Cylinders: 17594 Strip Size: 128 KB Full Stripe Size: 128 KB Status: Interim Recovery Mode Caching: Enabled Unique Identifier: 600508B10010503956574F305551 Disk Name: \\.\PhysicalDrive0 Mount Points: C:\ 68.5 GB Logical Drive Label: A0100539PAFGK0P9VWO0UQ0E93 Mirror Group 0: physicaldrive 2I:1:2 (port 2I:box 1:bay 2, S Mirror Group 1: physicaldrive 2I:1:1 (port 2I:box 1:bay 1, S Drive Type: Data physicaldrive 2I:1:1 Port: 2I Box: 1 Bay: 1 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 73.5 GB Rotational Speed: 10000 Firmware Revision: 0103 Serial Number: B379P8C006RK Model: HP DG072A9B7 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 2I:1:2 Port: 2I Box: 1 Bay: 2 Status: Failed Drive Type: Data Drive Interface Type: SAS Size: 72 GB Rotational Speed: 15000 Firmware Revision: HPD9 Serial Number: D5A1PCA04SL01244 Model: HP EH0072FARUA PHY Count: 2 PHY Transfer Rate: Unknown, Unknown Array: B Interface Type: SAS Unused Space: 0 MB Status: OK Array Type: Data Logical Drive: 2 Size: 558.7 GB Fault Tolerance: RAID 5 Heads: 255 Sectors Per Track: 32 Cylinders: 65535 Strip Size: 64 KB Full Stripe Size: 128 KB Status: OK Caching: Enabled Parity Initialization Status: Initialization Co Unique Identifier: 600508B10010503956574F305551 Disk Name: \\.\PhysicalDrive1 Mount Points: E:\ 558.7 GB Logical Drive Label: AF14FD12PAFGK0P9VWO0UQD007 Drive Type: Data physicaldrive 1I:1:5 Port: 1I Box: 1 Bay: 5 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 300 GB Rotational Speed: 10000 Firmware Revision: HPD4 Serial Number: 3SE07QH300009923X1X3 Model: HP DG0300BALVP Current Temperature (C): 32 Maximum Temperature (C): 45 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 2I:1:3 Port: 2I Box: 1 Bay: 3 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 300 GB Rotational Speed: 10000 Firmware Revision: HPD4 Serial Number: 3SE0AHVH00009924P8F3 Model: HP DG0300BALVP Current Temperature (C): 34 Maximum Temperature (C): 47 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 2I:1:4 Port: 2I Box: 1 Bay: 4 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 300 GB Rotational Speed: 10000 Firmware Revision: HPD4 Serial Number: 3SE08NAK00009924KWD6 Model: HP DG0300BALVP Current Temperature (C): 35 Maximum Temperature (C): 47 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown

    Read the article

  • Setting up a VPN connection to Amazon VPC - routing

    - by Keeno
    I am having some real issues setting up a VPN between out office and AWS VPC. The "tunnels" appear to be up, however I don't know if they are configured correctly. The device I am using is a Netgear VPN Firewall - FVS336GV2 If you see in the attached config downloaded from VPC (#3 Tunnel Interface Configuration), it gives me some "inside" addresses for the tunnel. When setting up the IPsec tunnels do I use the inside tunnel IP's (e.g. 169.254.254.2/30) or do I use my internal network subnet (10.1.1.0/24) I have tried both, when I tried the local network (10.1.1.x) the tracert stops at the router. When I tried with the "inside" ips, the tracert to the amazon VPC (10.0.0.x) goes out over the internet. this all leads me to the next question, for this router, how do I set up stage #4, the static next hop? What are these seemingly random "inside" addresses and where did amazon generate them from? 169.254.254.x seems odd? With a device like this, is the VPN behind the firewall? I have tweaked any IP addresses below so that they are not "real". I am fully aware, this is probably badly worded. Please if there is any further info/screenshots that will help, let me know. Amazon Web Services Virtual Private Cloud IPSec Tunnel #1 ================================================================================ #1: Internet Key Exchange Configuration Configure the IKE SA as follows - Authentication Method : Pre-Shared Key - Pre-Shared Key : --- - Authentication Algorithm : sha1 - Encryption Algorithm : aes-128-cbc - Lifetime : 28800 seconds - Phase 1 Negotiation Mode : main - Perfect Forward Secrecy : Diffie-Hellman Group 2 #2: IPSec Configuration Configure the IPSec SA as follows: - Protocol : esp - Authentication Algorithm : hmac-sha1-96 - Encryption Algorithm : aes-128-cbc - Lifetime : 3600 seconds - Mode : tunnel - Perfect Forward Secrecy : Diffie-Hellman Group 2 IPSec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We recommend configuring DPD on your endpoint as follows: - DPD Interval : 10 - DPD Retries : 3 IPSec ESP (Encapsulating Security Payload) inserts additional headers to transmit packets. These headers require additional space, which reduces the amount of space available to transmit application data. To limit the impact of this behavior, we recommend the following configuration on your Customer Gateway: - TCP MSS Adjustment : 1387 bytes - Clear Don't Fragment Bit : enabled - Fragmentation : Before encryption #3: Tunnel Interface Configuration Your Customer Gateway must be configured with a tunnel interface that is associated with the IPSec tunnel. All traffic transmitted to the tunnel interface is encrypted and transmitted to the Virtual Private Gateway. The Customer Gateway and Virtual Private Gateway each have two addresses that relate to this IPSec tunnel. Each contains an outside address, upon which encrypted traffic is exchanged. Each also contain an inside address associated with the tunnel interface. The Customer Gateway outside IP address was provided when the Customer Gateway was created. Changing the IP address requires the creation of a new Customer Gateway. The Customer Gateway inside IP address should be configured on your tunnel interface. Outside IP Addresses: - Customer Gateway : 217.33.22.33 - Virtual Private Gateway : 87.222.33.42 Inside IP Addresses - Customer Gateway : 169.254.254.2/30 - Virtual Private Gateway : 169.254.254.1/30 Configure your tunnel to fragment at the optimal size: - Tunnel interface MTU : 1436 bytes #4: Static Routing Configuration: To route traffic between your internal network and your VPC, you will need a static route added to your router. Static Route Configuration Options: - Next hop : 169.254.254.1 You should add static routes towards your internal network on the VGW. The VGW will then send traffic towards your internal network over the tunnels. IPSec Tunnel #2 ================================================================================ #1: Internet Key Exchange Configuration Configure the IKE SA as follows - Authentication Method : Pre-Shared Key - Pre-Shared Key : --- - Authentication Algorithm : sha1 - Encryption Algorithm : aes-128-cbc - Lifetime : 28800 seconds - Phase 1 Negotiation Mode : main - Perfect Forward Secrecy : Diffie-Hellman Group 2 #2: IPSec Configuration Configure the IPSec SA as follows: - Protocol : esp - Authentication Algorithm : hmac-sha1-96 - Encryption Algorithm : aes-128-cbc - Lifetime : 3600 seconds - Mode : tunnel - Perfect Forward Secrecy : Diffie-Hellman Group 2 IPSec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We recommend configuring DPD on your endpoint as follows: - DPD Interval : 10 - DPD Retries : 3 IPSec ESP (Encapsulating Security Payload) inserts additional headers to transmit packets. These headers require additional space, which reduces the amount of space available to transmit application data. To limit the impact of this behavior, we recommend the following configuration on your Customer Gateway: - TCP MSS Adjustment : 1387 bytes - Clear Don't Fragment Bit : enabled - Fragmentation : Before encryption #3: Tunnel Interface Configuration Outside IP Addresses: - Customer Gateway : 217.33.22.33 - Virtual Private Gateway : 87.222.33.46 Inside IP Addresses - Customer Gateway : 169.254.254.6/30 - Virtual Private Gateway : 169.254.254.5/30 Configure your tunnel to fragment at the optimal size: - Tunnel interface MTU : 1436 bytes #4: Static Routing Configuration: Static Route Configuration Options: - Next hop : 169.254.254.5 You should add static routes towards your internal network on the VGW. The VGW will then send traffic towards your internal network over the tunnels. EDIT #1 After writing this post, I continued to fiddle and something started to work, just not very reliably. The local IPs to use when setting up the tunnels where indeed my network subnets. Which further confuses me over what these "inside" IP addresses are for. The problem is, results are not consistent what so ever. I can "sometimes" ping, I can "sometimes" RDP using the VPN. Sometimes, Tunnel 1 or Tunnel 2 can be up or down. When I came back into work today, Tunnel 1 was down, so I deleted it and re-created it from scratch. Now I cant ping anything, but Amazon AND the router are telling me tunnel 1/2 are fine. I guess the router/vpn hardware I have just isnt up to the job..... EDIT #2 Now Tunnel 1 is up, Tunnel 2 is down (I didn't change any settings) and I can ping/rdp again. EDIT #3 Screenshot of route table that the router has built up. Current state (tunnel 1 still up and going string, 2 is still down and wont re-connect)

    Read the article

  • Set up linux box for hosting a-z

    - by microchasm
    I am in the process of reinstalling the OS on a machine that will be used to host a couple of apps for our business. The apps will be local only; access from external clients will be via vpn only. The prior setup used a hosting control panel (Plesk) for most of the admin, and I was looking at using another similar piece of software for the reinstall - but I figured I should finally learn how it all works. I can do most of the things the software would do for me, but am unclear on the symbiosis of it all. This is all an attempt to further distance myself from the land of Configuration Programmer/Programmer, if at all possible. I can't find a full walkthrough anywhere for what I'm looking for, so I thought I'd put up this question, and if people can help me on the way I will edit this with the answers, and document my progress/pitfalls. Hopefully someday this will help someone down the line. The details: CentOS 5.5 x86_64 httpd: Apache/2.2.3 mysql: 5.0.77 (to be upgraded) php: 5.1 (to be upgraded) The requirements: SECURITY!! Secure file transfer Secure client access (SSL Certs and CA) Secure data storage Virtualhosts/multiple subdomains Local email would be nice, but not critical The Steps: Download latest CentOS DVD-iso (torrent worked great for me). Install CentOS: While going through the install, I checked the Server Components option thinking I was going to be using another Plesk-like admin. In hindsight, considering I've decided to try to go my own way, this probably wasn't the best idea. Basic config: Setup users, networking/ip address etc. Yum update/upgrade. Upgrade PHP/MySQL: To upgrade PHP and MySQL to the latest versions, I had to look to another repo outside CentOS. IUS looks great and I'm happy I found it! Add IUS repository to our package manager cd /tmp wget http://dl.iuscommunity.org/pub/ius/stable/Redhat/5/x86_64/epel-release-1-1.ius.el5.noarch.rpm rpm -Uvh epel-release-1-1.ius.el5.noarch.rpm wget http://dl.iuscommunity.org/pub/ius/stable/Redhat/5/x86_64/ius-release-1-4.ius.el5.noarch.rpm rpm -Uvh ius-release-1-4.ius.el5.noarch.rpm yum list | grep -w \.ius\. # list all the packages in the IUS repository; use this to find PHP/MySQL version and libraries you want to install Remove old version of PHP and install newer version from IUS rpm -qa | grep php # to list all of the installed php packages we want to remove yum shell # open an interactive yum shell remove php-common php-mysql php-cli #remove installed PHP components install php53 php53-mysql php53-cli php53-common #add packages you want transaction solve #important!! checks for dependencies transaction run #important!! does the actual installation of packages. [control+d] #exit yum shell php -v PHP 5.3.2 (cli) (built: Apr 6 2010 18:13:45) Upgrade MySQL from IUS repository /etc/init.d/mysqld stop rpm -qa | grep mysql # to see installed mysql packages yum shell remove mysql mysql-server #remove installed MySQL components install mysql51 mysql51-server mysql51-devel transaction solve #important!! checks for dependencies transaction run #important!! does the actual installation of packages. [control+d] #exit yum shell service mysqld start mysql -v Server version: 5.1.42-ius Distributed by The IUS Community Project Upgrade instructions courtesy of IUS wiki: http://wiki.iuscommunity.org/Doc/ClientUsageGuide Install rssh (restricted shell) to provide scp and sftp access, without allowing ssh login cd /tmp wget http://dag.wieers.com/rpm/packages/rssh/rssh-2.3.2-1.2.el5.rf.x86_64.rpm rpm -ivh rssh-2.3.2-1.2.el5.rf.x86_64.rpm useradd -m -d /home/dev -s /usr/bin/rssh dev passwd dev Edit /etc/rssh.conf to grant access to SFTP to rssh users. vi /etc/rssh.conf Uncomment or add: allowscp allowsftp This allows me to connect to the machine via SFTP protocol in Transmit (my FTP program of choice; I'm sure it's similar with other FTP apps). rssh instructions appropriated (with appreciation!) from http://www.cyberciti.biz/tips/linux-unix-restrict-shell-access-with-rssh.html Set up virtual interfaces ifconfig eth1:1 192.168.1.3 up #start up the virtual interface cd /etc/sysconfig/network-scripts/ cp ifcfg-eth1 ifcfg-eth1:1 #copy default script and match name to our virtual interface vi ifcfg-eth1:1 #modify eth1:1 script #ifcfg-eth1:1 | modify so it looks like this: DEVICE=eth1:1 IPADDR=192.168.1.3 NETMASK=255.255.255.0 NETWORK=192.168.1.0 ONBOOT=yes NAME=eth1:1 Add more Virtual interfaces as needed by repeating. Because of the ONBOOT=yes line in the ifcfg-eth1:1 file, this interface will be brought up when the system boots, or the network starts/restarts. service network restart Shutting down interface eth0: [ OK ] Shutting down interface eth1: [ OK ] Shutting down loopback interface: [ OK ] Bringing up loopback interface: [ OK ] Bringing up interface eth0: [ OK ] Bringing up interface eth1: [ OK ] ping 192.168.1.3 64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.105 ms And this is where I'm at. I will keep editing this as I make progress. Any tips on how to Configure virtual interfaces/ip based virtual hosts for SSL, setting up a CA, or anything else would be appreciated.

    Read the article

  • initctl respawn does not reload configuration

    - by DELUXEnized
    My upstart service is running with the respawn option. I was hoping that if I deploy a new service config, the config will be loaded, when the service respawns. Neither the initctl reload-configuration command forces a reload, nor the restart command. Only an explicit stop and start reloads the configuration. The problem is, that I can not stop and start the service, at deploy time. The service itself schedules its restart by just shutting down. Is this behavior by design or am I missing something? Would it change anything, if I did the respawn with a second watchdog-service by an explicit start if my service stops? Why is there a difference between an explicit start/stop and the restart command or respawn option. Thanks.

    Read the article

  • How to design a C / C++ library to be usable in many client languages?

    - by Brian Schimmel
    I'm planning to code a library that should be usable by a large number of people in on a wide spectrum of platforms. What do I have to consider to design it right? To make this questions more specific, there are four "subquestions" at the end. Choice of language Considering all the known requirements and details, I concluded that a library written in C or C++ was the way to go. I think the primary usage of my library will be in programs written in C, C++ and Java SE, but I can also think of reasons to use it from Java ME, PHP, .NET, Objective C, Python, Ruby, bash scrips, etc... Maybe I cannot target all of them, but if it's possible, I'll do it. Requirements It would be to much to describe the full purpose of my library here, but there are some aspects that might be important to this question: The library itself will start out small, but definitely will grow to enormous complexity, so it is not an option to maintain several versions in parallel. Most of the complexity will be hidden inside the library, though The library will construct an object graph that is used heavily inside. Some clients of the library will only be interested in specific attributes of specific objects, while other clients must traverse the object graph in some way Clients may change the objects, and the library must be notified thereof The library may change the objects, and the client must be notified thereof, if it already has a handle to that object The library must be multi-threaded, because it will maintain network connections to several other hosts While some requests to the library may be handled synchronously, many of them will take too long and must be processed in the background, and notify the client on success (or failure) Of course, answers are welcome no matter if they address my specific requirements, or if they answer the question in a general way that matters to a wider audience! My assumptions, so far So here are some of my assumptions and conclusions, which I gathered in the past months: Internally I can use whatever I want, e.g. C++ with operator overloading, multiple inheritance, template meta programming... as long as there is a portable compiler which handles it (think of gcc / g++) But my interface has to be a clean C interface that does not involve name mangling Also, I think my interface should only consist of functions, with basic/primitive data types (and maybe pointers) passed as parameters and return values If I use pointers, I think I should only use them to pass them back to the library, not to operate directly on the referenced memory For usage in a C++ application, I might also offer an object oriented interface (Which is also prone to name mangling, so the App must either use the same compiler, or include the library in source form) Is this also true for usage in C# ? For usage in Java SE / Java EE, the Java native interface (JNI) applies. I have some basic knowledge about it, but I should definitely double check it. Not all client languages handle multithreading well, so there should be a single thread talking to the client For usage on Java ME, there is no such thing as JNI, but I might go with Nested VM For usage in Bash scripts, there must be an executable with a command line interface For the other client languages, I have no idea For most client languages, it would be nice to have kind of an adapter interface written in that language. I think there are tools to automatically generate this for Java and some others For object oriented languages, it might be possible to create an object oriented adapter which hides the fact that the interface to the library is function based - but I don't know if its worth the effort Possible subquestions is this possible with manageable effort, or is it just too much portability? are there any good books / websites about this kind of design criteria? are any of my assumptions wrong? which open source libraries are worth studying to learn from their design / interface / souce? meta: This question is rather long, do you see any way to split it into several smaller ones? (If you reply to this, do it as a comment, not as an answer)

    Read the article

  • Why can't we capture the design of software more effectively?

    - by Ira Baxter
    As engineers, we all "design" artifacts (buildings, programs, circuits, molecules...). That's an activity (design-the-verb) that produces some kind of result (design-the-noun). I think we all agree that design-the-noun is a different entity than the artifact itself. A key activity in the software business (indeed, in any business where the resulting product artifact needs to be enhanced) is to understand the "design (the-noun)". Yet we seem, as a community, to be pretty much complete failures at recording it, as evidenced by the amount of effort people put into rediscovering facts about their code base. Ask somebody to show you the design of their code and see what you get. I think of a design for software as having: An explicit specification for what the software is supposed to do and how well it does it An explicit version of the code (this part is easy, everybody has it) An explanation for how each part of the code serves to achieve the specification A rationale as to why the code is the way it is (e.g., why a particualr choice rather than another) What is NOT a design is a particular perspective on the code. For example [not to pick specifically on] UML diagrams are not designs. Rather, they are properties you can derive from the code, or arguably, properties you wish you could derive from the code. But as a general rule, you can't derive the code from UML. Why is it that after 50+ years of building software, why don't we have regular ways to express this? My personal opinion is that we don't have good ways to express this. Even if we do, most of the community seems so focused on getting "code" that design-the-noun gets lost anyway. (IMHO, until design becomes the purpose of engineering, with the artifact extracted from the design, we're not going to get around this). What have you seen as means for recording designs (in the sense I have described it)? Explicit references to papers would be good. Why do you think specific and general means have not been succesful? How can we change this?

    Read the article

  • How can I improve my error checking and handling?

    - by Google
    Lately I have been struggling to understand what the right amount of checking is and what the proper methods are. I have a few questions regarding this: What is the proper way to check for errors (bad input, bad states, etc)? Is it better to explicitly check for errors, or use functions like asserts which can be optimized out of your final code? I feel like explicitly checking clutters a program with a lot of extra code which shouldn't be executed in most situations anyway-- and not to mention most errors end up with an abort/exit failure. Why clutter a function with explicit checks just to abort? I have looked for asserts versus explicit checking of errors and found little to truly explain when to do either. Most say 'use asserts to check for logic errors and use explicit checks to check for other failures.' This doesn't seem to get us very far though. Would we say this is feasible: Malloc returning null, check explictly API user inserting odd input for functions, use asserts Would this make me any better at error checking? What else can I do? I really want to improve and write better, 'professional' code.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • Blend for Visual Studio 2013 Prototyping Applications with SketchFlow

    - by T
    Originally posted on: http://geekswithblogs.net/tburger/archive/2014/08/10/blend-for-visual-studio-2013-prototyping-applications-with-sketchflow.aspxSketchFlow enables rapid creating of dynamic interface mockups very quickly. The SketchFlow workspace is the same as the standard Blend workspace with the inclusion of three panels: the SketchFlow Feedback panel, the SketchFlow Animation panel and the SketchFlow Map panel. By using SketchFlow to prototype, you can get feedback early in the process. It helps to surface possible issues, lower development iterations, and increase stakeholder buy in. SketchFlow prototypes not only provide an initial look but also provide a way to add additional ideas and input and make sure the team is on track prior to investing in complete development. When you have completed the prototyping, you can discard the prototype and just use the lessons learned to design the application from or extract individual elements from your prototype and include them in the application. I don’t recommend trying to transition the entire project into a development project. Objects that you add with the SketchFlow style have a hand-sketched look. The sketch style is used to remind stakeholders that this is a prototype. This encourages them to focus on the flow and functionality without getting distracted by design details. The sketchflow assets are under sketchflow in the asset panel and are identifiable by the postfix “–Sketch”. For example “Button-Sketch”. You can mix sketch and standard controls in your interface, if required. Be creative, if there is a missing control or your interface has a different look and feel than the out of the box one, reuse other sketch controls to mimic the functionality or look and feel. Only use standard controls if it doesn’t distract from the idea that this is a prototype and not a standard application. The SketchFlow Map panel provides information about the structure of your application. To create a new screen in your prototype: Right-click the map surface and choose “Create a Connected Screen”. Name the screens with names that are meaningful to the stakeholders. The start screen is the one that has the green arrow. To change the start screen, right click on any other screen and set to start screen. Only one screen can be the start screen at a time. Rounded screen are component screens to mimic reusable custom controls that will be built into the final application. You can change the colors of all of the boxes and should use colors to create functional groupings. The groupings can be identified in the SketchFlow Project Settings. To add connections between screens in the SketchFlow Map panel. Move the mouse over a screen in the SketchFlow and a menu will appear at the bottom of the screen node. In the menu, click Connect to an existing screen. Drag the arrow to another screen on the Map. You add navigation to your prototype by adding connections on the SketchFlow map or by adding navigation directly to items on your interface. To add navigation from objects on the artboard, right click the item then from the menu, choose “Navigate to”. This will expose a sub-menu with available screens, backward, or forward. When the map has connected screens, the SketchFlow Player displays the connected screens on the Navigate sidebar. All screens show in the SketchFlow Player Map. To see the SketchFlow Player, run your SketchFlow prototype. The Navigation sidebar is meant to show the desired user work flow. The map can be used to view the different screens regardless of suggested navigation in the navigation bar. The map is able to be hidden and shown. As mentioned, a component screen is a shared screen that is used in more than one screen and generally represents what will be a custom object in the application. To create a component screen, you can create a screen, right click on it in the SketchFlow Map and choose “Make into component screen”. You can mouse over a screen and from the menu that appears underneath, choose create and insert component screen. To use an existing screen, select if from the Asset panel under SketchFlow, Components. You can use Storyboards and Visual State animations in your SketchFlow project. However, SketchFlow also offers its own animation technique that is simpler and better suited for prototyping. The SketchFlow Animation panel is above your artboard by default. In SketchFlow animation, you create frames and then position the elements on your interface for each frame. You then specify elapsed time and any effects you want to apply to the transition. The + at the top is what creates new frames. Once you have a new Frame, select it and change the property you want to animate. In the example above, I changed the Text of the result box. You can adjust the time between frames in the lower area between the frames. The easing and effects functions are changed in the center between each frame. You edit the hold time for frames by clicking the clock icon in the lower left and the hold time will appear on each frame and can be edited. The FluidLayout icon (also located in the lower left) will create smooth transitions. Next to the FluidLayout icon is the name of that Animation. You can rename the animation by clicking on it and editing the name. The down arrow chevrons next to the name allow you to view the list of all animations in this prototype and select them for editing. To add the animation to the interface object (such as a button to start the animation), select the PlaySketchFlowAnimationAction from the SketchFlow behaviors in the Assets menu and drag it to an object on your interface. With the PlaySketchFlowAnimationAction that you just added selected in the Objects and Timeline, edit the properties to change the EventName to the event you want and choose the SketchFlowAnimation you want from the drop down list. You may want to add additional information to your screens that isn’t really part of the prototype but is relevant information or a request for clarification or feedback from the reviewer. You do this with annotations or notes. Both appear on the user interface, however, annotations can be switched on or off at design and review time. Notes cannot be switched off. To add an Annotation, chose the Create Annotation from the Tools menu. The annotation appears on the UI where you will add the notes. To display or Hide annotations, click the annotation toggle at the bottom right on the artboard . After to toggle annotations on, the identifier of the person who created them appears on the artboard and you must click that to expand the notes. To add a note to the artboard, simply select the Note-Sketch from Assets ->SketchFlow ->Styles ->Sketch Styles. Drag and drop it to the artboard and place where you want it. When you are ready for users to review the prototype, you have a few options available. Click File -> Export and choose one of the options from the list: Publish to Sharepoint, Package SketchFlowProject, Export to Microsoft Word, or Export as Images. I suggest you play with as many of the options as you can to see what they do. Both the Sharepoint and Packaged SketchFlowProject allow you to collect feedback from one or more users that you can import into the project. The user can make notes on the UI and in the Feedback area in the bottom left corner of the player. When the user is done adding feedback, it is exported from the right most folder icon in the My Feedback panel. Feeback is imported on a panel named SketchFlow Feedback. To get that panel to show up, select Window -> SketchFlow Feedback. Once you have the panel showing, click the + in the upper right of the panel and find the notes you exported. When imported, they will show up in a list and on the artboard. To document your prototype, use the Export to Microsoft Word option from the File menu. That should get you started with prototyping.

    Read the article

  • 13.10 - Weird WiFi connection problems - WMP300N - Broadcom BCM4321

    - by user1898041
    Just installed 13.10 on my desktop and I really like it. After having problems with getting the wifi to work, I installed it connected to the internet with an ethernet cable and added in the 3rd party software and updates as per the installation procedure. After installation was completed, I saw the wifi icon in the upper right hand corner, but it was not seeing any wifi networks. Some Googling brought me to use the 'Additional Drivers' application. It found the WMP300N Broadcom BDM4321 based pci wifi card and installed the proprietary Broadcom STA wireless driver, which may have been installed before. I'm not sure. Here is the weird part: when I start my system, wifi seems to be in some sort of suspended state where the system sees that the card exists but the card will not detect any wifi networks. It will work after booting once I 'Additional Drivers' application and then start FireFox. I know it seems weird, but this is the process I've got down to get the card to recognize wifi networks. After those applications are open for a few seconds, the card starts to function like normal (although maintaining the wifi connection is problem but most likely a seperate issue). The reason this is a problem is because this is supposed to just be a headless box managed through SSH. Here are the readouts from the common network diagnosis programs BEFORE I open 'Additional Drivers' and 'FireFox'. All commands were done with sudo. lspci 00:00.0 Host bridge: Intel Corporation 82G35 Express DRAM Controller (rev 03) 00:01.0 PCI bridge: Intel Corporation 82G35 Express PCI Express Root Port (rev 03) 00:1a.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 02) 00:1a.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5 (rev 02) 00:1a.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6 (rev 02) 00:1a.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #2 (rev 02) 00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 02) 00:1c.0 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 1 (rev 02) 00:1c.4 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 5 (rev 02) 00:1c.5 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 6 (rev 02) 00:1d.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1 (rev 02) 00:1d.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2 (rev 02) 00:1d.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3 (rev 02) 00:1d.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1 (rev 02) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 92) 00:1f.0 ISA bridge: Intel Corporation 82801IR (ICH9R) LPC Interface Controller (rev 02) 00:1f.2 SATA controller: Intel Corporation 82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA Controller [AHCI mode] (rev 02) 00:1f.3 SMBus: Intel Corporation 82801I (ICH9 Family) SMBus Controller (rev 02) 01:00.0 VGA compatible controller: NVIDIA Corporation GT216 [GeForce GT 220] (rev a2) 01:00.1 Audio device: NVIDIA Corporation High Definition Audio Controller (rev a1) 02:00.0 Ethernet controller: Qualcomm Atheros Attansic L1 Gigabit Ethernet (rev b0) 03:00.0 IDE interface: JMicron Technology Corp. JMB368 IDE controller 05:00.0 Network controller: Broadcom Corporation BCM4321 802.11b/g/n (rev 01) 05:03.0 FireWire (IEEE 1394): VIA Technologies, Inc. VT6306/7/8 [Fire II(M)] IEEE 1394 OHCI Controller (rev c0) - lshw *-network description: Ethernet interface product: Attansic L1 Gigabit Ethernet vendor: Qualcomm Atheros physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: b0 serial: 00:22:15:00:a8:12 capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1 driverversion=2.1.3 latency=0 link=no multicast=yes port=twisted pair resources: irq:46 memory:feac0000-feafffff memory:feaa0000-feabffff *-network description: Wireless interface product: BCM4321 802.11b/g/n vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:05:00.0 logical name: eth1 version: 01 serial: 00:23:69:d8:2b:16 width: 32 bits clock: 33MHz capabilities: bus_master ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=6.30.223.141 (r415941) latency=64 multicast=yes wireless=IEEE 802.11abg resources: irq:16 memory:febfc000-febfffff - ifconfig eth0 Link encap:Ethernet HWaddr 00:22:15:00:a8:12 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) eth1 Link encap:Ethernet HWaddr 00:23:69:d8:2b:16 inet6 addr: fe80::223:69ff:fed8:2b16/64 Scope:Link UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:16 Base address:0xc000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:24 errors:0 dropped:0 overruns:0 frame:0 TX packets:24 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1856 (1.8 KB) TX bytes:1856 (1.8 KB) - iwconfig eth1 IEEE 802.11abg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=200 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off - iwlist scan eth1 No scan results - Here are the various commands AFTER I open 'Additional Drivers' and 'FireFox' lspci 00:00.0 Host bridge: Intel Corporation 82G35 Express DRAM Controller (rev 03) 00:01.0 PCI bridge: Intel Corporation 82G35 Express PCI Express Root Port (rev 03) 00:1a.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 02) 00:1a.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5 (rev 02) 00:1a.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6 (rev 02) 00:1a.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #2 (rev 02) 00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 02) 00:1c.0 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 1 (rev 02) 00:1c.4 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 5 (rev 02) 00:1c.5 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 6 (rev 02) 00:1d.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1 (rev 02) 00:1d.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2 (rev 02) 00:1d.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3 (rev 02) 00:1d.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1 (rev 02) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 92) 00:1f.0 ISA bridge: Intel Corporation 82801IR (ICH9R) LPC Interface Controller (rev 02) 00:1f.2 SATA controller: Intel Corporation 82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA Controller [AHCI mode] (rev 02) 00:1f.3 SMBus: Intel Corporation 82801I (ICH9 Family) SMBus Controller (rev 02) 01:00.0 VGA compatible controller: NVIDIA Corporation GT216 [GeForce GT 220] (rev a2) 01:00.1 Audio device: NVIDIA Corporation High Definition Audio Controller (rev a1) 02:00.0 Ethernet controller: Qualcomm Atheros Attansic L1 Gigabit Ethernet (rev b0) 03:00.0 IDE interface: JMicron Technology Corp. JMB368 IDE controller 05:00.0 Network controller: Broadcom Corporation BCM4321 802.11b/g/n (rev 01) 05:03.0 FireWire (IEEE 1394): VIA Technologies, Inc. VT6306/7/8 [Fire II(M)] IEEE 1394 OHCI Controller (rev c0) - lshw *-network description: Ethernet interface product: Attansic L1 Gigabit Ethernet vendor: Qualcomm Atheros physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: b0 serial: 00:22:15:00:a8:12 capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1 driverversion=2.1.3 latency=0 link=no multicast=yes port=twisted pair resources: irq:46 memory:feac0000-feafffff memory:feaa0000-feabffff *-network description: Wireless interface product: BCM4321 802.11b/g/n vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:05:00.0 logical name: eth1 version: 01 serial: 00:23:69:d8:2b:16 width: 32 bits clock: 33MHz capabilities: bus_master ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=6.30.223.141 (r415941) ip=192.168.1.103 latency=64 multicast=yes wireless=IEEE 802.11abg resources: irq:16 memory:febfc000-febfffff - ifconfig eth0 Link encap:Ethernet HWaddr 00:22:15:00:a8:12 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) eth1 Link encap:Ethernet HWaddr 00:23:69:d8:2b:16 inet addr:192.168.1.103 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::223:69ff:fed8:2b16/64 Scope:Link UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:85 errors:0 dropped:0 overruns:0 frame:11901 TX packets:132 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:52641 (52.6 KB) TX bytes:19058 (19.0 KB) Interrupt:16 Base address:0xc000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:76 errors:0 dropped:0 overruns:0 frame:0 TX packets:76 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:6084 (6.0 KB) TX bytes:6084 (6.0 KB) - iwconfig eth1 IEEE 802.11abg ESSID:"BU" Mode:Managed Frequency:2.447 GHz Access Point: 00:26:F2:1F:81:02 Bit Rate=54 Mb/s Tx-Power=200 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off Link Quality=59/70 Signal level=-51 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0 - iwlist scan A LOT OF SSIDs FOUND! - I'd like to have this problem fixed, but I'm not quite sure where to go. Been Googling a lot and can't seem to find anyone else with this problem.

    Read the article

  • How do I set up MVP for a Winforms solution?

    - by JonWillis
    Question moved from Stackoverflow - http://stackoverflow.com/questions/4971048/how-do-i-set-up-mvp-for-a-winforms-solution I have used MVP and MVC in the past, and I prefer MVP as it controls the flow of execution so much better in my opinion. I have created my infrastructure (datastore/repository classes) and use them without issue when hard coding sample data, so now I am moving onto the GUI and preparing my MVP. Section A I have seen MVP using the view as the entry point, that is in the views constructor method it creates the presenter, which in turn creates the model, wiring up events as needed. I have also seen the presenter as the entry point, where a view, model and presenter are created, this presenter is then given a view and model object in its constructor to wire up the events. As in 2, but the model is not passed to the presenter. Instead the model is a static class where methods are called and responses returned directly. Section B In terms of keeping the view and model in sync I have seen. Whenever a value in the view in changed, i.e. TextChanged event in .Net/C#. This fires a DataChangedEvent which is passed through into the model, to keep it in sync at all times. And where the model changes, i.e. a background event it listens to, then the view is updated via the same idea of raising a DataChangedEvent. When a user wants to commit changes a SaveEvent it fires, passing through into the model to make the save. In this case the model mimics the view's data and processes actions. Similar to #b1, however the view does not sync with the model all the time. Instead when the user wants to commit changes, SaveEvent is fired and the presenter grabs the latest details and passes them into the model. in this case the model does not know about the views data until it is required to act upon it, in which case it is passed all the needed details. Section C Displaying of business objects in the view, i.e. a object (MyClass) not primitive data (int, double) The view has property fields for all its data that it will display as domain/business objects. Such as view.Animals exposes a IEnumerable<IAnimal> property, even though the view processes these into Nodes in a TreeView. Then for the selected animal it would expose SelectedAnimal as IAnimal property. The view has no knowledge of domain objects, it exposes property for primitive/framework (.Net/Java) included objects types only. In this instance the presenter will pass an adapter object the domain object, the adapter will then translate a given business object into the controls visible on the view. In this instance the adapter must have access to the actual controls on the view, not just any view so becomes more tightly coupled. Section D Multiple views used to create a single control. i.e. You have a complex view with a simple model like saving objects of different types. You could have a menu system at the side with each click on an item the appropriate controls are shown. You create one huge view, that contains all of the individual controls which are exposed via the views interface. You have several views. You have one view for the menu and a blank panel. This view creates the other views required but does not display them (visible = false), this view also implements the interface for each view it contains (i.e. child views) so it can expose to one presenter. The blank panel is filled with other views (Controls.Add(myview)) and ((myview.visible = true). The events raised in these "child"-views are handled by the parent view which in turn pass the event to the presenter, and visa versa for supplying events back down to child elements. Each view, be it the main parent or smaller child views are each wired into there own presenter and model. You can literately just drop a view control into an existing form and it will have the functionality ready, just needs wiring into a presenter behind the scenes. Section E Should everything have an interface, now based on how the MVP is done in the above examples will affect this answer as they might not be cross-compatible. Everything has an interface, the View, Presenter and Model. Each of these then obviously has a concrete implementation. Even if you only have one concrete view, model and presenter. The View and Model have an interface. This allows the views and models to differ. The presenter creates/is given view and model objects and it just serves to pass messages between them. Only the View has an interface. The Model has static methods and is not created, thus no need for an interface. If you want a different model, the presenter calls a different set of static class methods. Being static the Model has no link to the presenter. Personal thoughts From all the different variations I have presented (most I have probably used in some form) of which I am sure there are more. I prefer A3 as keeping business logic reusable outside just MVP, B2 for less data duplication and less events being fired. C1 for not adding in another class, sure it puts a small amount of non unit testable logic into a view (how a domain object is visualised) but this could be code reviewed, or simply viewed in the application. If the logic was complex I would agree to an adapter class but not in all cases. For section D, i feel D1 creates a view that is too big atleast for a menu example. I have used D2 and D3 before. Problem with D2 is you end up having to write lots of code to route events to and from the presenter to the correct child view, and its not drag/drop compatible, each new control needs more wiring in to support the single presenter. D3 is my prefered choice but adds in yet more classes as presenters and models to deal with the view, even if the view happens to be very simple or has no need to be reused. i think a mixture of D2 and D3 is best based on circumstances. As to section E, I think everything having an interface could be overkill I already do it for domain/business objects and often see no advantage in the "design" by doing so, but it does help in mocking objects in tests. Personally I would see E2 as a classic solution, although have seen E3 used in 2 projects I have worked on previously. Question Am I implementing MVP correctly? Is there a right way of going about it? I've read Martin Fowler's work that has variations, and I remember when I first started doing MVC, I understood the concept, but could not originally work out where is the entry point, everything has its own function but what controls and creates the original set of MVC objects.

    Read the article

  • Why do we (really) program to interfaces?

    - by Kyle Burns
    One of the earliest lessons I was taught in Enterprise development was "always program against an interface".  This was back in the VB6 days and I quickly learned that no code would be allowed to move to the QA server unless my business objects and data access objects each are defined as an interface and have a matching implementation class.  Why?  "It's more reusable" was one answer.  "It doesn't tie you to a specific implementation" a slightly more knowing answer.  And let's not forget the discussion ending "it's a standard".  The problem with these responses was that senior people didn't really understand the reason we were doing the things we were doing and because of that, we were entirely unable to realize the intent behind the practice - we simply used interfaces and had a bunch of extra code to maintain to show for it. It wasn't until a few years later that I finally heard the term "Inversion of Control".  Simply put, "Inversion of Control" takes the creation of objects that used to be within the control (and therefore a responsibility of) of your component and moves it to some outside force.  For example, consider the following code which follows the old "always program against an interface" rule in the manner of many corporate development shops: 1: ICatalog catalog = new Catalog(); 2: Category[] categories = catalog.GetCategories(); In this example, I met the requirement of the rule by declaring the variable as ICatalog, but I didn't hit "it doesn't tie you to a specific implementation" because I explicitly created an instance of the concrete Catalog object.  If I want to test the functionality of the code I just wrote I have to have an environment in which Catalog can be created along with any of the resources upon which it depends (e.g. configuration files, database connections, etc) in order to test my functionality.  That's a lot of setup work and one of the things that I think ultimately discourages real buy-in of unit testing in many development shops. So how do I test my code without needing Catalog to work?  A very primitive approach I've seen is to change the line the instantiates catalog to read: 1: ICatalog catalog = new FakeCatalog();   once the test is run and passes, the code is switched back to the real thing.  This obviously poses a huge risk for introducing test code into production and in my opinion is worse than just keeping the dependency and its associated setup work.  Another popular approach is to make use of Factory methods which use an object whose "job" is to know how to obtain a valid instance of the object.  Using this approach, the code may look something like this: 1: ICatalog catalog = CatalogFactory.GetCatalog();   The code inside the factory is responsible for deciding "what kind" of catalog is needed.  This is a far better approach than the previous one, but it does make projects grow considerably because now in addition to the interface, the real implementation, and the fake implementation(s) for testing you have added a minimum of one factory (or at least a factory method) for each of your interfaces.  Once again, developers say "that's too complicated and has me writing a bunch of useless code" and quietly slip back into just creating a new Catalog and chalking any test failures up to "it will probably work on the server". This is where software intended specifically to facilitate Inversion of Control comes into play.  There are many libraries that take on the Inversion of Control responsibilities in .Net and most of them have many pros and cons.  From this point forward I'll discuss concepts from the standpoint of the Unity framework produced by Microsoft's Patterns and Practices team.  I'm primarily focusing on this library because it questions about it inspired this posting. At Unity's core and that of most any IoC framework is a catalog or registry of components.  This registry can be configured either through code or using the application's configuration file and in the most simple terms says "interface X maps to concrete implementation Y".  It can get much more complicated, but I want to keep things at the "what does it do" level instead of "how does it do it".  The object that exposes most of the Unity functionality is the UnityContainer.  This object exposes methods to configure the catalog as well as the Resolve<T> method which is used to obtain an instance of the type represented by T.  When using the Resolve<T> method, Unity does not necessarily have to just "new up" the requested object, but also can track dependencies of that object and ensure that the entire dependency chain is satisfied. There are three basic ways that I have seen Unity used within projects.  Those are through classes directly using the Unity container, classes requiring injection of dependencies, and classes making use of the Service Locator pattern. The first usage of Unity is when classes are aware of the Unity container and directly call its Resolve method whenever they need the services advertised by an interface.  The up side of this approach is that IoC is utilized, but the down side is that every class has to be aware that Unity is being used and tied directly to that implementation. Many developers don't like the idea of as close a tie to specific IoC implementation as is represented by using Unity within all of your classes and for the most part I agree that this isn't a good idea.  As an alternative, classes can be designed for Dependency Injection.  Dependency Injection is where a force outside the class itself manipulates the object to provide implementations of the interfaces that the class needs to interact with the outside world.  This is typically done either through constructor injection where the object has a constructor that accepts an instance of each interface it requires or through property setters accepting the service providers.  When using dependency, I lean toward the use of constructor injection because I view the constructor as being a much better way to "discover" what is required for the instance to be ready for use.  During resolution, Unity looks for an injection constructor and will attempt to resolve instances of each interface required by the constructor, throwing an exception of unable to meet the advertised needs of the class.  The up side of this approach is that the needs of the class are very clearly advertised and the class is unaware of which IoC container (if any) is being used.  The down side of this approach is that you're required to maintain the objects passed to the constructor as instance variables throughout the life of your object and that objects which coordinate with many external services require a lot of additional constructor arguments (this gets ugly and may indicate a need for refactoring). The final way that I've seen and used Unity is to make use of the ServiceLocator pattern, of which the Patterns and Practices team has also provided a Unity-compatible implementation.  When using the ServiceLocator, your class calls ServiceLocator.Retrieve in places where it would have called Resolve on the Unity container.  Like using Unity directly, it does tie you directly to the ServiceLocator implementation and makes your code aware that dependency injection is taking place, but it does have the up side of giving you the freedom to swap out the underlying IoC container if necessary.  I'm not hugely concerned with hiding IoC entirely from the class (I view this as a "nice to have"), so the single biggest problem that I see with the ServiceLocator approach is that it provides no way to proactively advertise needs in the way that constructor injection does, allowing more opportunity for difficult to track runtime errors. This blog entry has not been intended in any way to be a definitive work on IoC, but rather as something to spur thought about why we program to interfaces and some ways to reach the intended value of the practice instead of having it just complicate your code.  I hope that it helps somebody begin or continue a journey away from being a "Cargo Cult Programmer".

    Read the article

  • Cisco 800 series won't forward port

    - by sam
    Hello ServerFault, I am trying to forward port 444 from my cisco router to my Web Server (192.168.0.2). As far as I can tell, my port forwarding is configured correctly, yet no traffic will pass through on port 444. Here is my config: ! version 12.3 service config no service pad service tcp-keepalives-in service tcp-keepalives-out service timestamps debug uptime service timestamps log uptime service password-encryption no service dhcp ! hostname QUESTMOUNT ! logging buffered 16386 informational logging rate-limit 100 except warnings no logging console no logging monitor enable secret 5 -removed- ! username administrator secret 5 -removed- username manager secret 5 -removed- clock timezone NZST 12 clock summer-time NZDT recurring 1 Sun Oct 2:00 3 Sun Mar 3:00 aaa new-model ! ! aaa authentication login default local aaa authentication login userlist local aaa authentication ppp default local aaa authorization network grouplist local aaa session-id common ip subnet-zero no ip source-route no ip domain lookup ip domain name quest.local ! ! no ip bootp server ip inspect name firewall tcp ip inspect name firewall udp ip inspect name firewall cuseeme ip inspect name firewall h323 ip inspect name firewall rcmd ip inspect name firewall realaudio ip inspect name firewall streamworks ip inspect name firewall vdolive ip inspect name firewall sqlnet ip inspect name firewall tftp ip inspect name firewall ftp ip inspect name firewall icmp ip inspect name firewall sip ip inspect name firewall fragment maximum 256 timeout 1 ip inspect name firewall netshow ip inspect name firewall rtsp ip inspect name firewall skinny ip inspect name firewall http ip audit notify log ip audit po max-events 100 ip audit name intrusion info list 3 action alarm ip audit name intrusion attack list 3 action alarm drop reset no ftp-server write-enable ! ! ! ! crypto isakmp policy 1 authentication pre-share ! crypto isakmp policy 2 encr 3des authentication pre-share group 2 ! crypto isakmp client configuration group staff key 0 qS;,sc:q<skro1^, domain quest.local pool vpnclients acl 106 ! ! crypto ipsec transform-set tr-null-sha esp-null esp-sha-hmac crypto ipsec transform-set tr-des-md5 esp-des esp-md5-hmac crypto ipsec transform-set tr-des-sha esp-des esp-sha-hmac crypto ipsec transform-set tr-3des-sha esp-3des esp-sha-hmac ! crypto dynamic-map vpnusers 1 description Client to Site VPN Users set transform-set tr-des-md5 ! ! crypto map cm-cryptomap client authentication list userlist crypto map cm-cryptomap isakmp authorization list grouplist crypto map cm-cryptomap client configuration address respond crypto map cm-cryptomap 65000 ipsec-isakmp dynamic vpnusers ! ! ! ! interface Ethernet0 ip address 192.168.0.254 255.255.255.0 ip access-group 102 in ip nat inside hold-queue 100 out ! interface ATM0 no ip address no atm ilmi-keepalive dsl operating-mode auto ! interface ATM0.1 point-to-point pvc 0/100 encapsulation aal5mux ppp dialer dialer pool-member 1 ! ! interface Dialer0 bandwidth 640 ip address negotiated ip access-group 101 in no ip redirects no ip unreachables ip nat outside ip inspect firewall out ip audit intrusion in encapsulation ppp no ip route-cache no ip mroute-cache dialer pool 1 dialer-group 1 no cdp enable ppp pap sent-username -removed- password 7 -removed- ppp ipcp dns request crypto map cm-cryptomap ! ip local pool vpnclients 192.168.99.1 192.168.99.254 ip nat inside source list 105 interface Dialer0 overload ip nat inside source static tcp 192.168.0.2 444 interface Dialer0 444 ip nat inside source static tcp 192.168.0.51 9000 interface Dialer0 9000 ip nat inside source static udp 192.168.0.2 1433 interface Dialer0 1433 ip nat inside source static tcp 192.168.0.2 1433 interface Dialer0 1433 ip nat inside source static tcp 192.168.0.2 25 interface Dialer0 25 ip classless ip route 0.0.0.0 0.0.0.0 Dialer0 ip http server no ip http secure-server ! ip access-list logging interval 10 logging 192.168.0.2 access-list 1 remark The local LAN. access-list 1 permit 192.168.0.0 0.0.0.255 access-list 2 permit 192.168.0.0 access-list 2 remark Where management can be done from. access-list 2 permit 192.168.0.0 0.0.0.255 access-list 3 remark Traffic not to check for intrustion detection. access-list 3 deny 192.168.99.0 0.0.0.255 access-list 3 permit any access-list 101 remark Traffic allowed to enter the router from the Internet access-list 101 permit ip 192.168.99.0 0.0.0.255 192.168.0.0 0.0.0.255 access-list 101 deny ip 0.0.0.0 0.255.255.255 any access-list 101 deny ip 10.0.0.0 0.255.255.255 any access-list 101 deny ip 127.0.0.0 0.255.255.255 any access-list 101 deny ip 169.254.0.0 0.0.255.255 any access-list 101 deny ip 172.16.0.0 0.15.255.255 any access-list 101 deny ip 192.0.2.0 0.0.0.255 any access-list 101 deny ip 192.168.0.0 0.0.255.255 any access-list 101 deny ip 198.18.0.0 0.1.255.255 any access-list 101 deny ip 224.0.0.0 0.15.255.255 any access-list 101 deny ip any host 255.255.255.255 access-list 101 permit tcp 67.228.209.128 0.0.0.15 any eq 1433 access-list 101 permit tcp host 120.136.2.22 any eq 1433 access-list 101 permit tcp host 123.100.90.58 any eq 1433 access-list 101 permit udp 67.228.209.128 0.0.0.15 any eq 1433 access-list 101 permit udp host 120.136.2.22 any eq 1433 access-list 101 permit udp host 123.100.90.58 any eq 1433 access-list 101 permit tcp any any eq 444 access-list 101 permit tcp any any eq 9000 access-list 101 permit tcp any any eq smtp access-list 101 permit udp any any eq non500-isakmp access-list 101 permit udp any any eq isakmp access-list 101 permit esp any any access-list 101 permit tcp any any eq 1723 access-list 101 permit gre any any access-list 101 permit tcp any any eq 22 access-list 101 permit tcp any any eq telnet access-list 102 remark Traffic allowed to enter the router from the Ethernet access-list 102 permit ip any host 192.168.0.254 access-list 102 deny ip any host 192.168.0.255 access-list 102 deny udp any any eq tftp log access-list 102 permit ip 192.168.0.0 0.0.0.255 192.168.99.0 0.0.0.255 access-list 102 deny ip any 0.0.0.0 0.255.255.255 log access-list 102 deny ip any 10.0.0.0 0.255.255.255 log access-list 102 deny ip any 127.0.0.0 0.255.255.255 log access-list 102 deny ip any 169.254.0.0 0.0.255.255 log access-list 102 deny ip any 172.16.0.0 0.15.255.255 log access-list 102 deny ip any 192.0.2.0 0.0.0.255 log access-list 102 deny ip any 192.168.0.0 0.0.255.255 log access-list 102 deny ip any 198.18.0.0 0.1.255.255 log access-list 102 deny udp any any eq 135 log access-list 102 deny tcp any any eq 135 log access-list 102 deny udp any any eq netbios-ns log access-list 102 deny udp any any eq netbios-dgm log access-list 102 deny tcp any any eq 445 log access-list 102 permit ip 192.168.0.0 0.0.0.255 any access-list 102 permit ip any host 255.255.255.255 access-list 102 deny ip any any log access-list 105 remark Traffic to NAT access-list 105 deny ip 192.168.0.0 0.0.0.255 192.168.99.0 0.0.0.255 access-list 105 permit ip 192.168.0.0 0.0.0.255 any access-list 106 remark User to Site VPN Clients access-list 106 permit ip 192.168.0.0 0.0.0.255 any dialer-list 1 protocol ip permit ! line con 0 no modem enable line aux 0 line vty 0 4 access-class 2 in transport input telnet ssh transport output none ! scheduler max-task-time 5000 ! end any ideas? :)

    Read the article

  • JBOSS 7.1 started hanging after 6 months of deployment

    - by PVR
    My application is been live from 6 months. The application is host on jboss 7.1 server. From last few days I am finding numerous problem of hanging of jboss server. Though I restart the jboss server again, it does not invoke. I need to restart the server machine itself. Can anyone please let me know what could be the cause of these problems and the workable resolutions or any suggestion ? Kindly dont degrade the question as I am facing a lot problems due to this hanging issue. Also for the information, the application is based on Java, GWT, Hibernate 3. Please find the standalone.xml file in case if it helps. <extensions> <extension module="org.jboss.as.clustering.infinispan"/> <extension module="org.jboss.as.configadmin"/> <extension module="org.jboss.as.connector"/> <extension module="org.jboss.as.deployment-scanner"/> <extension module="org.jboss.as.ee"/> <extension module="org.jboss.as.ejb3"/> <extension module="org.jboss.as.jaxrs"/> <extension module="org.jboss.as.jdr"/> <extension module="org.jboss.as.jmx"/> <extension module="org.jboss.as.jpa"/> <extension module="org.jboss.as.logging"/> <extension module="org.jboss.as.mail"/> <extension module="org.jboss.as.naming"/> <extension module="org.jboss.as.osgi"/> <extension module="org.jboss.as.pojo"/> <extension module="org.jboss.as.remoting"/> <extension module="org.jboss.as.sar"/> <extension module="org.jboss.as.security"/> <extension module="org.jboss.as.threads"/> <extension module="org.jboss.as.transactions"/> <extension module="org.jboss.as.web"/> <extension module="org.jboss.as.webservices"/> <extension module="org.jboss.as.weld"/> </extensions> <system-properties> <property name="org.apache.coyote.http11.Http11Protocol.COMPRESSION" value="on"/> <property name="org.apache.coyote.http11.Http11Protocol.COMPRESSION_MIME_TYPES" value="text/javascript,text/css,text/html,text/xml,text/json"/> </system-properties> <management> <security-realms> <security-realm name="ManagementRealm"> <authentication> <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/> </authentication> </security-realm> <security-realm name="ApplicationRealm"> <authentication> <properties path="application-users.properties" relative-to="jboss.server.config.dir"/> </authentication> </security-realm> </security-realms> <management-interfaces> <native-interface security-realm="ManagementRealm"> <socket-binding native="management-native"/> </native-interface> <http-interface security-realm="ManagementRealm"> <socket-binding http="management-http"/> </http-interface> </management-interfaces> </management> <profile> <subsystem xmlns="urn:jboss:domain:logging:1.1"> <console-handler name="CONSOLE"> <level name="INFO"/> <formatter> <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/> </formatter> </console-handler> <periodic-rotating-file-handler name="FILE"> <formatter> <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/> </formatter> <file relative-to="jboss.server.log.dir" path="server.log"/> <suffix value=".yyyy-MM-dd"/> <append value="true"/> </periodic-rotating-file-handler> <logger category="com.arjuna"> <level name="WARN"/> </logger> <logger category="org.apache.tomcat.util.modeler"> <level name="WARN"/> </logger> <logger category="sun.rmi"> <level name="WARN"/> </logger> <logger category="jacorb"> <level name="WARN"/> </logger> <logger category="jacorb.config"> <level name="ERROR"/> </logger> <root-logger> <level name="INFO"/> <handlers> <handler name="CONSOLE"/> <handler name="FILE"/> </handlers> </root-logger> </subsystem> <subsystem xmlns="urn:jboss:domain:configadmin:1.0"/> <subsystem xmlns="urn:jboss:domain:datasources:1.0"> <datasources> <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS" enabled="true" use-java-context="true"> <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url> <driver>h2</driver> <security> <user-name>sa</user-name> <password>sa</password> </security> </datasource> <drivers> <driver name="h2" module="com.h2database.h2"> <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class> </driver> </drivers> </datasources> </subsystem> <subsystem xmlns="urn:jboss:domain:deployment-scanner:1.1"> <deployment-scanner path="deployments" relative-to="jboss.server.base.dir" scan-interval="5000"/> </subsystem> <subsystem xmlns="urn:jboss:domain:ee:1.0"/> <subsystem xmlns="urn:jboss:domain:ejb3:1.2"> <session-bean> <stateless> <bean-instance-pool-ref pool-name="slsb-strict-max-pool"/> </stateless> <stateful default-access-timeout="5000" cache-ref="simple"/> <singleton default-access-timeout="5000"/> </session-bean> <pools> <bean-instance-pools> <strict-max-pool name="slsb-strict-max-pool" max-pool-size="20" instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/> <strict-max-pool name="mdb-strict-max-pool" max-pool-size="20" instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/> </bean-instance-pools> </pools> <caches> <cache name="simple" aliases="NoPassivationCache"/> <cache name="passivating" passivation-store-ref="file" aliases="SimpleStatefulCache"/> </caches> <passivation-stores> <file-passivation-store name="file"/> </passivation-stores> <async thread-pool-name="default"/> <timer-service thread-pool-name="default"> <data-store path="timer-service-data" relative-to="jboss.server.data.dir"/> </timer-service> <remote connector-ref="remoting-connector" thread-pool-name="default"/> <thread-pools> <thread-pool name="default"> <max-threads count="10"/> <keepalive-time time="100" unit="milliseconds"/> </thread-pool> </thread-pools> </subsystem> <subsystem xmlns="urn:jboss:domain:infinispan:1.2" default-cache-container="hibernate"> <cache-container name="hibernate" default-cache="local-query"> <local-cache name="entity"> <transaction mode="NON_XA"/> <eviction strategy="LRU" max-entries="10000"/> <expiration max-idle="100000"/> </local-cache> <local-cache name="local-query"> <transaction mode="NONE"/> <eviction strategy="LRU" max-entries="10000"/> <expiration max-idle="100000"/> </local-cache> <local-cache name="timestamps"> <transaction mode="NONE"/> <eviction strategy="NONE"/> </local-cache> </cache-container> </subsystem> <subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/> <subsystem xmlns="urn:jboss:domain:jca:1.1"> <archive-validation enabled="true" fail-on-error="true" fail-on-warn="false"/> <bean-validation enabled="true"/> <default-workmanager> <short-running-threads> <core-threads count="50"/> <queue-length count="50"/> <max-threads count="50"/> <keepalive-time time="10" unit="seconds"/> </short-running-threads> <long-running-threads> <core-threads count="50"/> <queue-length count="50"/> <max-threads count="50"/> <keepalive-time time="100" unit="seconds"/> </long-running-threads> </default-workmanager> <cached-connection-manager/> </subsystem> <subsystem xmlns="urn:jboss:domain:jdr:1.0"/> <subsystem xmlns="urn:jboss:domain:jmx:1.1"> <show-model value="true"/> <remoting-connector/> </subsystem> <subsystem xmlns="urn:jboss:domain:jpa:1.0"> <jpa default-datasource=""/> </subsystem> <subsystem xmlns="urn:jboss:domain:mail:1.0"> <mail-session jndi-name="java:jboss/mail/Default"> <smtp-server outbound-socket-binding-ref="mail-smtp"/> </mail-session> </subsystem> <subsystem xmlns="urn:jboss:domain:naming:1.1"/> <subsystem xmlns="urn:jboss:domain:osgi:1.2" activation="lazy"> <properties> <property name="org.osgi.framework.startlevel.beginning"> 1 </property> </properties> <capabilities> <capability name="javax.servlet.api:v25"/> <capability name="javax.transaction.api"/> <capability name="org.apache.felix.log" startlevel="1"/> <capability name="org.jboss.osgi.logging" startlevel="1"/> <capability name="org.apache.felix.configadmin" startlevel="1"/> <capability name="org.jboss.as.osgi.configadmin" startlevel="1"/> </capabilities> </subsystem> <subsystem xmlns="urn:jboss:domain:pojo:1.0"/> <subsystem xmlns="urn:jboss:domain:remoting:1.1"> <connector name="remoting-connector" socket-binding="remoting" security-realm="ApplicationRealm"/> </subsystem> <subsystem xmlns="urn:jboss:domain:resource-adapters:1.0"/> <subsystem xmlns="urn:jboss:domain:sar:1.0"/> <subsystem xmlns="urn:jboss:domain:security:1.1"> <security-domains> <security-domain name="other" cache-type="default"> <authentication> <login-module code="Remoting" flag="optional"> <module-option name="password-stacking" value="useFirstPass"/> </login-module> <login-module code="RealmUsersRoles" flag="required"> <module-option name="usersProperties" value="${jboss.server.config.dir}/application-users.properties"/> <module-option name="rolesProperties" value="${jboss.server.config.dir}/application-roles.properties"/> <module-option name="realm" value="ApplicationRealm"/> <module-option name="password-stacking" value="useFirstPass"/> </login-module> </authentication> </security-domain> <security-domain name="jboss-web-policy" cache-type="default"> <authorization> <policy-module code="Delegating" flag="required"/> </authorization> </security-domain> <security-domain name="jboss-ejb-policy" cache-type="default"> <authorization> <policy-module code="Delegating" flag="required"/> </authorization> </security-domain> </security-domains> </subsystem> <subsystem xmlns="urn:jboss:domain:threads:1.1"/> <subsystem xmlns="urn:jboss:domain:transactions:1.1"> <core-environment> <process-id> <uuid/> </process-id> </core-environment> <recovery-environment socket-binding="txn-recovery-environment" status-socket-binding="txn-status-manager"/> <coordinator-environment default-timeout="300"/> </subsystem> <subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-host" native="false"> <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/> <virtual-server name="default-host" enable-welcome-root="false"> <alias name="localhost"/> <alias name="nextenders.com"/> </virtual-server> </subsystem> <subsystem xmlns="urn:jboss:domain:webservices:1.1"> <modify-wsdl-address>true</modify-wsdl-address> <wsdl-host>${jboss.bind.address:127.0.0.1}</wsdl-host> <endpoint-config name="Standard-Endpoint-Config"/> <endpoint-config name="Recording-Endpoint-Config"> <pre-handler-chain name="recording-handlers" protocol-bindings="##SOAP11_HTTP ##SOAP11_HTTP_MTOM ##SOAP12_HTTP ##SOAP12_HTTP_MTOM"> <handler name="RecordingHandler" class="org.jboss.ws.common.invocation.RecordingServerHandler"/> </pre-handler-chain> </endpoint-config> </subsystem> <subsystem xmlns="urn:jboss:domain:weld:1.0"/> </profile> <interfaces> <interface name="management"> <inet-address value="${jboss.bind.address.management:127.0.0.1}"/> </interface> <interface name="public"> <inet-address value="${jboss.bind.address:127.0.0.1}"/> </interface> <interface name="unsecure"> <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/> </interface> </interfaces> <socket-binding-group name="standard-sockets" default-interface="public" port-offset="${jboss.socket.binding.port-offset:0}"> <socket-binding name="management-native" interface="management" port="${jboss.management.native.port:9999}"/> <socket-binding name="management-http" interface="management" port="${jboss.management.http.port:9990}"/> <socket-binding name="management-https" interface="management" port="${jboss.management.https.port:9443}"/> <socket-binding name="ajp" port="8009"/> <socket-binding name="http" port="80"/> <socket-binding name="https" port="443"/> <socket-binding name="osgi-http" interface="management" port="8090"/> <socket-binding name="remoting" port="4447"/> <socket-binding name="txn-recovery-environment" port="4712"/> <socket-binding name="txn-status-manager" port="4713"/> <outbound-socket-binding name="mail-smtp"> <remote-destination host="localhost" port="25"/> </outbound-socket-binding> </socket-binding-group>

    Read the article

  • ZeroC Ice "checked casts" in Scala

    - by Alexey Romanov
    ZeroC Ice for Java translates every Slice interface Simple into (among other things) a proxy interface SimplePrx and a proxy SimplePrxHelper. If I have an ObjectPrx (the base interface for all proxies), I can check whether it actually has interface Simple by using a static method on SimplePrxHelper: val obj : Ice.ObjectPrx = ...; // Get a proxy from somewhere... val simple : SimplePrx = SimplePrxHelper.checkedCast(obj); if (simple != null) // Object supports the Simple interface... else // Object is not of type Simple... I wanted to write a method castTo so that I could replace the second line with val simple = castTo[SimplePrx](obj) or val simple = castTo[SimplePrxHelper](obj) So far as I can see, Scala's type system is not expressive enough to allow me to define castTo. Is this correct?

    Read the article

  • Light weight C++ SAX XML parser

    - by John Bartholomew
    I know of at least three light weight C++ XML parsers: RapidXML, TinyXML and PugiXML. However, all three use a DOM based interface (ie, they build their own in-memory representation of the XML document and then provide an interface to traverse and manipulate it). For most situations that I have to deal with, I much prefer the SAX interface (where the parser just spits out a stream of events like start-of-tag, and the application code is responsible for doing whatever it wants based on those events). Can anyone recommend a light weight C++ XML library with a SAX interface? Edit: I should also note the Microsoft XmlLite library, which does use a SAX interface. Unfortunately, it's ruled out for me at the moment since as far as I know it's closed source and Windows only (please correct me if I'm wrong on this).

    Read the article

  • Unexpected generics behaviour

    - by pronicles
    I found strange generics behaviour. In two words - thing I realy want is to use ComplexObject1 in most general way, and the thing I realy missed is why defined generic type(... extends BuisnessObject) is lost. The discuss thread is also awailable in my blog http://pronicles.blogspot.com/2010/03/unexpected-generics-behaviour.html. public class Test { public interface EntityObject {} public interface SomeInterface {} public class BasicEntity implements EntityObject {} public interface BuisnessObject<E extends EntityObject> { E getEntity(); } public interface ComplexObject1<V extends SomeInterface> extends BusinessObject<BasicEntity> {} public interface ComplexObject2 extends BuisnessObject<BasicEntity> {} public void test(){ ComplexObject1 complexObject1 = null; ComplexObject2 complexObject2 = null; EntityObject entityObject1 = complexObject1.getEntity(); //BasicEntity entityObject1 = complexObject1.getEntity(); wtf incompatible types!!!! BasicEntity basicEntity = complexObject2.getEntity(); } }

    Read the article

  • Can I compose a WCF callback contract out of multiple interfaces?

    - by mafutrct
    Followup question to http://stackoverflow.com/questions/2502930/how-can-i-compose-a-wcf-contract-out-of-multiple-interfaces. I tried to merge multiple callback interfaces in a single interface. This yields an InvalidOperationException claiming that the final interface contains no operations. Technically, this is true, however, the inherited interfaces do contain operations. How can I fix this? Or is this a limitation of WCF? Edit: interface A { [OperationContract]void X(); } interface B { [OperationContract]void Y(); } interface C: A, B {} // this is the public callback contract

    Read the article

  • In Java how instance of and type cast(i.e (ClassName)) works on proxy object ?

    - by learner
    Java generates a proxy class for a given interface and provides the instance of the proxy class. But when we type cast the proxy object to our specific Object, how java handles this internally? Is this treated as special scenario? For example I have class 'OriginalClass' and it implements 'OriginalInterface', when I create proxy object by passing 'OriginalInterface' interface java created proxy class 'ProxyClass' using methods in the provided interface and provides object of this class(i.e ProxyClass). If my understanding is correct then can you please answer following queries 1) When I type cast object of ProxyClass to my class OriginalClass this works, but how java is allowing this? Same in case of instace of? 2) As my knowledge java creates a proxy class only with the methods, but what happen when I try to access attributes on this object? 3) Only interface methods are getting implemented in Proxy, but what happens when I try to access a method which not in interface and only mentioned in the class? Thanks, Student

    Read the article

< Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >