Search Results

Search found 22463 results on 899 pages for 'sub query'.

Page 100/899 | < Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >

  • NHibernate (3.1.0.4000) NullReferenceException using Query<> and NHibernate Facility

    - by TigerShark
    I have a problem with NHibernate, I can't seem to find any solution for. In my project I have a simple entity (Batch), but whenever I try and run the following test, I get an exception. I've triede a couple of different ways to perform a similar query, but almost identical exception for all (it differs in which LINQ method being executed). The first test: [Test] public void QueryLatestBatch() { using (var session = SessionManager.OpenSession()) { var batch = session.Query<Batch>() .FirstOrDefault(); Assert.That(batch, Is.Not.Null); } } The exception: System.NullReferenceException : Object reference not set to an instance of an object. at NHibernate.Linq.NhQueryProvider.PrepareQuery(Expression expression, ref IQuery query, ref NhLinqExpression nhQuery) at NHibernate.Linq.NhQueryProvider.Execute(Expression expression) at System.Linq.Queryable.FirstOrDefault(IQueryable`1 source) The second test: [Test] public void QueryLatestBatch2() { using (var session = SessionManager.OpenSession()) { var batch = session.Query<Batch>() .OrderBy(x => x.Executed) .Take(1) .SingleOrDefault(); Assert.That(batch, Is.Not.Null); } } The exception: System.NullReferenceException : Object reference not set to an instance of an object. at NHibernate.Linq.NhQueryProvider.PrepareQuery(Expression expression, ref IQuery query, ref NhLinqExpression nhQuery) at NHibernate.Linq.NhQueryProvider.Execute(Expression expression) at System.Linq.Queryable.SingleOrDefault(IQueryable`1 source) However, this one is passing (using QueryOver<): [Test] public void QueryOverLatestBatch() { using (var session = SessionManager.OpenSession()) { var batch = session.QueryOver<Batch>() .OrderBy(x => x.Executed).Asc .Take(1) .SingleOrDefault(); Assert.That(batch, Is.Not.Null); Assert.That(batch.Executed, Is.LessThan(DateTime.Now)); } } Using the QueryOver< API is not bad at all, but I'm just kind of baffled that the Query< API isn't working, which is kind of sad, since the First() operation is very concise, and our developers really enjoy LINQ. I really hope there is a solution to this, as it seems strange if these methods are failing such a simple test. EDIT I'm using Oracle 11g, my mappings are done with FluentNHibernate registered through Castle Windsor with the NHibernate Facility. As I wrote, the odd thing is that the query works perfectly with the QueryOver< API, but not through LINQ.

    Read the article

  • 301 Redirect and query strings

    - by icelizard
    I am looking to create a 301 redirect based purely on a query string see b OLD URL: olddomain.com/?pc=/product/9999 New URL: newurl.php?var=yup My normal way of doing this would be redirect 301 pc=/product/9999 newurl.php?var=yup But this time I am trying to match a URL that that only contains the domain and a query string... What is the best way of doing this? Thanks

    Read the article

  • MySQL: how to enable Slow Query Log?

    - by Continuation
    Can you give me an example on how to enable MySQL's slow query log? According to the doc: As of MySQL 5.1.29, use --slow_query_log[={0|1}] to enable or disable the slow query log, and optionally --slow_query_log_file=file_name to specify a log file name. The --log-slow-queries option is deprecated. So how do I use that option? Can I put it in my.cnf? An example would be greatly appreciated. Thank you very much

    Read the article

  • HP Proliant Servers - WMI query for system health

    - by Mike McClelland
    Hi, I want to query lots of HP servers to determine their overall health. I don't want to use any packages, or even SNMP - I want to query the server health from WMI and understand if a box is Green/Amber/Red - just like the HP Management Home Page. This MUST be possible - but I can't find any documentation... Oh yes, and the servers are running Windows Server 2003/8. Help!! Mike

    Read the article

  • Slow Query log for just one database

    - by Jason
    can I enable the slow query log specifically for just one database? What I've done currently is to take the entire log into excel and then run a pivot report to work out which database is the slowest. So i've gone and done some changes to that application in the hope of reducing the slow query occurence. rather than running my pivot report again which took a bit of time to cleanse the data i'd rather just output slow queries from the one database possible?

    Read the article

  • How do I make a LDAP query-based dynamic distribution group in Exchange 2010

    - by blsub6
    I see that there were ways in Exchange 2003 and Exchange 2007 to just put in an LDAP query and it would populate the group for you. Is there any way to do that in Exchange 2010? I know there's dynamic distribution groups but I don't want to create the group based on one of their pre-set queries and I don't want to mess around with "custom attributes". I just want to put an LDAP query in there and make it run it to populate the distribution group.

    Read the article

  • Replace a SQL Server query with another before execution

    - by Kiranu
    I am trying to work with a legacy application in SQL Server which at some point does the following query SELECT serverproperty('EngineEdition') as sqledition The server replies with 2 (which is the correct edition), but the application closes since the app demands to be run over SQL Server Express which is 4. We don't have access to the code and the developer is long gone. Is there a way to configure SQL Server so that when this query is received it simply returns 4 and not the value of the property? Thanks

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • VB.NET handling data between different forms

    - by niuchu
    Hi, I'm writing a simple application - address book. User enters new addresses and they are added as an entry to a list visible on the main form (frmStart). I use one form to add and edit (AddContForm). Add button on the frmStart works fine, however I experience some problems with the edit button as when I press it and enter new data they are added as new entry however the previous entry is still there. Logic is handled by Contact.vb class. Please let me know how to fix this problem. Here is the code: Contact.vb Public Class Contact Public Contact As String Public Title As String Public Fname As String Public Surname As String Public Address As String Private myCont As String Public Property Cont() Get Return myCont End Get Set(ByVal value) myCont = Value End Set End Property Public Overrides Function ToString() As String Return Me.Cont End Function Public Sub Display() Dim C As New Contact C.Cont = frmAddCont.txtTitle.Text C.Fname = frmAddCont.txtFName.Text C.Surname = frmAddCont.txtSName.Text C.Address = frmAddCont.txtAddress.Text frmStart.lstContact.Items.Add(C) End Sub End Class Here is frmStart.vb Public Class frmStart Public Button As String Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnAdd.Click Button = "" Button = "Add" frmAddCont.ShowDialog() End Sub Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnDel.Click Button = "" Button = "Del" Dim DelCont As Contact DelCont = Me.lstContact.SelectedItem() lstContact.Items.Remove(DelCont) End Sub Private Sub lstContact_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles lstContact.SelectedIndexChanged End Sub Private Sub btnEdit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnEdit.Click Button = "" Button = "Edit" Dim C As Contact If lstContact.SelectedItem IsNot Nothing Then C = DirectCast(lstContact.SelectedItem, Contact) frmAddCont.ShowDialog() End If End Sub End Class Here is AddContFrm.vb Public Class frmAddCont Public Class ControlObject Dim Title As String Dim FName As String Dim SName As String Dim Address As String Dim TelephoneNumber As Integer Dim emailAddress As String Dim Website As String Dim Photograph As String End Class Private Sub btnConfirmAdd_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnConfirmAdd.Click Dim B As String B = frmStart.Button Dim C As New Contact C.Display() Me.Hide() If B = "Edit" Then C = DirectCast(frmStart.lstContact.SelectedItem, Contact) frmStart.lstContact.SelectedItems.Remove(C) End If End Sub Private Sub frmAddCont_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load End Sub End Class

    Read the article

  • Query specific logs from event log using nxlog

    - by user170899
    Below is my nxlog configuration define ROOT C:\Program Files (x86)\nxlog Moduledir %ROOT%\modules CacheDir %ROOT%\data Pidfile %ROOT%\data\nxlog.pid SpoolDir %ROOT%\data LogFile %ROOT%\data\nxlog.log <Extension json> Module xm_json </Extension> <Input internal> Module im_internal </Input> <Input eventlog> Module im_msvistalog Query <QueryList>\ <Query Id="0">\ <Select Path="Security">*</Select>\ </Query>\ </QueryList> </Input> <Output out> Module om_tcp Host localhost Port 3515 Exec $EventReceivedTime = integer($EventReceivedTime) / 1000000; \ to_json(); </Output> <Route 1> Path eventlog, internal => out </Route> <Select Path="Security">*</Select>\ - * gets everything from the Security log, but my requirement is to get specific logs starting with EventId - 4663. How do i do this? Please help. Thanks.

    Read the article

  • How to manage sub-domains on WinHost with IIS7 URL Rewrite 2.0?

    - by jrummell
    I'm trying out WinHost and I'm running into some issues with sub-domains. On WinHost, you can have multiple sub-domains per hosting account, but each sub-domain points to the root website. E.g. you can have www.example.com, sub1.example.com, and sub2.example.com but all of them display the content at http://www.example.com/. Other Hosts allow you to point sub-domains to a sub folder in your website. This would allow you to point sub1.example.com to /sub1, sub2.example.com to /sub2 and www.example.com to /. WinHost recommends using an asp/aspx page to redirect http://sub1.example.com to http://sub1.example.com/sub1, which points to /sub1. While that would work, I'd like to not have the subdomain in the url twice. So I tried using IIS7 URL Rewrite to point http://sub1.example.com to /sub1. Ben Powell describes this in detail on his blog. This is great, except Request.ApplicationPath is now /sub1/path/to/current/page.aspx, which breaks ASP.Net Themes (and probably other stuff too). What can I do to fix the ApplicationPath? Is there a better way to accomplish this?

    Read the article

  • Query Execution Failed in Reporting Services reports

    - by Chris Herring
    I have some reporting services reports that talk to Analysis Services and at times they fail with the following error: An error occurred during client rendering. An error has occurred during report processing. Query execution failed for dataset 'AccountManagerAccountManager'. The connection cannot be used while an XmlReader object is open. This occurs sometimes when I change selections in the filter. It also occurs when the machine has been under heavy load and then will consistently error until SSAS is restarted. The log file contains the following error: processing!ReportServer_0-18!738!04/06/2010-11:01:14:: e ERROR: Throwing Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'., ; Info: Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'. ---> System.InvalidOperationException: The connection cannot be used while an XmlReader object is open. at Microsoft.AnalysisServices.AdomdClient.XmlaClient.CheckConnection() at Microsoft.AnalysisServices.AdomdClient.XmlaClient.ExecuteStatement(String statement, IDictionary connectionProperties, IDictionary commandProperties, IDataParameterCollection parameters, Boolean isMdx) at Microsoft.AnalysisServices.AdomdClient.AdomdConnection.XmlaClientProvider.Microsoft.AnalysisServices.AdomdClient.IExecuteProvider.ExecuteTabular(CommandBehavior behavior, ICommandContentProvider contentProvider, AdomdPropertyCollection commandProperties, IDataParameterCollection parameters) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.System.Data.IDbCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.DataExtensions.AdoMdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.OnDemandProcessing.RuntimeDataSet.RunDataSetQuery() Can anyone shed light on this issue?

    Read the article

  • Query Execution Failed in Reporting Services reports

    - by Chris Herring
    I have some reporting services reports that talk to Analysis Services and at times they fail with the following error: An error occurred during client rendering. An error has occurred during report processing. Query execution failed for dataset 'AccountManagerAccountManager'. The connection cannot be used while an XmlReader object is open. This occurs sometimes when I change selections in the filter. It also occurs when the machine has been under heavy load and then will consistently error until SSAS is restarted. The log file contains the following error: processing!ReportServer_0-18!738!04/06/2010-11:01:14:: e ERROR: Throwing Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'., ; Info: Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'. ---> System.InvalidOperationException: The connection cannot be used while an XmlReader object is open. at Microsoft.AnalysisServices.AdomdClient.XmlaClient.CheckConnection() at Microsoft.AnalysisServices.AdomdClient.XmlaClient.ExecuteStatement(String statement, IDictionary connectionProperties, IDictionary commandProperties, IDataParameterCollection parameters, Boolean isMdx) at Microsoft.AnalysisServices.AdomdClient.AdomdConnection.XmlaClientProvider.Microsoft.AnalysisServices.AdomdClient.IExecuteProvider.ExecuteTabular(CommandBehavior behavior, ICommandContentProvider contentProvider, AdomdPropertyCollection commandProperties, IDataParameterCollection parameters) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.System.Data.IDbCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.DataExtensions.AdoMdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.OnDemandProcessing.RuntimeDataSet.RunDataSetQuery() Can anyone shed light on this issue?

    Read the article

  • Nginx redirect requests to sub-domains that do not exist to custom 404 page when wild card A record is set?

    - by Anagio
    Is there a way to capture all requests to arbitrary sub-domains which do not have a virtual host setup, and redirect to a custom 404 page in nginx? I will have a wild card A record setup *.example.com and all our users will have a sub-domain username.example.com. If someone enters a sub-domain which does not exist how can I redirect to a custom 404 page rather than have it resolve since wild card is setup?

    Read the article

  • Excel: Is it possible to have rows with sub-totals that doesn't ruin the total-total?

    - by Svish
    I have an excel sheet which looks something like this: date text value other-value date text value other-value date text value other-value date text value other-value totals sum other-sum The sum is of course a sum of all the values above it. What I am wondering is if there is a way I can add rows with a sub-total at random places through out that list. For example if I would like to have a sub-total for each new month. My problem is of course that the total sum will become way to large because it will also sum the rows with the sub-totals. Does Excel have a feature that can help me so I can have the sub-totals and a correct total-total? I'm using Excel 2010.

    Read the article

  • SSRS2008R2 report times out, but the underlying query executes in the Management Studio

    - by Matthew Belk
    A customer of mine recently moved servers and the new server has SQL2008R2. His old server was SQL2005. The new server has substantially better CPU, RAM, and disk performance than the old, but several reports time out while executing. When I run the underlying query in the SQL Management Studio, the query executes in sub-second time. The exact error message returned via the Report Manager UI is: An error occurred within the report server database. This may be due to a connection failure, timeout or low disk condition within the database. (rsReportServerDatabaseError) Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding. It must be noted that this database is not just analytical; it's also fairly transactional, although the transaction volume is not exceptionally high. What can I do to improve the performance of the SSRS query engine? Are there settings in the data source I can adjust, or in the SSRS config files?

    Read the article

  • How can I open a shared sub calendar in Outlook 2010?

    - by Matt Love
    There is a team in my office that has a shared calendar (the team calendar is set up as a user in Active Directory/Exchange, so treat the team as a user). The team also has 3 sub-calendars for the different team members. Other people in the office need to be able to access this team's calendar. They can go to Open Calendar in Outlook and see the main calendar, but they cannot see the sub-calendars. The sub-calendars all have the Default user permissions set to Reviewer. If you go to File → Account Settings → Change [logged in Exchange account] → More Settings → Advanced and add the team's mailbox, it does show the calendars in Outlook, but it comes up under My Calendars instead of Shared Calendars. We need to be able to go to Open Calendar and open the calendar and open all the sub-calendars this way. How is this possible?

    Read the article

  • Mysql Query - That Is Returning Blatanty Incorrect Result

    - by user866190
    I am building a VPS node that is running Ubuntu 10.10LTS, Apache2, Mysql 5.1 and php5. I could not log in to my website admin through the browser, even though I am using the correct login details. So I logged in from the command line to check the results. When I run this query I get expected results: mysql> select * from users; +----+----------+-----------------------+----------+ | id | username | email | password | +----+----------+-----------------------+----------+ | 1 | myUserName | [email protected] | myPassword | +----+----------+-----------------------+----------+ And the same goes for this query: mysql> select * from users where id = 1; +----+----------+-----------------------+----------+ | id | username | email | password | +----+----------+-----------------------+----------+ | 1 | myUserName | [email protected] | myPassword | +----+----------+-----------------------+----------+ 1 row in set (0.00 sec) But when I run this query I get this 'unexpected response': mysql> select * from users where username = 'myUserName' and password = 'myPassword'; Empty set (0.00 sec) I am not sure why this is happening. Any help would be greatly appreciated. BTW.. I will be encrypting the user details but for now I just want to get it set up. Please help, Thanks

    Read the article

  • How to create a WHM/cPanel account, without creating a new sub-domain?

    - by Cyclops
    I have a basic VPS (full root access), with WHM/cPanel, and am learning the ropes. I'm trying to create a new account for an existing domain (mysite.com), and so far WHM won't let me - it either wants a sub-domain or fake domain, but won't allow two accounts for one domain. In the beginning, there was only the root account, and it wouldn't let me login to cPanel - a quick chat with tech support, and I am informed that I need to create a second account, which I did. So now I have an account, call it ns1me, for domain mysite.com. Now I want to create a django account. I go through the same process, but WHM won't allow me to use mysite.com as the domain for django. The docs recommend a sub-domain, so I fill the box in with django.mysite.com. I then realize that has actually created a sub-domain - going to django.mysite.com shows me its home directory, along with helpful information about what version of Apache, Python, and other mods its running (thanks, Apache). I really don't want a sub-domain, so that's out. Another chat with tech support, and they recommend a fake domain name, as it won't create anything. Sure enough, using a domain of djangomysite.com works, and WHM allows me to create a django account. But of course, I can't send email to [email protected] (where I could to [email protected]). What I want, is to be able to create a second account, associated with mysite.com (so I can run cPanel logged in as django, send email to [email protected], etc) - without creating a whole new sub-domain, or fake domain.

    Read the article

  • Automating Access 2007 Queries (changing one criteria)

    - by Graphth
    So, I have 6 queries and I want to run them all once at the end of each month. (I know a bit about SQL but they're simply built using Access's design view). So, in the next few days, perhaps I'll run the 6 queries for May, as May just ended. I only want the data from the month that just ended, so the query has Criteria set as the name of the month (e.g., May). Now, it's not hugely time consuming to change all of these each month, but is there some way to automate this? Currently, they're all set to April and I want to change them all to May when I run them in a few days. And each month, I'd like to type the month (perhaps in a textbox in a form or somewhere else if you know a better way) just once and have it change all 6 queries, without having to manually open all 6, scroll over to the right field and change the Criteria. Note (about VBA): I have used Excel VBA so I know the basics of VBA but I don't really know anything specific to Access (other than seeing code a few times). And, others will use this who do not know anything about Access VBA. So, I think I have found a similar question/answer that could do this in VBA, but I'd rather do it some other way. If the query needs to be slightly redesigned later, probably by someone who doesn't know Access VBA at all, it'd be nice to have a solution not involving VBA if that is even possible.

    Read the article

  • Can third party content on sub-domains harm the main site's search rankings?

    - by dror
    I have a site that is a "portal" or "directory" for service providers. We opened every service provider's own page on our site, but now we get a lot of applications from those providers that want sites from their own. We want to make a full site for every service provider, but rather put them on sub domain URLs. (They don’t mind, it's OK for them.) So, my site is www.exaple.com Their site will be: provider.example.com Now I have two questions: Can the content on the provider sites harm my site in SEO? If one from those sub domains is punished by Google because the owner does "black hat SEO", how it will affect the rood domain? Can it make the root domain get punished?

    Read the article

  • How do I correctly sub-license a library that is under the MIT license?

    - by Petah
    How do I correctly sub-license a library that is under the MIT license. I am using and extending the library. The MIT license states that I am free to sub-license the library. Can I simply state: <Software library> is copyright <original author> and licensed under the MIT license. <orignal license> Extensions to <Software library> are copyright <me> and licensed under the GPL license, or commercial license if applicable. <GPL, or commercial license>

    Read the article

  • How do I access column data in a previous select statement from a sub-query? [closed]

    - by payling
    PROBLEM How do I access column data in a previous select statement from a sub-query? Below is a simple mock up of what I'm attempting to do. Tables used: Quotes, Users QUOTES TABLE qid, (quote id) owner_uid, creator_uid SQL SYNTAX: SELECT q.qid, q.owner_uid, q.creator_uid, owner.fname, owner.lname FROM quotes q, (SELECT u.fname, u.lname FROM users u WHERE u.uid = q.owner_uid) AS owner WHERE q.qid = '#' SUMMARY I want to be able to use the quote table's owner_uid and specify it for the owner table so I can return all the owner info for that particular quote. The problem is, q.owner_uid is not recognized in the owner sub-query. What am I doing wrong?

    Read the article

  • Good way to parse query string

    - by m.edmondson
    I have a String that contains the following: ?workarea=London+&+Home+Counties+Ltd&sub=fs&&&FASh*5 which resembles a URI query string. What is the best way to parse the elements of this string (workarea and sub) without messing about with string manipulation? If I use HttpUtility.ParseQueryString is gets stuck as both elements include &. However if I encode the whole thing first I lose the seperations of the elements. Ideally the output would be: workarea = London & Home Counties Ltd sub = fs&&&FASh*5

    Read the article

  • Make SQL query more efficient

    - by Webnet
    I currently have this query which runs 2 of the exact same sub queries but pull different data. When I make the values comma separated it throws an SQL error saying the sub query can return only one value. Is there anything else I can do to avoid running multiple sub queries? SELECT product_id, ( SELECT COUNT(listing_id) FROM ebay_archive_product_listing_assoc WHERE product_id = product_master.product_id) as listing_count, sku, type_id, ( SELECT AVG(ebay_archive_listing.current_price), AVG(ebay_archive_listing.buy_it_now_price) FROM ebay_archive_listing WHERE id IN ( SELECT listing_id FROM ebay_archive_product_listing_assoc WHERE product_id = product_master.product_id ) AND ebay_archive_listing.start_time >= '.$startTimestamp.' AND ebay_archive_listing.start_time <= '.$endTimestamp.' AND ebay_archive_listing.current_price > 0 ) as average_bid_price, ( SELECT FROM ebay_archive_listing WHERE id IN ( SELECT listing_id FROM ebay_archive_product_listing_assoc WHERE product_id = product_master.product_id ) AND ebay_archive_listing.start_time >= '.$startTimestamp.' AND ebay_archive_listing.start_time <= '.$endTimestamp.' AND ebay_archive_listing.buy_it_now_price > 0 ) as average_buyout_price FROM product_master I'm aware of the syntax error... I'm selecting 2 seperate averages and am wondering if I can do it any simpler way.

    Read the article

< Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >