Search Results

Search found 9667 results on 387 pages for 'parallel loop'.

Page 100/387 | < Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >

  • How to tell your boss that he's a bad programmer? [closed]

    - by Doe
    Possible Duplicate: How to tell your boss that his programming style is really bad? There was a question about the boss having a bad programming style (weird booleans, empty loops, etc.) Having a bad/weird style does not imply being a bad programmer, but my situation is different. My boss outputs some really nasty code for the project, on which we are working together (just two of us). Examples: functions that span over several screens (big screens - 1900 x 1200) Deeply nested Conditional and Loop statements (up to 10 levels!!) Too much static variables, singletons, and both (singleton class with all the methods and members also static) Sometimes the code committed to the version control system does not even compile! Copy-Paste code instead of separating it into an independent function. Fail all the deadlines. "This's [C#|Java|Python] it shouldn't be efficient, that's why we loop all over the haystack to find the needle." "This's C/C++, it's fast enough to loop all over the haystack to find the needle." There is much more to mention... But the worst is that I have to redo much of the stuff he does, my code, which I try to keep clean is often polluted with above-mentioned atrocities. He's reaching 30 soon, so all his skills are established, and I don't even know if it's possible to change something. I like the project, but sometimes I just want to quit...

    Read the article

  • C++ - Conway's Game of Life & Stepping Backwards

    - by Gabe
    I was able to create a version Conway's Game of Life that either stepped forward each click, or just ran forward using a timer. (I'm doing this using Qt.) Now, I need to be able to save all previous game grids, so that I can step backwards by clicking a button. I'm trying to use a stack, and it seems like I'm pushing the old gridcells onto the stack correctly. But when I run it in QT, the grids don't change when I click BACK. I've tried different things for the last three hours, to no avail. Any ideas? gridwindow.cpp - My problem should be in here somewhere. Probably the handleBack() func. #include <iostream> #include "gridwindow.h" using namespace std; // Constructor for window. It constructs the three portions of the GUI and lays them out vertically. GridWindow::GridWindow(QWidget *parent,int rows,int cols) : QWidget(parent) { QHBoxLayout *header = setupHeader(); // Setup the title at the top. QGridLayout *grid = setupGrid(rows,cols); // Setup the grid of colored cells in the middle. QHBoxLayout *buttonRow = setupButtonRow(); // Setup the row of buttons across the bottom. QVBoxLayout *layout = new QVBoxLayout(); // Puts everything together. layout->addLayout(header); layout->addLayout(grid); layout->addLayout(buttonRow); setLayout(layout); } // Destructor. GridWindow::~GridWindow() { delete title; } // Builds header section of the GUI. QHBoxLayout* GridWindow::setupHeader() { QHBoxLayout *header = new QHBoxLayout(); // Creates horizontal box. header->setAlignment(Qt::AlignHCenter); this->title = new QLabel("CONWAY'S GAME OF LIFE",this); // Creates big, bold, centered label (title): "Conway's Game of Life." this->title->setAlignment(Qt::AlignHCenter); this->title->setFont(QFont("Arial", 32, QFont::Bold)); header->addWidget(this->title); // Adds widget to layout. return header; // Returns header to grid window. } // Builds the grid of cells. This method populates the grid's 2D array of GridCells with MxN cells. QGridLayout* GridWindow::setupGrid(int rows,int cols) { isRunning = false; QGridLayout *grid = new QGridLayout(); // Creates grid layout. grid->setHorizontalSpacing(0); // No empty spaces. Cells should be contiguous. grid->setVerticalSpacing(0); grid->setSpacing(0); grid->setAlignment(Qt::AlignHCenter); for(int i=0; i < rows; i++) //Each row is a vector of grid cells. { std::vector<GridCell*> row; // Creates new vector for current row. cells.push_back(row); for(int j=0; j < cols; j++) { GridCell *cell = new GridCell(); // Creates and adds new cell to row. cells.at(i).push_back(cell); grid->addWidget(cell,i,j); // Adds to cell to grid layout. Column expands vertically. grid->setColumnStretch(j,1); } grid->setRowStretch(i,1); // Sets row expansion horizontally. } return grid; // Returns grid. } // Builds footer section of the GUI. QHBoxLayout* GridWindow::setupButtonRow() { QHBoxLayout *buttonRow = new QHBoxLayout(); // Creates horizontal box for buttons. buttonRow->setAlignment(Qt::AlignHCenter); // Clear Button - Clears cell; sets them all to DEAD/white. QPushButton *clearButton = new QPushButton("CLEAR"); clearButton->setFixedSize(100,25); connect(clearButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Pauses timer before clearing. connect(clearButton, SIGNAL(clicked()), this, SLOT(handleClear())); // Connects to clear function to make all cells DEAD/white. buttonRow->addWidget(clearButton); // Forward Button - Steps one step forward. QPushButton *forwardButton = new QPushButton("FORWARD"); forwardButton->setFixedSize(100,25); connect(forwardButton, SIGNAL(clicked()), this, SLOT(handleForward())); // Signals to handleForward function.. buttonRow->addWidget(forwardButton); // Back Button - Steps one step backward. QPushButton *backButton = new QPushButton("BACK"); backButton->setFixedSize(100,25); connect(backButton, SIGNAL(clicked()), this, SLOT(handleBack())); // Signals to handleBack funciton. buttonRow->addWidget(backButton); // Start Button - Starts game when user clicks. Or, resumes game after being paused. QPushButton *startButton = new QPushButton("START/RESUME"); startButton->setFixedSize(100,25); connect(startButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Deletes current timer if there is one. Then restarts everything. connect(startButton, SIGNAL(clicked()), this, SLOT(handleStart())); // Signals to handleStart function. buttonRow->addWidget(startButton); // Pause Button - Pauses simulation of game. QPushButton *pauseButton = new QPushButton("PAUSE"); pauseButton->setFixedSize(100,25); connect(pauseButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Signals to pause function which pauses timer. buttonRow->addWidget(pauseButton); // Quit Button - Exits program. QPushButton *quitButton = new QPushButton("EXIT"); quitButton->setFixedSize(100,25); connect(quitButton, SIGNAL(clicked()), qApp, SLOT(quit())); // Signals the quit slot which ends the program. buttonRow->addWidget(quitButton); return buttonRow; // Returns bottom of layout. } /* SLOT method for handling clicks on the "clear" button. Receives "clicked" signals on the "Clear" button and sets all cells to DEAD. */ void GridWindow::handleClear() { for(unsigned int row=0; row < cells.size(); row++) // Loops through current rows' cells. { for(unsigned int col=0; col < cells[row].size(); col++) // Loops through the rows'columns' cells. { GridCell *cell = cells[row][col]; // Grab the current cell & set its value to dead. cell->setType(DEAD); } } } /* SLOT method for handling clicks on the "start" button. Receives "clicked" signals on the "start" button and begins game simulation. */ void GridWindow::handleStart() { isRunning = true; // It is running. Sets isRunning to true. this->timer = new QTimer(this); // Creates new timer. connect(this->timer, SIGNAL(timeout()), this, SLOT(timerFired())); // Connect "timerFired" method class to the "timeout" signal fired by the timer. this->timer->start(500); // Timer to fire every 500 milliseconds. } /* SLOT method for handling clicks on the "pause" button. Receives "clicked" signals on the "pause" button and stops the game simulation. */ void GridWindow::handlePause() { if(isRunning) // If it is running... this->timer->stop(); // Stops the timer. isRunning = false; // Set to false. } void GridWindow::handleForward() { if(isRunning); // If it's running, do nothing. else timerFired(); // It not running, step forward one step. } void GridWindow::handleBack() { std::vector<std::vector<GridCell*> > cells2; if(isRunning); // If it's running, do nothing. else if(backStack.empty()) cout << "EMPTYYY" << endl; else { cells2 = backStack.peek(); for (unsigned int f = 0; f < cells.size(); f++) // Loop through cells' rows. { for (unsigned int g = 0; g < cells.at(f).size(); g++) // Loop through cells columns. { cells[f][g]->setType(cells2[f][g]->getType()); // Set cells[f][g]'s type to cells2[f][g]'s type. } } cout << "PRE=POP" << endl; backStack.pop(); cout << "OYYYY" << endl; } } // Accessor method - Gets the 2D vector of grid cells. std::vector<std::vector<GridCell*> >& GridWindow::getCells() { return this->cells; } /* TimerFired function: 1) 2D-Vector cells2 is declared. 2) cells2 is initliazed with loops/push_backs so that all its cells are DEAD. 3) We loop through cells, and count the number of LIVE neighbors next to a given cell. --> Depending on how many cells are living, we choose if the cell should be LIVE or DEAD in the next simulation, according to the rules. -----> We save the cell type in cell2 at the same indice (the same row and column cell in cells2). 4) After check all the cells (and save the next round values in cells 2), we set cells's gridcells equal to cells2 gridcells. --> This causes the cells to be redrawn with cells2 types (white or black). */ void GridWindow::timerFired() { backStack.push(cells); std::vector<std::vector<GridCell*> > cells2; // Holds new values for 2D vector. These are the next simulation round of cell types. for(unsigned int i = 0; i < cells.size(); i++) // Loop through the rows of cells2. (Same size as cells' rows.) { vector<GridCell*> row; // Creates Gridcell* vector to push_back into cells2. cells2.push_back(row); // Pushes back row vectors into cells2. for(unsigned int j = 0; j < cells[i].size(); j++) // Loop through the columns (the cells in each row). { GridCell *cell = new GridCell(); // Creates new GridCell. cell->setType(DEAD); // Sets cell type to DEAD/white. cells2.at(i).push_back(cell); // Pushes back the DEAD cell into cells2. } // This makes a gridwindow the same size as cells with all DEAD cells. } for (unsigned int m = 0; m < cells.size(); m++) // Loop through cells' rows. { for (unsigned int n = 0; n < cells.at(m).size(); n++) // Loop through cells' columns. { unsigned int neighbors = 0; // Counter for number of LIVE neighbors for a given cell. // We know check all different variations of cells[i][j] to count the number of living neighbors for each cell. // We check m > 0 and/or n > 0 to make sure we don't access negative indexes (ex: cells[-1][0].) // We check m < size to make sure we don't try to access rows out of the vector (ex: row 5, if only 4 rows). // We check n < row size to make sure we don't access column item out of the vector (ex: 10th item in a column of only 9 items). // If we find that the Type = 1 (it is LIVE), then we add 1 to the neighbor. // Else - we add nothing to the neighbor counter. // Neighbor is the number of LIVE cells next to the current cell. if(m > 0 && n > 0) { if (cells[m-1][n-1]->getType() == 1) neighbors += 1; } if(m > 0) { if (cells[m-1][n]->getType() == 1) neighbors += 1; if(n < (cells.at(m).size() - 1)) { if (cells[m-1][n+1]->getType() == 1) neighbors += 1; } } if(n > 0) { if (cells[m][n-1]->getType() == 1) neighbors += 1; if(m < (cells.size() - 1)) { if (cells[m+1][n-1]->getType() == 1) neighbors += 1; } } if(n < (cells.at(m).size() - 1)) { if (cells[m][n+1]->getType() == 1) neighbors += 1; } if(m < (cells.size() - 1)) { if (cells[m+1][n]->getType() == 1) neighbors += 1; } if(m < (cells.size() - 1) && n < (cells.at(m).size() - 1)) { if (cells[m+1][n+1]->getType() == 1) neighbors += 1; } // Done checking number of neighbors for cells[m][n] // Now we change cells2 if it should switch in the next simulation step. // cells2 holds the values of what cells should be on the next iteration of the game. // We can't change cells right now, or it would through off our other cell values. // Apply game rules to cells: Create new, updated grid with the roundtwo vector. // Note - LIVE is 1; DEAD is 0. if (cells[m][n]->getType() == 1 && neighbors < 2) // If cell is LIVE and has less than 2 LIVE neighbors -> Set to DEAD. cells2[m][n]->setType(DEAD); else if (cells[m][n]->getType() == 1 && neighbors > 3) // If cell is LIVE and has more than 3 LIVE neighbors -> Set to DEAD. cells2[m][n]->setType(DEAD); else if (cells[m][n]->getType() == 1 && (neighbors == 2 || neighbors == 3)) // If cell is LIVE and has 2 or 3 LIVE neighbors -> Set to LIVE. cells2[m][n]->setType(LIVE); else if (cells[m][n]->getType() == 0 && neighbors == 3) // If cell is DEAD and has 3 LIVE neighbors -> Set to LIVE. cells2[m][n]->setType(LIVE); } } // Now we've gone through all of cells, and saved the new values in cells2. // Now we loop through cells and set all the cells' types to those of cells2. for (unsigned int f = 0; f < cells.size(); f++) // Loop through cells' rows. { for (unsigned int g = 0; g < cells.at(f).size(); g++) // Loop through cells columns. { cells[f][g]->setType(cells2[f][g]->getType()); // Set cells[f][g]'s type to cells2[f][g]'s type. } } } stack.h - Here's my stack. #ifndef STACK_H_ #define STACK_H_ #include <iostream> #include "node.h" template <typename T> class Stack { private: Node<T>* top; int listSize; public: Stack(); int size() const; bool empty() const; void push(const T& value); void pop(); T& peek() const; }; template <typename T> Stack<T>::Stack() : top(NULL) { listSize = 0; } template <typename T> int Stack<T>::size() const { return listSize; } template <typename T> bool Stack<T>::empty() const { if(listSize == 0) return true; else return false; } template <typename T> void Stack<T>::push(const T& value) { Node<T>* newOne = new Node<T>(value); newOne->next = top; top = newOne; listSize++; } template <typename T> void Stack<T>::pop() { Node<T>* oldT = top; top = top->next; delete oldT; listSize--; } template <typename T> T& Stack<T>::peek() const { return top->data; // Returns data in top item. } #endif gridcell.cpp - Gridcell implementation #include <iostream> #include "gridcell.h" using namespace std; // Constructor: Creates a grid cell. GridCell::GridCell(QWidget *parent) : QFrame(parent) { this->type = DEAD; // Default: Cell is DEAD (white). setFrameStyle(QFrame::Box); // Set the frame style. This is what gives each box its black border. this->button = new QPushButton(this); //Creates button that fills entirety of each grid cell. this->button->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); // Expands button to fill space. this->button->setMinimumSize(19,19); //width,height // Min height and width of button. QHBoxLayout *layout = new QHBoxLayout(); //Creates a simple layout to hold our button and add the button to it. layout->addWidget(this->button); setLayout(layout); layout->setStretchFactor(this->button,1); // Lets the buttons expand all the way to the edges of the current frame with no space leftover layout->setContentsMargins(0,0,0,0); layout->setSpacing(0); connect(this->button,SIGNAL(clicked()),this,SLOT(handleClick())); // Connects clicked signal with handleClick slot. redrawCell(); // Calls function to redraw (set new type for) the cell. } // Basic destructor. GridCell::~GridCell() { delete this->button; } // Accessor for the cell type. CellType GridCell::getType() const { return(this->type); } // Mutator for the cell type. Also has the side effect of causing the cell to be redrawn on the GUI. void GridCell::setType(CellType type) { this->type = type; redrawCell(); // Sets type and redraws cell. } // Handler slot for button clicks. This method is called whenever the user clicks on this cell in the grid. void GridCell::handleClick() { // When clicked on... if(this->type == DEAD) // If type is DEAD (white), change to LIVE (black). type = LIVE; else type = DEAD; // If type is LIVE (black), change to DEAD (white). setType(type); // Sets new type (color). setType Calls redrawCell() to recolor. } // Method to check cell type and return the color of that type. Qt::GlobalColor GridCell::getColorForCellType() { switch(this->type) { default: case DEAD: return Qt::white; case LIVE: return Qt::black; } } // Helper method. Forces current cell to be redrawn on the GUI. Called whenever the setType method is invoked. void GridCell::redrawCell() { Qt::GlobalColor gc = getColorForCellType(); //Find out what color this cell should be. this->button->setPalette(QPalette(gc,gc)); //Force the button in the cell to be the proper color. this->button->setAutoFillBackground(true); this->button->setFlat(true); //Force QT to NOT draw the borders on the button } Thanks a lot. Let me know if you need anything else.

    Read the article

  • Checking if an int is prime more efficiently

    - by SipSop
    I recently was part of a small java programming competition at my school. My partner and I have just finished our first pure oop class and most of the questions were out of our league so we settled on this one (and I am paraphrasing somewhat): "given an input integer n return the next int that is prime and its reverse is also prime for example if n = 18 your program should print 31" because 31 and 13 are both prime. Your .class file would then have a test case of all the possible numbers from 1-2,000,000,000 passed to it and it had to return the correct answer within 10 seconds to be considered valid. We found a solution but with larger test cases it would take longer than 10 seconds. I am fairly certain there is a way to move the range of looping from n,..2,000,000,000 down as the likely hood of needing to loop that far when n is a low number is small, but either way we broke the loop when a number is prime under both conditions is found. At first we were looping from 2,..n no matter how large it was then i remembered the rule about only looping to the square root of n. Any suggestions on how to make my program more efficient? I have had no classes dealing with complexity analysis of algorithms. Here is our attempt. public class P3 { public static void main(String[] args){ long loop = 2000000000; long n = Integer.parseInt(args[0]); for(long i = n; i<loop; i++) { String s = i +""; String r = ""; for(int j = s.length()-1; j>=0; j--) r = r + s.charAt(j); if(prime(i) && prime(Long.parseLong(r))) { System.out.println(i); break; } } System.out.println("#"); } public static boolean prime(long p){ for(int i = 2; i<(int)Math.sqrt(p); i++) { if(p%i==0) return false; } return true; } } ps sorry if i did the formatting for code wrong this is my first time posting here. Also the output had to have a '#' after each line thats what the line after the loop is about Thanks for any help you guys offer!!!

    Read the article

  • Error in Print Function in Bubble Sort MIPS?

    - by m00nbeam360
    Sorry that this is such a long block of code, but do you see any obvious syntax errors in this? I feel like the problem is that the code isn't printing correctly since the sort and swap methods were from my textbook. Please help if you can! .data save: .word 1,2,4,2,5,6 size: .word 6 .text swap: sll $t1, $a1, 2 #shift bits by 2 add $t1, $a1, $t1 #set $t1 address to v[k] lw $t0, 0($t1) #load v[k] into t1 lw $t2, 4($t1) #load v[k+1] into t1 sw $t2, 0($t1) #swap addresses sw $t0, 4($t1) #swap addresses jr $ra #return sort: addi $sp, $sp, -20 #make enough room on the stack for five registers sw $ra, 16($sp) #save the return address on the stack sw $s3, 12($sp) #save $s3 on the stack sw $s2, 8($sp) #save Ss2 on the stack sw $s1, 4($sp) #save $s1 on the stack sw $s0, 0($sp) #save $s0 on the stack move $s2, $a0 #copy the parameter $a0 into $s2 (save $a0) move $s3, $a1 #copy the parameter $a1 into $s3 (save $a1) move $s0, $zero #start of for loop, i = 0 for1tst: slt $t0, $s0, $s3 #$t0 = 0 if $s0 S $s3 (i S n) beq $t0, $zero, exit1 #go to exit1 if $s0 S $s3 (i S n) addi $s1, $s0, -1 #j - i - 1 for2tst: slti $t0, $s1, 0 #$t0 = 1 if $s1 < 0 (j < 0) bne $t0, $zero, exit2 #$t0 = 1 if $s1 < 0 (j < 0) sll $t1, $s1, 2 #$t1 = j * 4 (shift by 2 bits) add $t2, $s2, $t1 #$t2 = v + (j*4) lw $t3, 0($t2) #$t3 = v[j] lw $t4, 4($t2) #$t4 = v[j+1] slt $t0, $t4, $t3 #$t0 = 0 if $t4 S $t3 beq $t0, $zero, exit2 #go to exit2 if $t4 S $t3 move $a0, $s2 #1st parameter of swap is v(old $a0) move $a1, $s1 #2nd parameter of swap is j jal swap #swap addi $s1, $s1, -1 j for2tst #jump to test of inner loop j print exit2: addi $s0, $s0, 1 #i = i + 1 j for1tst #jump to test of outer loop exit1: lw $s0, 0($sp) #restore $s0 from stack lw $s1, 4($sp) #resture $s1 from stack lw $s2, 8($sp) #restore $s2 from stack lw $s3, 12($sp) #restore $s3 from stack lw $ra, 16($sp) #restore $ra from stack addi $sp, $sp, 20 #restore stack pointer jr $ra #return to calling routine .data space:.asciiz " " # space to insert between numbers head: .asciiz "The sorted numbers are:\n" .text print:add $t0, $zero, $a0 # starting address of array add $t1, $zero, $a1 # initialize loop counter to array size la $a0, head # load address of print heading li $v0, 4 # specify Print String service syscall # print heading out: lw $a0, 0($t0) # load fibonacci number for syscall li $v0, 1 # specify Print Integer service syscall # print fibonacci number la $a0, space # load address of spacer for syscall li $v0, 4 # specify Print String service syscall # output string addi $t0, $t0, 4 # increment address addi $t1, $t1, -1 # decrement loop counter bgtz $t1, out # repeat if not finished jr $ra # return

    Read the article

  • node.js callback getting unexpected value for variable

    - by defrex
    I have a for loop, and inside it a variable is assigned with var. Also inside the loop a method is called which requires a callback. Inside the callback function I'm using the variable from the loop. I would expect that it's value, inside the callback function, would be the same as it was outside the callback during that iteration of the loop. However, it always seems to be the value from the last iteration of the loop. Am I misunderstanding scope in JavaScript, or is there something else wrong? The program in question here is a node.js app that will monitor a working directory for changes and restart the server when it finds one. I'll include all of the code for the curious, but the important bit is the parse_file_list function. var posix = require('posix'); var sys = require('sys'); var server; var child_js_file = process.ARGV[2]; var current_dir = __filename.split('/'); current_dir = current_dir.slice(0, current_dir.length-1).join('/'); var start_server = function(){ server = process.createChildProcess('node', [child_js_file]); server.addListener("output", function(data){sys.puts(data);}); }; var restart_server = function(){ sys.puts('change discovered, restarting server'); server.close(); start_server(); }; var parse_file_list = function(dir, files){ for (var i=0;i<files.length;i++){ var file = dir+'/'+files[i]; sys.puts('file assigned: '+file); posix.stat(file).addCallback(function(stats){ sys.puts('stats returned: '+file); if (stats.isDirectory()) posix.readdir(file).addCallback(function(files){ parse_file_list(file, files); }); else if (stats.isFile()) process.watchFile(file, restart_server); }); } }; posix.readdir(current_dir).addCallback(function(files){ parse_file_list(current_dir, files); }); start_server(); The output from this is: file assigned: /home/defrex/code/node/ejs.js file assigned: /home/defrex/code/node/templates file assigned: /home/defrex/code/node/web file assigned: /home/defrex/code/node/server.js file assigned: /home/defrex/code/node/settings.js file assigned: /home/defrex/code/node/apps file assigned: /home/defrex/code/node/dev_server.js file assigned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js For those from the future: node.devserver.js

    Read the article

  • SQL SERVER – Reducing CXPACKET Wait Stats for High Transactional Database

    - by pinaldave
    While engaging in a performance tuning consultation for a client, a situation occurred where they were facing a lot of CXPACKET Waits Stats. The client asked me if I could help them reduce this huge number of wait stats. I usually receive this kind of request from other client as well, but the important thing to understand is whether this question has any merits or benefits, or not. Before we continue the resolution, let us understand what CXPACKET Wait Stats are. The official definition suggests that CXPACKET Wait Stats occurs when trying to synchronize the query processor exchange iterator. You may consider lowering the degree of parallelism if a conflict concerning this wait type develops into a problem. (from BOL) In simpler words, when a parallel operation is created for SQL Query, there are multiple threads for a single query. Each query deals with a different set of the data (or rows). Due to some reasons, one or more of the threads lag behind, creating the CXPACKET Wait Stat. Threads which came first have to wait for the slower thread to finish. The Wait by a specific completed thread is called CXPACKET Wait Stat. Note that CXPACKET Wait is done by completed thread and not the one which are unfinished. “Note that not all the CXPACKET wait types are bad. You might experience a case when it totally makes sense. There might also be cases when this is also unavoidable. If you remove this particular wait type for any query, then that query may run slower because the parallel operations are disabled for the query.” Now let us see what the best practices to reduce the CXPACKET Wait Stats are. The suggestions, with which you will find that if you search online through the browser, would play a major role as and might be asked about their jobs In addition, might tell you that you should set ‘maximum degree of parallelism’ to 1. I do agree with these suggestions, too; however, I think this is not the final resolutions. As soon as you set your entire query to run on single CPU, you will get a very bad performance from the queries which are actually performing okay when using parallelism. The best suggestion to this is that you set ‘the maximum degree of parallelism’ to a lower number or 1 (be very careful with this – it can create more problems) but tune the queries which can be benefited from multiple CPU’s. You can use query hint OPTION (MAXDOP 0) to run the server to use parallelism. Here is the two-quick script which helps to resolve these issues: Change MAXDOP at Server Level EXEC sys.sp_configure N'max degree of parallelism', N'1' GO RECONFIGURE WITH OVERRIDE GO Run Query with all the CPU (using parallelism) USE AdventureWorks GO SELECT * FROM Sales.SalesOrderDetail ORDER BY ProductID OPTION (MAXDOP 0) GO Below is the blog post which will help you to find all the parallel query in your server. SQL SERVER – Find Queries using Parallelism from Cached Plan Please note running Queries in single CPU may worsen your performance and it is not recommended at all. Infect this can be very bad advise. I strongly suggest that you identify the queries which are offending and tune them instead of following any other suggestions. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • Innovative SPARC: Lighting a Fire Under Oracle's New Hardware Business

    - by Paulo Folgado
    "There's a certain level of things you can do with commercially available parts," says Oracle Executive Vice President Mike Splain. But, he notes, you can do so much more if you design the parts yourself. Mike Splain,EVP, OracleYou can, for example, design cryptographic accelerators into your microprocessors so customers can run their networks fully encrypted if they choose.Of course, it helps if you've already built multiple processing "cores" into those chips so they can handle all that encrypting and decrypting while still getting their other work done.System on a ChipAs the leader of Oracle Microelectronics, Mike knows how implementing clever innovations in silicon can give systems a real competitive advantage.The SPARC microprocessors that his team designed at Sun pioneered the concept of multiple cores several years ago, and the UltraSPARC T2 processor--the industry's first "system on a chip"--packs up to eight cores per chip, each running as many as eight threads at once. That's the most cores and threads of any general-purpose processor. Looking back, Mike points out that the real value of large enterprise-class servers was their ability to run a lot of very large applications in parallel."The beauty of our CMT [chip multi-threading] machines is you can get that same kind of parallel-processing capability at a much lower cost and in a much smaller footprint," he says.The Whole StackWhat has Mike excited these days is that suddenly the opportunity to innovate is much bigger as part of Oracle."In my group, we used to look up the software stack and say, 'We can do any innovation we want, provided the only thing we have to change is what's in the Solaris operating system'--or maybe Java," he says. "If we wanted to change things beyond that, we'd have to go outside the walls of Sun and we'd have to convince the vendors: 'You have to align with us, you have to test with us, you have to build for us, and then you'll reap the benefits.' Now we get access to the entire stack. We can look all the way through the stack and say, 'Okay, what would make the database go faster? What would make the middleware go faster?'"Changing the WorldMike and his microelectronics team also like the fact that Oracle is not just any software company. We're #1 in database, middleware, business intelligence, and more."We're like all the other engineers from Sun; we believe we can change the world, if we can just figure out how to get people to pay attention to us," he says. "Now there's a mechanism at Oracle--much more so than we ever had at Sun."He notes, too, that every innovation in SPARC has involved some combination of hardware and softwareoptimization."Take our cryptography framework, for example. Sure, we can accelerate rapidly, but the Solaris OS has to provide the right set of interfaces that applications can tap into," Mike says. "Same thing with our multicore architecture. We have to have software that can utilize all those threads and run in parallel." His engineers, he points out, have never been interested in producing chips that sell as mere components."Our chips are always designed to go into systems and be combined with various pieces of software," he says. "Our job is to enable the creation of systems."

    Read the article

  • The Evolution Of C#

    - by Paulo Morgado
    The first release of C# (C# 1.0) was all about building a new language for managed code that appealed, mostly, to C++ and Java programmers. The second release (C# 2.0) was mostly about adding what wasn’t time to built into the 1.0 release. The main feature for this release was Generics. The third release (C# 3.0) was all about reducing the impedance mismatch between general purpose programming languages and databases. To achieve this goal, several functional programming features were added to the language and LINQ was born. Going forward, new trends are showing up in the industry and modern programming languages need to be more: Declarative With imperative languages, although having the eye on the what, programs need to focus on the how. This leads to over specification of the solution to the problem in hand, making next to impossible to the execution engine to be smart about the execution of the program and optimize it to run it more efficiently (given the hardware available, for example). Declarative languages, on the other hand, focus only on the what and leave the how to the execution engine. LINQ made C# more declarative by using higher level constructs like orderby and group by that give the execution engine a much better chance of optimizing the execution (by parallelizing it, for example). Concurrent Concurrency is hard and needs to be thought about and it’s very hard to shoehorn it into a programming language. Parallel.For (from the parallel extensions) looks like a parallel for because enough expressiveness has been built into C# 3.0 to allow this without having to commit to specific language syntax. Dynamic There was been lots of debate on which ones are the better programming languages: static or dynamic. The fact is that both have good qualities and users of both types of languages want to have it all. All these trends require a paradigm switch. C# is, in many ways, already a multi-paradigm language. It’s still very object oriented (class oriented as some might say) but it can be argued that C# 3.0 has become a functional programming language because it has all the cornerstones of what a functional programming language needs. Moving forward, will have even more. Besides the influence of these trends, there was a decision of co-evolution of the C# and Visual Basic programming languages. Since its inception, there was been some effort to position C# and Visual Basic against each other and to try to explain what should be done with each language or what kind of programmers use one or the other. Each language should be chosen based on the past experience and familiarity of the developer/team/project/company and not by particular features. In the past, every time a feature was added to one language, the users of the other wanted that feature too. Going forward, when a feature is added to one language, the other will work hard to add the same feature. This doesn’t mean that XML literals will be added to C# (because almost the same can be achieved with LINQ To XML), but Visual Basic will have auto-implemented properties. Most of these features require or are built on top of features of the .NET Framework and, the focus for C# 4.0 was on dynamic programming. Not just dynamic types but being able to talk with anything that isn’t a .NET class. Also introduced in C# 4.0 is co-variance and contra-variance for generic interfaces and delegates. Stay tuned for more on the new C# 4.0 features.

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • How does interpolation actually work to smooth out an object's movement?

    - by user22241
    I've asked a few similar questions over the past 8 months or so with no real joy, so I am going make the question more general. I have an Android game which is OpenGL ES 2.0. within it I have the following Game Loop: My loop works on a fixed time step principle (dt = 1 / ticksPerSecond) loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip){ updateLogic(dt); nextGameTick+=skipTicks; timeCorrection += (1000d/ticksPerSecond) % 1; nextGameTick+=timeCorrection; timeCorrection %=1; loops++; } render(); My intergration works like this: sprite.posX+=sprite.xVel*dt; sprite.posXDrawAt=sprite.posX*width; Now, everything works pretty much as I would like. I can specify that I would like an object to move across a certain distance (screen width say) in 2.5 seconds and it will do just that. Also because of the frame skipping that I allow in my game loop, I can do this on pretty much any device and it will always take 2.5 seconds. Problem However, the problem is that when a render frame skips, the graphic stutter. It's extremely annoying. If I remove the ability to skip frames, then everything is smooth as you like, but will run at different speeds on different devices. So it's not an option. I'm still not sure why the frame skips, but I would like to point out that this is Nothing to do with poor performance, I've taken the code right back to 1 tiny sprite and no logic (apart from the logic required to move the sprite) and I still get skipped frames. And this is on a Google Nexus 10 tablet (and as mentioned above, I need frame skipping to keep the speed consistent across devices anyway). So, the only other option I have is to use interpolation (or extrapolation), I've read every article there is out there but none have really helped me to understand how it works and all of my attempted implementations have failed. Using one method I was able to get things moving smoothly but it was unworkable because it messed up my collision. I can foresee the same issue with any similar method because the interpolation is passed to (and acted upon within) the rendering method - at render time. So if Collision corrects position (character now standing right next to wall), then the renderer can alter it's position and draw it in the wall. So I'm really confused. People have said that you should never alter an object's position from within the rendering method, but all of the examples online show this. So I'm asking for a push in the right direction, please do not link to the popular game loop articles (deWitters, Fix your timestep, etc) as I've read these multiple times. I'm not asking anyone to write my code for me. Just explain please in simple terms how Interpolation actually works with some examples. I will then go and try to integrate any ideas into my code and will ask more specific questions if need-be further down the line. (I'm sure this is a problem many people struggle with).

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 6

    - by MarkPearl
    Learning Outcomes Discuss the physical characteristics of magnetic disks Describe how data is organized and accessed on a magnetic disk Discuss the parameters that play a role in the performance of magnetic disks Describe different optical memory devices Magnetic Disk The way data is stored on and retried from magnetic disks Data is recorded on and later retrieved form the disk via a conducting coil named the head (in many systems there are two heads) The writ mechanism exploits the fact that electricity flowing through a coil produces a magnetic field. Electric pulses are sent to the write head, and the resulting magnetic patterns are recorded on the surface below with different patterns for positive and negative currents The physical characteristics of a magnetic disk   Summarize from book   The factors that play a role in the performance of a disk Seek time – the time it takes to position the head at the track Rotational delay / latency – the time it takes for the beginning of the sector to reach the head Access time – the sum of the seek time and rotational delay Transfer time – the time it takes to transfer data RAID The rate of improvement in secondary storage performance has been considerably less than the rate for processors and main memory. Thus secondary storage has become a bit of a bottleneck. RAID works on the concept that if one disk can be pushed so far, additional gains in performance are to be had by using multiple parallel components. Points to note about RAID… RAID is a set of physical disk drives viewed by the operating system as a single logical drive Data is distributed across the physical drives of an array in a scheme known as striping Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure (not supported by RAID 0 or RAID 1) Interesting to note that the increase in the number of drives, increases the probability of failure. To compensate for this decreased reliability RAID makes use of stored parity information that enables the recovery of data lost due to a disk failure.   The RAID scheme consists of 7 levels…   Category Level Description Disks Required Data Availability Large I/O Data Transfer Capacity Small I/O Request Rate Striping 0 Non Redundant N Lower than single disk Very high Very high for both read and write Mirroring 1 Mirrored 2N Higher than RAID 2 – 5 but lower than RAID 6 Higher than single disk Up to twice that of a signle disk for read Parallel Access 2 Redundant via Hamming Code N + m Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Parallel Access 3 Bit interleaved parity N + 1 Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Independent Access 4 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, significantly lower than single disk for write Similar to RAID 0 for read, significantly lower than single disk for write Independent Access 5 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, lower than single disk for write Similar to RAID 0 for read, generally  lower than single disk for write Independent Access 6 Block interleaved parity N + 2 Highest of all listed alternatives Similar to RAID 0 for read; lower than RAID 5 for write Similar to RAID 0 for read, significantly lower than RAID 5  for write   Read page 215 – 221 for detailed explanation on RAID levels Optical Memory There are a variety of optical-disk systems available. Read through the table on page 222 – 223 Some of the devices include… CD CD-ROM CD-R CD-RW DVD DVD-R DVD-RW Blue-Ray DVD Magnetic Tape Most modern systems use serial recording – data is lade out as a sequence of bits along each track. The typical recording used in serial is referred to as serpentine recording. In this technique when data is being recorded, the first set of bits is recorded along the whole length of the tape. When the end of the tape is reached the heads are repostioned to record a new track, and the tape is again recorded on its whole length, this time in the opposite direction. That process continued back and forth until the tape is full. To increase speed, the read-write head is capable of reading and writing a number of adjacent tracks simultaneously. Data is still recorded serially along individual tracks, but blocks in sequence are stored on adjacent tracks as suggested. A tape drive is a sequential access device. Magnetic tape was the first kind of secondary memory. It is still widely used as the lowest-cost, slowest speed member of the memory hierarchy.

    Read the article

  • Working with Analytic Workflow Manager (AWM) - Part 8 Cube Metadata Analysis

    - by Mohan Ramanuja
    CUBE SIZEselect dbal.owner||'.'||substr(dbal.table_name,4) awname, sum(dbas.bytes)/1024/1024 as mb, dbas.tablespace_name from dba_lobs dbal, dba_segments dbas where dbal.column_name = 'AWLOB' and dbal.segment_name = dbas.segment_name group by dbal.owner, dbal.table_name, dbas.tablespace_name order by dbal.owner, dbal.table_name SESSION RESOURCES select vses.username||':'||vsst.sid username, vstt.name, max(vsst.value) valuefrom v$sesstat vsst, v$statname vstt, v$session vseswhere vstt.statistic# = vsst.statistic# and vsst.sid = vses.sid andVSES.USERNAME LIKE ('ATTRIBDW_OWN') ANDvstt.name in ('session pga memory', 'session pga memory max', 'session uga memory','session uga memory max', 'session cursor cache count', 'session cursor cache hits', 'session stored procedure space', 'opened cursors current', 'opened cursors cumulative') andvses.username is not null group by vsst.sid, vses.username, vstt.name order by vsst.sid, vses.username, vstt.name OLAP PGA USE select 'OLAP Pages Occupying: '|| round((((select sum(nvl(pool_size,1)) from v$aw_calc)) / (select value from v$pgastat where name = 'total PGA inuse')),2)*100||'%' info from dual union select 'Total PGA Inuse Size: '||value/1024||' KB' info from v$pgastat where name = 'total PGA inuse' union select 'Total OLAP Page Size: '|| round(sum(nvl(pool_size,1))/1024,0)||' KB' info from v$aw_calc order by info desc OLAP PGA USAGE PER USER select vs.username, vs.sid, round(pga_used_mem/1024/1024,2)||' MB' pga_used, round(pga_max_mem/1024/1024,2)||' MB' pga_max, round(pool_size/1024/1024,2)||' MB' olap_pp, round(100*(pool_hits-pool_misses)/pool_hits,2) || '%' olap_ratio from v$process vp, v$session vs, v$aw_calc va where session_id=vs.sid and addr = paddr CUBE LOADING SCRIPT REM The 'set define off' statement is needed only if running this script through SQLPlus.REM If you are using another tool to run this script, the line below may be commented out.set define offBEGIN  DBMS_CUBE.BUILD(    'VALIDATE  ATTRIBDW_OWN.CURRENCY USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNT USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.DATEDIM USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.CUSIP USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNTRETURN',    'CCCCC', -- refresh methodfalse, -- refresh after errors    0, -- parallelismtrue, -- atomic refreshtrue, -- automatic orderfalse); -- add dimensionsEND;/BEGIN  DBMS_CUBE.BUILD(    '  ATTRIBDW_OWN.CURRENCY USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNT USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.DATEDIM USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.CUSIP USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNTRETURN',    'CCCCC', -- refresh methodfalse, -- refresh after errors    0, -- parallelismtrue, -- atomic refreshtrue, -- automatic orderfalse); -- add dimensionsEND;/ VISUALIZATION OBJECT - AW$ATTRIBDW_OWN  CREATE TABLE "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"        (            "PS#"    NUMBER(10,0),            "GEN#"   NUMBER(10,0),            "EXTNUM" NUMBER(8,0),            "AWLOB" BLOB,            "OBJNAME"  VARCHAR2(256 BYTE),            "PARTNAME" VARCHAR2(256 BYTE)        )        PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE        (            BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "AWLOB"        )        STORE AS SECUREFILE        (            TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        )        PARTITION BY RANGE        (            "GEN#"        )        SUBPARTITION BY HASH        (            "PS#",            "EXTNUM"        )        SUBPARTITIONS 8        (            PARTITION "PTN1" VALUES LESS THAN (1) PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOB ("AWLOB") STORE AS SECUREFILE ( TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE READS LOGGING NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)) ( SUBPARTITION "SYS_SUBP661" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP662" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP663" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP664" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP665" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION            "SYS_SUBP666" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP667" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP668" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" ) ,            PARTITION "PTNN" VALUES LESS THAN (MAXVALUE) PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOB ("AWLOB") STORE AS SECUREFILE ( TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)) ( SUBPARTITION "SYS_SUBP669" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP670" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP671" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP672" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP673" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION            "SYS_SUBP674" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP675" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP676" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" )        ) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."ATTRIBDW_OWN_I$" ON "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"    (        "PS#", "GEN#", "EXTNUM"    )    PCTFREE 10 INITRANS 4 MAXTRANS 255 COMPUTE STATISTICS STORAGE    (        INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT    )    TABLESPACE "ATTRIBDW_DATA" ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000406980C00004$$" ON "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"    (        PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOCAL (PARTITION "SYS_IL_P711" PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) ( SUBPARTITION "SYS_IL_SUBP695" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP696" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP697" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP698" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP699" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP700" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP701" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP702" TABLESPACE "ATTRIBDW_DATA" ) , PARTITION "SYS_IL_P712" PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) ( SUBPARTITION "SYS_IL_SUBP703" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP704" TABLESPACE        "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP705" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP706" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP707" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP708" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP709" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP710" TABLESPACE "ATTRIBDW_DATA" ) ) PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE BUILD LOG  CREATE TABLE "ATTRIBDW_OWN"."CUBE_BUILD_LOG"        (            "BUILD_ID"          NUMBER,            "SLAVE_NUMBER"      NUMBER,            "STATUS"            VARCHAR2(10 BYTE),            "COMMAND"           VARCHAR2(25 BYTE),            "BUILD_OBJECT"      VARCHAR2(30 BYTE),            "BUILD_OBJECT_TYPE" VARCHAR2(10 BYTE),            "OUTPUT" CLOB,            "AW"            VARCHAR2(30 BYTE),            "OWNER"         VARCHAR2(30 BYTE),            "PARTITION"     VARCHAR2(50 BYTE),            "SCHEDULER_JOB" VARCHAR2(100 BYTE),            "TIME" TIMESTAMP (6)WITH TIME ZONE,        "BUILD_SCRIPT" CLOB,        "BUILD_TYPE"            VARCHAR2(22 BYTE),        "COMMAND_DEPTH"         NUMBER(2,0),        "BUILD_SUB_OBJECT"      VARCHAR2(30 BYTE),        "REFRESH_METHOD"        VARCHAR2(1 BYTE),        "SEQ_NUMBER"            NUMBER,        "COMMAND_NUMBER"        NUMBER,        "IN_BRANCH"             NUMBER(1,0),        "COMMAND_STATUS_NUMBER" NUMBER,        "BUILD_NAME"            VARCHAR2(100 BYTE)        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "OUTPUT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        )        LOB        (            "BUILD_SCRIPT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407294C00013$$" ON "ATTRIBDW_OWN"."CUBE_BUILD_LOG"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407294C00007$$" ON "ATTRIBDW_OWN"."CUBE_BUILD_LOG" ( PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE DIMENSION COMPILE  CREATE TABLE "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"        (            "ID"               NUMBER,            "SEQ_NUMBER"       NUMBER,            "ERROR#"           NUMBER(8,0) NOT NULL ENABLE,            "ERROR_MESSAGE"    VARCHAR2(2000 BYTE),            "DIMENSION"        VARCHAR2(100 BYTE),            "DIMENSION_MEMBER" VARCHAR2(100 BYTE),            "MEMBER_ANCESTOR"  VARCHAR2(100 BYTE),            "HIERARCHY1"       VARCHAR2(100 BYTE),            "HIERARCHY2"       VARCHAR2(100 BYTE),            "ERROR_CONTEXT" CLOB        )        SEGMENT CREATION DEFERRED PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING TABLESPACE "ATTRIBDW_DATA" LOB        (            "ERROR_CONTEXT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR#"IS    'Error number being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR_MESSAGE"IS    'Error text being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."DIMENSION"IS    'Name of dimension being compiled';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."DIMENSION_MEMBER"IS    'Problem dimension member';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."MEMBER_ANCESTOR"IS    'Problem dimension member''s parent';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."HIERARCHY1"IS    'First hierarchy involved in error';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."HIERARCHY2"IS    'Second hierarchy involved in error';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR_CONTEXT"IS    'Extra information for error';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"IS    'Cube dimension compile log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407307C00010$$" ON "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE( INITIAL 1048576 NEXT 1048576 MAXEXTENTS 2147483645) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE OPERATING LOG  CREATE TABLE "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"        (            "INST_ID"    NUMBER NOT NULL ENABLE,            "SID"        NUMBER NOT NULL ENABLE,            "SERIAL#"    NUMBER NOT NULL ENABLE,            "USER#"      NUMBER NOT NULL ENABLE,            "SQL_ID"     VARCHAR2(13 BYTE),            "JOB"        NUMBER,            "ID"         NUMBER,            "PARENT_ID"  NUMBER,            "SEQ_NUMBER" NUMBER,            "TIME" TIMESTAMP (6)WITH TIME ZONE NOT NULL ENABLE,        "LOG_LEVEL"    NUMBER(4,0) NOT NULL ENABLE,        "DEPTH"        NUMBER(4,0),        "OPERATION"    VARCHAR2(15 BYTE) NOT NULL ENABLE,        "SUBOPERATION" VARCHAR2(20 BYTE),        "STATUS"       VARCHAR2(10 BYTE) NOT NULL ENABLE,        "NAME"         VARCHAR2(20 BYTE) NOT NULL ENABLE,        "VALUE"        VARCHAR2(4000 BYTE),        "DETAILS" CLOB        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "DETAILS"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."INST_ID"IS    'Instance ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SID"IS    'Session ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SERIAL#"IS    'Session serial#';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."USER#"IS    'User ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SQL_ID"IS    'Executing SQL statement ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."JOB"IS    'Identifier of job';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."PARENT_ID"IS    'Parent operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."TIME"IS    'Time of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."LOG_LEVEL"IS    'Verbosity level of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."DEPTH"IS    'Nesting depth of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."OPERATION"IS    'Current operation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SUBOPERATION"IS    'Current suboperation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."STATUS"IS    'Status of current operation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."NAME"IS    'Name of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."VALUE"IS    'Value of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."DETAILS"IS    'Extra information for record';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"IS    'Cube operations log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407301C00018$$" ON "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE REJECTED RECORDS CREATE TABLE "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"        (            "ID"            NUMBER,            "SEQ_NUMBER"    NUMBER,            "ERROR#"        NUMBER(8,0) NOT NULL ENABLE,            "ERROR_MESSAGE" VARCHAR2(2000 BYTE),            "RECORD#"       NUMBER(38,0),            "SOURCE_ROW" ROWID,            "REJECTED_RECORD" CLOB        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "REJECTED_RECORD"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ERROR#"IS    'Error number being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ERROR_MESSAGE"IS    'Error text being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."RECORD#"IS    'Rejected record number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."SOURCE_ROW"IS    'Rejected record''s ROWID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."REJECTED_RECORD"IS    'Rejected record copy';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"IS    'Cube rejected records log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407304C00007$$" ON "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ;

    Read the article

  • Dependency Injection Introduction

    - by MarkPearl
    I recently was going over a great book called “Dependency Injection in .Net” by Mark Seeman. So far I have really enjoyed the book and would recommend anyone looking to get into DI to give it a read. Today I thought I would blog about the first example Mark gives in his book to illustrate some of the benefits that DI provides. The ones he lists are Late binding Extensibility Parallel Development Maintainability Testability To illustrate some of these benefits he gives a HelloWorld example using DI that illustrates some of the basic principles. It goes something like this… class Program { static void Main(string[] args) { var writer = new ConsoleMessageWriter(); var salutation = new Salutation(writer); salutation.Exclaim(); Console.ReadLine(); } } public interface IMessageWriter { void Write(string message); } public class ConsoleMessageWriter : IMessageWriter { public void Write(string message) { Console.WriteLine(message); } } public class Salutation { private readonly IMessageWriter _writer; public Salutation(IMessageWriter writer) { _writer = writer; } public void Exclaim() { _writer.Write("Hello World"); } }   If you had asked me a few years ago if I had thought this was a good approach to solving the HelloWorld problem I would have resounded “No”. How could the above be better than the following…. class Program { static void Main(string[] args) { Console.WriteLine("Hello World"); Console.ReadLine(); } }  Today, my mind-set has changed because of the pain of past programs. So often we can look at a small snippet of code and make judgements when we need to keep in mind that we will most probably be implementing these patterns in projects with hundreds of thousands of lines of code and in projects that we have tests that we don’t want to break and that’s where the first solution outshines the latter. Let’s see if the first example achieves some of the outcomes that were listed as benefits of DI. Could I test the first solution easily? Yes… We could write something like the following using NUnit and RhinoMocks… [TestFixture] public class SalutationTests { [Test] public void ExclaimWillWriteCorrectMessageToMessageWriter() { var writerMock = MockRepository.GenerateMock<IMessageWriter>(); var sut = new Salutation(writerMock); sut.Exclaim(); writerMock.AssertWasCalled(x => x.Write("Hello World")); } }   This would test the existing code fine. Let’s say we then wanted to extend the original solution so that we had a secure message writer. We could write a class like the following… public class SecureMessageWriter : IMessageWriter { private readonly IMessageWriter _writer; private readonly string _secretPassword; public SecureMessageWriter(IMessageWriter writer, string secretPassword) { _writer = writer; _secretPassword = secretPassword; } public void Write(string message) { if (_secretPassword == "Mark") { _writer.Write(message); } else { _writer.Write("Unauthenticated"); } } }   And then extend our implementation of the program as follows… class Program { static void Main(string[] args) { var writer = new SecureMessageWriter(new ConsoleMessageWriter(), "Mark"); var salutation = new Salutation(writer); salutation.Exclaim(); Console.ReadLine(); } }   Our application has now been successfully extended and yet we did very little code change. In addition, our existing tests did not break and we would just need add tests for the extended functionality. Would this approach allow parallel development? Well, I am in two camps on parallel development but with some planning ahead of time it would allow for it as you would simply need to decide on the interface signature and could then have teams develop different sections programming to that interface. So,this was really just a quick intro to some of the basic concepts of DI that Mark introduces very successfully in his book. I am hoping to blog about this further as I continue through the book to list some of the more complex implementations of containers.

    Read the article

  • Writing a method to 'transform' an immutable object: how should I approach this?

    - by Prog
    (While this question has to do with a concrete coding dilemma, it's mostly about what's the best way to design a function.) I'm writing a method that should take two Color objects, and gradually transform the first Color into the second one, creating an animation. The method will be in a utility class. My problem is that Color is an immutable object. That means that I can't do color.setRGB or color.setBlue inside a loop in the method. What I can do, is instantiate a new Color and return it from the method. But then I won't be able to gradually change the color. So I thought of three possible solutions: 1- The client code includes the method call inside a loop. For example: int duration = 1500; // duration of the animation in milliseconds int steps = 20; // how many 'cycles' the animation will take for(int i=0; i<steps; i++) color = transformColor(color, targetColor, duration, steps); And the method would look like this: Color transformColor(Color original, Color target, int duration, int steps){ int redDiff = target.getRed() - original.getRed(); int redAddition = redDiff / steps; int newRed = original.getRed() + redAddition; // same for green and blue .. Thread.sleep(duration / STEPS); // exception handling omitted return new Color(newRed, newGreen, newBlue); } The disadvantage of this approach is that the client code has to "do part of the method's job" and include a for loop. The method doesn't do it's work entirely on it's own, which I don't like. 2- Make a mutable Color subclass with methods such as setRed, and pass objects of this class into transformColor. Then it could look something like this: void transformColor(MutableColor original, Color target, int duration){ final int STEPS = 20; int redDiff = target.getRed() - original.getRed(); int redAddition = redDiff / steps; int newRed = original.getRed() + redAddition; // same for green and blue .. for(int i=0; i<STEPS; i++){ original.setRed(original.getRed() + redAddition); // same for green and blue .. Thread.sleep(duration / STEPS); // exception handling omitted } } Then the calling code would usually look something like this: // The method will usually transform colors of JComponents JComponent someComponent = ... ; // setting the Color in JComponent to be a MutableColor Color mutableColor = new MutableColor(someComponent.getForeground()); someComponent.setForeground(mutableColor); // later, transforming the Color in the JComponent transformColor((MutableColor)someComponent.getForeground(), new Color(200,100,150), 2000); The disadvantage is - the need to create a new class MutableColor, and also the need to do casting. 3- Pass into the method the actual mutable object that holds the color. Then the method could do object.setColor or similar every iteration of the loop. Two disadvantages: A- Not so elegant. Passing in the object that holds the color just to transform the color feels unnatural. B- While most of the time this method will be used to transform colors inside JComponent objects, other kinds of objects may have colors too. So the method would need to be overloaded to receive other types, or receive Objects and have instanceof checks inside.. Not optimal. Right now I think I like solution #2 the most, than solution #1 and solution #3 the least. However I'd like to hear your opinions and suggestions regarding this.

    Read the article

  • Iteration speed of int vs long

    - by jqno
    I have the following two programs: long startTime = System.currentTimeMillis(); for (int i = 0; i < N; i++); long endTime = System.currentTimeMillis(); System.out.println("Elapsed time: " + (endTime - startTime) + " msecs"); and long startTime = System.currentTimeMillis(); for (long i = 0; i < N; i++); long endTime = System.currentTimeMillis(); System.out.println("Elapsed time: " + (endTime - startTime) + " msecs"); Note: the only difference is the type of the loop variable (int and long). When I run this, the first program consistently prints between 0 and 16 msecs, regardless of the value of N. The second takes a lot longer. For N == Integer.MAX_VALUE, it runs in about 1800 msecs on my machine. The run time appears to be more or less linear in N. So why is this? I suppose the JIT-compiler optimizes the int loop to death. And for good reason, because obviously it doesn't do anything. But why doesn't it do so for the long loop as well? A colleague thought we might be measuring the JIT compiler doing its work in the long loop, but since the run time seems to be linear in N, this probably isn't the case.

    Read the article

  • using python 'with' statement with iterators?

    - by Stephen
    Hi, I'm using Python 2.5. I'm trying to use this 'with' statement. from __future__ import with_statement a = [] with open('exampletxt.txt','r') as f: while True: a.append(f.next().strip().split()) print a The contents of 'exampletxt.txt' are simple: a b In this case, I get the error: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/tmp/python-7036sVf.py", line 5, in <module> a.append(f.next().strip().split()) StopIteration And if I replace f.next() with f.read(), it seems to be caught in an infinite loop. I wonder if I have to write a decorator class that accepts the iterator object as an argument, and define an __exit__ method for it? I know it's more pythonic to use a for-loop for iterators, but I wanted to implement a while loop within a generator that's called by a for-loop... something like def g(f): while True: x = f.next() if test1(x): a = x elif test2(x): b = f.next() yield [a,x,b] a = [] with open(filename) as f: for x in g(f): a.append(x)

    Read the article

  • Word 2007 COM - Can't directly access a page when word is set to invisible

    - by Robbie
    I'm using Word 2007 via COM from PHP 5.2 Apache 2.0 on a windows machine. The goal is to programmatically render jpeg thumbnails from each page in a Word document. The following code works correctly if you set $word-Visible to 1: try { $word = new COM('word.application'); $word->Visible = 0; $word->Documents->Open("C:\\test.doc"); echo "Number of pages: " . $word->ActiveDocument->ActiveWindow->ActivePane->Pages->Count() . "</br>"; $i = 1; foreach ($word->ActiveDocument->ActiveWindow->ActivePane->Pages as $page) { echo "Page number: $i </br>"; $i++; } //get the EMF image of the page $data = $word->ActiveDocument->ActiveWindow->ActivePane->Pages->Item(3)->EnhMetaFileBits; $word->ActiveDocument->Close(); $word->Quit(); } catch (Exception $e) { echo "Exception: " .$e->getMessage(); } The test document I'm using contains 35 pages. The code will display the correct number of pages but the for each loop only loops over 1 page. I can only directly access page 1 and 2 in the Pages-Item() collection. If I try to access another page I get the exception: "The requested member of the collection does not exist." If I set the $word-Visible property to 1 I do get all the pages in the foreach loop and I can access any page directly. Everything is working as expected if Word is set to be visible. Even stranger is the fact that if I set Word to be invisible and I don't have the foreach loop I can only access page 1 instead of page 1 and 2 if I do the for each loop. Any pointers on how I can access all the pages in the document and keeping word invisible?

    Read the article

  • Optimizing mathematics on arrays of floats in Ada 95 with GNATC

    - by mat_geek
    Consider the bellow code. This code is supposed to be processing data at a fixed rate, in one second batches, It is part of an overal system and can't take up too much time. When running over 100 lots of 1 seconds worth of data the program takes 35 seconds; or 35%. How do I improce the code to get the processing time down to a minimum? The code will be running on an Intel Pentium-M which is a P3 with SSE2. package FF is new Ada.Numerics.Generic_Elementary_Functions(Float); N : constant Integer := 820; type A is array(1 .. N) of Float; type A3 is array(1 .. 3) of A; procedure F(state : in out A3; result : out A3; l : in A; r : in A) is s : Float; t : Float; begin for i in 1 .. N loop t := l(i) + r(i); t := t / 2.0; state(1)(i) := t; state(2)(i) := t * 0.25 + state(2)(i) * 0.75; state(3)(i) := t * 1.0 /64.0 + state(2)(i) * 63.0 /64.0; for r in 1 .. 3 loop s := state(r)(i); t := FF."**"(s, 6.0) + 14.0; if t > MAX then t := MAX; elsif t < MIN then t := MIN; end if; result(r)(i) := FF.Log(t, 2.0); end loop; end loop; end;

    Read the article

  • Validating User Input? C#

    - by Alex
    Hi, in an assignment, I have designed a input validation loop in C#, and I would like it to be able to check for the correct input format. I'm not for sure, but I think my designed loop is not checking the type of input, just what char is entered. I know I could use a try-catch block, but shouldn't you only use exceptions for exceptional situations? This is not an exceptional situation, because I expect that the user would enter an incorrect value. Input validation is not part of my assignment, so the loop is in a homework assignment, but is not part of the homework assignment. Question: Is there a way I could redesign this loop so that it checks for valid input type as well? Code: do { Console.Write("Do you wish to enter another complex number?: (Y or N)"); response = char.Parse(Console.ReadLine()); response = char.ToUpper(response); if (response != 'Y' && response != 'N') Console.WriteLine("You must respond Y or N!"); } while (response != 'Y' && response != 'N'); Thanks!!

    Read the article

  • calling a stored proc over a dblink

    - by neesh
    I am trying to call a stored procedure over a database link. The code looks something like this: declare symbol_cursor package_name.record_cursor; symbol_record package_name.record_name; begin symbol_cursor := package_name.function_name('argument'); loop fetch symbol_cursor into symbol_record; exit when symbol_cursor%notfound; -- Do something with each record here, e.g.: dbms_output.put_line( symbol_record.field_a ); end loop; CLOSE symbol_cursor; When I run this from the same DB instance and schema where package_name belongs to I am able to run it fine. However, when I run this over a database link, (with the required modification to the stored proc name, etc) I get an oracle error: ORA-24338: statement handle not executed. The modified version of this code over a dblink looks like this: declare symbol_cursor package_name.record_cursor@db_link_name; symbol_record package_name.record_name@db_link_name; begin symbol_cursor := package_name.function_name@db_link_name('argument'); loop fetch symbol_cursor into symbol_record; exit when symbol_cursor%notfound; -- Do something with each record here, e.g.: dbms_output.put_line( symbol_record.field_a ); end loop; CLOSE symbol_cursor;

    Read the article

  • SAL and SAR by 0 errors

    - by Roy McAvoy
    I have discovered a bug in some assembly code I have been working with but can't figure how to fix it. When shifting left by 0 the result ends up being 0 instead of jut the number. The same applies when shifting to the right. Any and all help is much appreciated. function sal(n,k:integer):integer; begin asm cld mov cx, k @1: sal n, 1 loop @1 end; sal:= n; end; function sar(n,k:integer):integer; begin asm cld mov cx, k @1: sar n, 1 loop @1 end; sar:=n; end; I have tried to changed them in the following way and it still does not work properly. function sal(n,k:integer):integer; begin asm cld mov cx, k jcxz @done @1: sal n, 1 loop @1 @done: end; sal:= n; end; function sar(n,k:integer):integer; begin asm cld mov cx, k jcxz @done @1: sar n, 1 loop @1 @done: end; sar:=n; end;

    Read the article

  • Just introducing myself to TMPing, and came across a quirk

    - by Justen
    I was just trying to learn the syntax of the beginner things, and how it worked when I was making this short bit of code. The code below works in adding numbers 1 to 499, but if I add 1 to 500, the compiler bugs out giving me: fatal error C1001: An internal error has occurred in the compiler. And I was just wondering why that is. Is there some limit to how much code the compiler can generate or something and it just happened to be a nice round number of 500 for me? #include <iostream> using namespace std; template < int b > struct loop { enum { sum = loop< b - 1 >::sum + b }; }; template <> struct loop< 0 > { enum { sum = 0 }; }; int main() { cout << "Adding the numbers from 1 to 499 = " << loop< 499 >::sum << endl; return 0; }

    Read the article

  • rs232 communication, general timing question

    - by Sunny Dee
    Hi, I have a piece of hardware which sends out a byte of data representing a voltage signal at a frequency of 100Hz over the serial port. I want to write a program that will read in the data so I can plot it. I know I need to open the serial port and open an inputstream. But this next part is confusing me and I'm having trouble understanding the process conceptually: I create a while loop that reads in the data from the inputstream 1 byte at a time. How do I get the while loop timing so that there is always a byte available to be read whenever it reaches the readbyte line? I'm guessing that I can't just put a sleep function inside the while loop to try and match it to the hardware sample rate. Is it just a matter of continuing reading the inputstream in the while loop, and if it's too fast then it won't do anything (since there's no new data), and if it's too slow then it will accumulate in the inputstream buffer? Like I said, i'm only trying to understand this conceptually so any guidance would be much appreciated! I'm guessing the idea is independent of which programming language I'm using, but if not, assume it is for use in Java. Thanks!

    Read the article

  • Dropping all user tables/sequences in Oracle

    - by Ambience
    As part of our build process and evolving database, I'm trying to create a script which will remove all of the tables and sequences for a user. I don't want to do recreate the user as this will require more permissions than allowed. My script creates a procedure to drop the tables/sequences, executes the procedure, and then drops the procedure. I'm executing the file from sqlplus: drop.sql: create or replace procedure drop_all_cdi_tables is cur integer; begin cur:= dbms_sql.OPEN_CURSOR(); for t in (select table_name from user_tables) loop execute immediate 'drop table ' ||t.table_name|| ' cascade constraints'; end loop; dbms_sql.close_cursor(cur); cur:= dbms_sql.OPEN_CURSOR(); for t in (select sequence_name from user_sequences) loop execute immediate 'drop sequence ' ||t.sequence_name; end loop; dbms_sql.close_cursor(cur); end; / execute drop_all_cdi_tables; / drop procedure drop_all_cdi_tables; / Unfortunately, dropping the procedure causes a problem. There seems to cause a race condition and the procedure is dropped before it executes. E.g.: SQL*Plus: Release 11.1.0.7.0 - Production on Tue Mar 30 18:45:42 2010 Copyright (c) 1982, 2008, Oracle. All rights reserved. Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.7.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options Procedure created. PL/SQL procedure successfully completed. Procedure created. Procedure dropped. drop procedure drop_all_user_tables * ERROR at line 1: ORA-04043: object DROP_ALL_USER_TABLES does not exist SQL Disconnected from Oracle Database 11g Enterprise Edition Release 11.1.0.7.0 - 64 With the Partitioning, OLAP, Data Mining and Real Application Testing options Any ideas on how to get this working?

    Read the article

  • Windows Messages Bizarreness

    - by jameszhao00
    Probably just a gross oversight of some sort, but I'm not receiving any WM_SIZE messages in the message loop. However, I do receive them in the WndProc. I thought the windows loop gave messages out to WndProc? LRESULT CALLBACK WndProc( HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam ) { switch(message) { // this message is read when the window is closed case WM_DESTROY: { // close the application entirely PostQuitMessage(0); return 0; } break; case WM_SIZE: return 0; break; } printf("wndproc - %i\n", message); // Handle any messages the switch statement didn't return DefWindowProc (hWnd, message, wParam, lParam); } ... and now the message loop... while(TRUE) { // Check to see if any messages are waiting in the queue if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { // translate keystroke messages into the right format TranslateMessage(&msg); // send the message to the WindowProc function DispatchMessage(&msg); // check to see if it's time to quit if(msg.message == WM_QUIT) { break; } if(msg.message == WM_SIZING) { printf("loop - resizing...\n"); } } else { //do other stuff } }

    Read the article

< Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >