Search Results

Search found 16126 results on 646 pages for 'wcf performance'.

Page 100/646 | < Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >

  • How do I find the cause for a huge difference in performance between two identical Ubuntu servers?

    - by the.duckman
    I am running two Dell R410 servers in the same rack of a data center. Both have the same hardware configuration, run Ubuntu 10.4, have the same packages installed and run the same Java web servers. No other load. One of them is 20-30% faster than the other, very consistently. I used dstat to figure out, if there are more context switches, IO, swapping or anything, but I see no reason for the difference. With the same workload, (no swapping, virtually no IO), the cpu usage and load is higher on one server. So the difference appears to be mainly CPU bound, but while a simple cpu benchmark using sysbench (with all other load turned off) did yield a difference, it was only 6%. So maybe it is not only CPU but also memory performance. I tried to figure out if the BIOS settings differ in some parameter, did a dump using dmidecode, but that yielded no difference. I compared /proc/cpuinfo, no difference. I compared the output of cpufreq-info, no difference. I am lost. What can I do, to figure out, what is going on?

    Read the article

  • mysql - moving to a lower performance server, how small can I go?

    - by pedalpete
    I've been running a site for a few years now which really isn't growing in traffic, and I want to save some money on hosting, but keep it going for the loyal users of the site and api. The database has one a nearly 4 million row table, and on a 4gb dual xeon 5320 server. When I check server stats on this server with ps -aux, i get returns of mysql running at about 11% capacity, so no serious load. The main query against mysql runs in about 0.45 seconds. I popped over to linode.com to see what kind of performance I could get out of one of their tiny boxes, and their 360mb ram XEN vps returns the same query in 20 seconds. Clearly not good enough. I've looked at the mysql variables, and they are both very similar (I've included the show variables output below, if anybody is interested). Is there a good way to decide on what size server is needed based on what I'm coming from? Is it RAM that is likely making the difference with the large table size? Is there a way for me to figure out how much ram would be ideal?? Here's the output of the show variables (though I'm not sure it is important). +---------------------------------+------------------------------------------------------------+ | Variable_name | Value | +---------------------------------+------------------------------------------------------------+ | auto_increment_increment | 1 | | auto_increment_offset | 1 | | automatic_sp_privileges | ON | | back_log | 50 | | basedir | /usr/ | | bdb_cache_size | 8384512 | | bdb_home | /var/lib/mysql/ | | bdb_log_buffer_size | 262144 | | bdb_logdir | | | bdb_max_lock | 10000 | | bdb_shared_data | OFF | | bdb_tmpdir | /tmp/ | | binlog_cache_size | 32768 | | bulk_insert_buffer_size | 8388608 | | character_set_client | latin1 | | character_set_connection | latin1 | | character_set_database | latin1 | | character_set_filesystem | binary | | character_set_results | latin1 | | character_set_server | latin1 | | character_set_system | utf8 | | character_sets_dir | /usr/share/mysql/charsets/ | | collation_connection | latin1_swedish_ci | | collation_database | latin1_swedish_ci | | collation_server | latin1_swedish_ci | | completion_type | 0 | | concurrent_insert | 1 | | connect_timeout | 10 | | datadir | /var/lib/mysql/ | | date_format | %Y-%m-%d | | datetime_format | %Y-%m-%d %H:%i:%s | | default_week_format | 0 | | delay_key_write | ON | | delayed_insert_limit | 100 | | delayed_insert_timeout | 300 | | delayed_queue_size | 1000 | | div_precision_increment | 4 | | keep_files_on_create | OFF | | engine_condition_pushdown | OFF | | expire_logs_days | 0 | | flush | OFF | | flush_time | 0 | | ft_boolean_syntax | + - For some reason, that table formats properly in the preview, but apparently not when viewing the question. Hopefully it isn't needed anyway.

    Read the article

  • Windows 7 host with Ubuntu Guest and a performance hit, memory locks?

    - by Cyrylski
    I have a brand new Lenovo T510 with Core i5 and 4GB of RAM with Windows 7 on it. I Installed Ubuntu 10.10 in a Virtualbox. For some reason system gets really slow on this setup which makes me really angry. There's a video card shared with full 3D support enabled and 1GB of RAM allocated for the Ubuntu machine. It may sound stupid, but WHY is the whole memory consumed in an instant when I run Virtualbox? I struggled for like 10 minutes restraining myself from a brutal reset, and now everything runs smooth but memory "in use" in Resource Monitor is 3GB flat with only Chrome running. I'm new to Windows 7, but I'm really disappointed with performance at this point... I used to work in a different environment with much slower hardware and there was no such problem (WinXP over Ubuntu, 1GB out of 2GB allocated for WinXP guest on intel GMA). This is, until I clogged RAM totally there. But I was capable of running Chrome, Firefox and Apache server on a 1GB RAM in Ubuntu there and Photoshop CS4 on Windows XP and it worked. In this case I can't go beyond setting up Ubuntu properly. I bet I'm doing something wrong.

    Read the article

  • Save object states in .data or attr - Performance vs CSS?

    - by Neysor
    In response to my answer yesterday about rotating an Image, Jamund told me to use .data() instead of .attr() First I thought that he is right, but then I thought about a bigger context... Is it always better to use .data() instead of .attr()? I looked in some other posts like what-is-better-data-or-attr or jquery-data-vs-attrdata The answers were not satisfactory for me... So I moved on and edited the example by adding CSS. I thought it might be useful to make a different Style on each image if it rotates. My style was the following: .rp[data-rotate="0"] { border:10px solid #FF0000; } .rp[data-rotate="90"] { border:10px solid #00FF00; } .rp[data-rotate="180"] { border:10px solid #0000FF; } .rp[data-rotate="270"] { border:10px solid #00FF00; } Because design and coding are often separated, it could be a nice feature to handle this in CSS instead of adding this functionality into JavaScript. Also in my case the data-rotate is like a special state which the image currently has. So in my opinion it make sense to represent it within the DOM. I also thought this could be a case where it is much better to save with .attr() then with .data(). Never mentioned before in one of the posts I read. But then i thought about performance. Which function is faster? I built my own test following: <!DOCTYPE HTML> <html> <head> <title>test</title> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script> <script type="text/javascript"> function runfirst(dobj,dname){ console.log("runfirst "+dname); console.time(dname+"-attr"); for(i=0;i<10000;i++){ dobj.attr("data-test","a"+i); } console.timeEnd(dname+"-attr"); console.time(dname+"-data"); for(i=0;i<10000;i++){ dobj.data("data-test","a"+i); } console.timeEnd(dname+"-data"); } function runlast(dobj,dname){ console.log("runlast "+dname); console.time(dname+"-data"); for(i=0;i<10000;i++){ dobj.data("data-test","a"+i); } console.timeEnd(dname+"-data"); console.time(dname+"-attr"); for(i=0;i<10000;i++){ dobj.attr("data-test","a"+i); } console.timeEnd(dname+"-attr"); } $().ready(function() { runfirst($("#rp4"),"#rp4"); runfirst($("#rp3"),"#rp3"); runlast($("#rp2"),"#rp2"); runlast($("#rp1"),"#rp1"); }); </script> </head> <body> <div id="rp1">Testdiv 1</div> <div id="rp2" data-test="1">Testdiv 2</div> <div id="rp3">Testdiv 3</div> <div id="rp4" data-test="1">Testdiv 4</div> </body> </html> It should also show if there is a difference with a predefined data-test or not. One result was this: runfirst #rp4 #rp4-attr: 515ms #rp4-data: 268ms runfirst #rp3 #rp3-attr: 505ms #rp3-data: 264ms runlast #rp2 #rp2-data: 260ms #rp2-attr: 521ms runlast #rp1 #rp1-data: 284ms #rp1-attr: 525ms So the .attr() function did always need more time than the .data() function. This is an argument for .data() I thought. Because performance is always an argument! Then I wanted to post my results here with some questions, and in the act of writing I compared with the questions Stack Overflow showed me (similar titles) And true enough, there was one interesting post about performance I read it and run their example. And now I am confused! This test showed that .data() is slower then .attr() !?!! Why is that so? First I thought it is because of a different jQuery library so I edited it and saved the new one. But the result wasn't changing... So now my questions to you: Why are there some differences in the performance in these two examples? Would you prefer to use data- HTML5 attributes instead of data, if it represents a state? Although it wouldn't be needed at the time of coding? Why - Why not? Now depending on the performance: Would performance be an argument for you using .attr() instead of data, if it shows that .attr() is better? Although data is meant to be used for .data()? UPDATE 1: I did see that without overhead .data() is much faster. Misinterpreted the data :) But I'm more interested in my second question. :) Would you prefer to use data- HTML5 attributes instead of data, if it represents a state? Although it wouldn't be needed at the time of coding? Why - Why not? Are there some other reasons you can think of, to use .attr() and not .data()? e.g. interoperability? because .data() is jquery style and HTML Attributes can be read by all... UPDATE 2: As we see from T.J Crowder's speed test in his answer attr is much faster then data! which is again confusing me :) But please! Performance is an argument, but not the highest! So give answers to my other questions please too!

    Read the article

  • General monitoring for SQL Server Analysis Services using Performance Monitor

    - by Testas
    A recent customer engagement required a setup of a monitoring solution for SSAS, due to the time restrictions placed upon this, native Windows Performance Monitor (Perfmon) and SQL Server Profiler Monitoring Tools was used as using a third party tool would have meant the customer providing an additional monitoring server that was not available.I wanted to outline the performance monitoring counters that was used to monitor the system on which SSAS was running. Due to the slow query performance that was occurring during certain scenarios, perfmon was used to establish if any pressure was being placed on the Disk, CPU or Memory subsystem when concurrent connections access the same query, and Profiler to pinpoint how the query was being managed within SSAS, profiler I will leave for another blogThis guide is not designed to provide a definitive list of what should be used when monitoring SSAS, different situations may require the addition or removal of counters as presented by the situation. However I hope that it serves as a good basis for starting your monitoring of SSAS. I would also like to acknowledge Chris Webb’s awesome chapters from “Expert Cube Development” that also helped shape my monitoring strategy:http://cwebbbi.spaces.live.com/blog/cns!7B84B0F2C239489A!6657.entrySimulating ConnectionsTo simulate the additional connections to the SSAS server whilst monitoring, I used ascmd to simulate multiple connections to the typical and worse performing queries that were identified by the customer. A similar sript can be downloaded from codeplex at http://www.codeplex.com/SQLSrvAnalysisSrvcs.     File name: ASCMD_StressTestingScripts.zip. Performance MonitorWithin performance monitor,  a counter log was created that contained the list of counters below. The important point to note when running the counter log is that the RUN AS property within the counter log properties should be changed to an account that has rights to the SSAS instance when monitoring MSAS counters. Failure to do so means that the counter log runs under the system account, no errors or warning are given while running the counter log, and it is not until you need to view the MSAS counters that they will not be displayed if run under the default account that has no right to SSAS. If your connection simulation takes hours, this could prove quite frustrating if not done beforehand JThe counters used……  Object Counter Instance Justification System Processor Queue legnth N/A Indicates how many threads are waiting for execution against the processor. If this counter is consistently higher than around 5 when processor utilization approaches 100%, then this is a good indication that there is more work (active threads) available (ready for execution) than the machine's processors are able to handle. System Context Switches/sec N/A Measures how frequently the processor has to switch from user- to kernel-mode to handle a request from a thread running in user mode. The heavier the workload running on your machine, the higher this counter will generally be, but over long term the value of this counter should remain fairly constant. If this counter suddenly starts increasing however, it may be an indicating of a malfunctioning device, especially if the Processor\Interrupts/sec\(_Total) counter on your machine shows a similar unexplained increase Process % Processor Time sqlservr Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process % Processor Time msmdsrv Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process Working Set sqlservr If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Process Working Set msmdsrv If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Processor % Processor Time _Total and individual cores measures the total utilization of your processor by all running processes. If multi-proc then be mindful only an average is provided Processor % Privileged Time _Total To see how the OS is handling basic IO requests. If kernel mode utilization is high, your machine is likely underpowered as it's too busy handling basic OS housekeeping functions to be able to effectively run other applications. Processor % User Time _Total To see how the applications is interacting from a processor perspective, a high percentage utilisation determine that the server is dealing with too many apps and may require increasing thje hardware or scaling out Processor Interrupts/sec _Total  The average rate, in incidents per second, at which the processor received and serviced hardware interrupts. Shoulr be consistant over time but a sudden unexplained increase could indicate a device malfunction which can be confirmed using the System\Context Switches/sec counter Memory Pages/sec N/A Indicates the rate at which pages are read from or written to disk to resolve hard page faults. This counter is a primary indicator of the kinds of faults that cause system-wide delays, this is the primary counter to watch for indication of possible insufficient RAM to meet your server's needs. A good idea here is to configure a perfmon alert that triggers when the number of pages per second exceeds 50 per paging disk on your system. May also want to see the configuration of the page file on the Server Memory Available Mbytes N/A is the amount of physical memory, in bytes, available to processes running on the computer. if this counter is greater than 10% of the actual RAM in your machine then you probably have more than enough RAM. monitor it regularly to see if any downward trend develops, and set an alert to trigger if it drops below 2% of the installed RAM. Physical Disk Disk Transfers/sec for each physical disk If it goes above 10 disk I/Os per second then you've got poor response time for your disk. Physical Disk Idle Time _total If Disk Transfers/sec is above  25 disk I/Os per second use this counter. which measures the percent time that your hard disk is idle during the measurement interval, and if you see this counter fall below 20% then you've likely got read/write requests queuing up for your disk which is unable to service these requests in a timely fashion. Physical Disk Disk queue legnth For the OLAP and SQL physical disk A value that is consistently less than 2 means that the disk system is handling the IO requests against the physical disk Network Interface Bytes Total/sec For the NIC Should be monitored over a period of time to see if there is anb increase/decrease in network utilisation Network Interface Current Bandwidth For the NIC is an estimate of the current bandwidth of the network interface in bits per second (BPS). MSAS 2005: Memory Memory Limit High KB N/A Shows (as a percentage) the high memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Limit Low KB N/A Shows (as a percentage) the low memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Usage KB N/A Displays the memory usage of the server process. MSAS 2005: Memory File Store KB N/A Displays the amount of memory that is reserved for the Cache. Note if total memory limit in the msmdsrv.ini is set to 0, no memory is reserved for the cache MSAS 2005: Storage Engine Query Queries from Cache Direct / sec N/A Displays the rate of queries answered from the cache directly MSAS 2005: Storage Engine Query Queries from Cache Filtered / Sec N/A Displays the Rate of queries answered by filtering existing cache entry. MSAS 2005: Storage Engine Query Queries from File / Sec N/A Displays the Rate of queries answered from files. MSAS 2005: Storage Engine Query Average time /query N/A Displays the average time of a query MSAS 2005: Connection Current connections N/A Displays the number of connections against the SSAS instance MSAS 2005: Connection Requests / sec N/A Displays the rate of query requests per second MSAS 2005: Locks Current Lock Waits N/A Displays thhe number of connections waiting on a lock MSAS 2005: Threads Query Pool job queue Length N/A The number of queries in the job queue MSAS 2005:Proc Aggregations Temp file bytes written/sec N/A Shows the number of bytes of data processed in a temporary file MSAS 2005:Proc Aggregations Temp file rows written/sec N/A Shows the number of bytes of data processed in a temporary file 

    Read the article

  • Troubleshooting High-CPU Utilization for SQL Server

    - by Susantha Bathige
    The objective of this FAQ is to outline the basic steps in troubleshooting high CPU utilization on  a server hosting a SQL Server instance. The first and the most common step if you suspect high CPU utilization (or are alerted for it) is to login to the physical server and check the Windows Task Manager. The Performance tab will show the high utilization as shown below: Next, we need to determine which process is responsible for the high CPU consumption. The Processes tab of the Task Manager will show this information: Note that to see all processes you should select Show processes from all user. In this case, SQL Server (sqlserver.exe) is consuming 99% of the CPU (a normal benchmark for max CPU utilization is about 50-60%). Next we examine the scheduler data. Scheduler is a component of SQLOS which evenly distributes load amongst CPUs. The query below returns the important columns for CPU troubleshooting. Note – if your server is under severe stress and you are unable to login to SSMS, you can use another machine’s SSMS to login to the server through DAC – Dedicated Administrator Connection (see http://msdn.microsoft.com/en-us/library/ms189595.aspx for details on using DAC) SELECT scheduler_id ,cpu_id ,status ,runnable_tasks_count ,active_workers_count ,load_factor ,yield_count FROM sys.dm_os_schedulers WHERE scheduler_id See below for the BOL definitions for the above columns. scheduler_id – ID of the scheduler. All schedulers that are used to run regular queries have ID numbers less than 1048576. Those schedulers that have IDs greater than or equal to 1048576 are used internally by SQL Server, such as the dedicated administrator connection scheduler. cpu_id – ID of the CPU with which this scheduler is associated. status – Indicates the status of the scheduler. runnable_tasks_count – Number of workers, with tasks assigned to them that are waiting to be scheduled on the runnable queue. active_workers_count – Number of workers that are active. An active worker is never preemptive, must have an associated task, and is either running, runnable, or suspended. current_tasks_count - Number of current tasks that are associated with this scheduler. load_factor – Internal value that indicates the perceived load on this scheduler. yield_count – Internal value that is used to indicate progress on this scheduler.                                                                 Now to interpret the above data. There are four schedulers and each assigned to a different CPU. All the CPUs are ready to accept user queries as they all are ONLINE. There are 294 active tasks in the output as per the current_tasks_count column. This count indicates how many activities currently associated with the schedulers. When a  task is complete, this number is decremented. The 294 is quite a high figure and indicates all four schedulers are extremely busy. When a task is enqueued, the load_factor  value is incremented. This value is used to determine whether a new task should be put on this scheduler or another scheduler. The new task will be allocated to less loaded scheduler by SQLOS. The very high value of this column indicates all the schedulers have a high load. There are 268 runnable tasks which mean all these tasks are assigned a worker and waiting to be scheduled on the runnable queue.   The next step is  to identify which queries are demanding a lot of CPU time. The below query is useful for this purpose (note, in its current form,  it only shows the top 10 records). SELECT TOP 10 st.text  ,st.dbid  ,st.objectid  ,qs.total_worker_time  ,qs.last_worker_time  ,qp.query_plan FROM sys.dm_exec_query_stats qs CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp ORDER BY qs.total_worker_time DESC This query as total_worker_time as the measure of CPU load and is in descending order of the  total_worker_time to show the most expensive queries and their plans at the top:      Note the BOL definitions for the important columns: total_worker_time - Total amount of CPU time, in microseconds, that was consumed by executions of this plan since it was compiled. last_worker_time - CPU time, in microseconds, that was consumed the last time the plan was executed.   I re-ran the same query again after few seconds and was returned the below output. After few seconds the SP dbo.TestProc1 is shown in fourth place and once again the last_worker_time is the highest. This means the procedure TestProc1 consumes a CPU time continuously each time it executes.      In this case, the primary cause for high CPU utilization was a stored procedure. You can view the execution plan by clicking on query_plan column to investigate why this is causing a high CPU load. I have used SQL Server 2008 (SP1) to test all the queries used in this article.

    Read the article

  • Speeding up procedural texture generation

    - by FalconNL
    Recently I've begun working on a game that takes place in a procedurally generated solar system. After a bit of a learning curve (having neither worked with Scala, OpenGL 2 ES or Libgdx before), I have a basic tech demo going where you spin around a single procedurally textured planet: The problem I'm running into is the performance of the texture generation. A quick overview of what I'm doing: a planet is a cube that has been deformed to a sphere. To each side, a n x n (e.g. 256 x 256) texture is applied, which are bundled in one 8n x n texture that is sent to the fragment shader. The last two spaces are not used, they're only there to make sure the width is a power of 2. The texture is currently generated on the CPU, using the updated 2012 version of the simplex noise algorithm linked to in the paper 'Simplex noise demystified'. The scene I'm using to test the algorithm contains two spheres: the planet and the background. Both use a greyscale texture consisting of six octaves of 3D simplex noise, so for example if we choose 128x128 as the texture size there are 128 x 128 x 6 x 2 x 6 = about 1.2 million calls to the noise function. The closest you will get to the planet is about what's shown in the screenshot and since the game's target resolution is 1280x720 that means I'd prefer to use 512x512 textures. Combine that with the fact the actual textures will of course be more complicated than basic noise (There will be a day and night texture, blended in the fragment shader based on sunlight, and a specular mask. I need noise for continents, terrain color variation, clouds, city lights, etc.) and we're looking at something like 512 x 512 x 6 x 3 x 15 = 70 million noise calls for the planet alone. In the final game, there will be activities when traveling between planets, so a wait of 5 or 10 seconds, possibly 20, would be acceptable since I can calculate the texture in the background while traveling, though obviously the faster the better. Getting back to our test scene, performance on my PC isn't too terrible, though still too slow considering the final result is going to be about 60 times worse: 128x128 : 0.1s 256x256 : 0.4s 512x512 : 1.7s This is after I moved all performance-critical code to Java, since trying to do so in Scala was a lot worse. Running this on my phone (a Samsung Galaxy S3), however, produces a more problematic result: 128x128 : 2s 256x256 : 7s 512x512 : 29s Already far too long, and that's not even factoring in the fact that it'll be minutes instead of seconds in the final version. Clearly something needs to be done. Personally, I see a few potential avenues, though I'm not particularly keen on any of them yet: Don't precalculate the textures, but let the fragment shader calculate everything. Probably not feasible, because at one point I had the background as a fullscreen quad with a pixel shader and I got about 1 fps on my phone. Use the GPU to render the texture once, store it and use the stored texture from then on. Upside: might be faster than doing it on the CPU since the GPU is supposed to be faster at floating point calculations. Downside: effects that cannot (easily) be expressed as functions of simplex noise (e.g. gas planet vortices, moon craters, etc.) are a lot more difficult to code in GLSL than in Scala/Java. Calculate a large amount of noise textures and ship them with the application. I'd like to avoid this if at all possible. Lower the resolution. Buys me a 4x performance gain, which isn't really enough plus I lose a lot of quality. Find a faster noise algorithm. If anyone has one I'm all ears, but simplex is already supposed to be faster than perlin. Adopt a pixel art style, allowing for lower resolution textures and fewer noise octaves. While I originally envisioned the game in this style, I've come to prefer the realistic approach. I'm doing something wrong and the performance should already be one or two orders of magnitude better. If this is the case, please let me know. If anyone has any suggestions, tips, workarounds, or other comments regarding this problem I'd love to hear them.

    Read the article

  • Would using a MemoryMappedFile for IPC across AppDomains be faster than WCF/named pipes?

    - by Morten Mertner
    Context: I am loading and executing untrusted code in a separate AppDomain and am currently communicating between the two using WCF (using named pipes as the underlying transport). I am exchanging relatively simple object graphs using a reasonably coarse-grained API, but would like to use a more fine-grained API if it does not cost me performance-wise. I've noticed that 4.0 adds a MemoryMappedFile class (which doesn't need a physical file, so could be entirely memory based). What kind of performance gains could I expect to see (if any) by using this new class? I know that it would take some "infrastructure code" to get the request/response behavior of WCF, but for now I'm only interested in the performance difference.

    Read the article

  • Why do I see a large performance hit with DRBD?

    - by BHS
    I see a much larger performance hit with DRBD than their user manual says I should get. I'm using DRBD 8.3.7 (Fedora 13 RPMs). I've setup a DRBD test and measured throughput of disk and network without DRBD: dd if=/dev/zero of=/data.tmp bs=512M count=1 oflag=direct 536870912 bytes (537 MB) copied, 4.62985 s, 116 MB/s / is a logical volume on the disk I'm testing with, mounted without DRBD iperf: [ 4] 0.0-10.0 sec 1.10 GBytes 941 Mbits/sec According to Throughput overhead expectations, the bottleneck would be whichever is slower, the network or the disk and DRBD should have an overhead of 3%. In my case network and I/O seem to be pretty evenly matched. It sounds like I should be able to get around 100 MB/s. So, with the raw drbd device, I get dd if=/dev/zero of=/dev/drbd2 bs=512M count=1 oflag=direct 536870912 bytes (537 MB) copied, 6.61362 s, 81.2 MB/s which is slower than I would expect. Then, once I format the device with ext4, I get dd if=/dev/zero of=/mnt/data.tmp bs=512M count=1 oflag=direct 536870912 bytes (537 MB) copied, 9.60918 s, 55.9 MB/s This doesn't seem right. There must be some other factor playing into this that I'm not aware of. global_common.conf global { usage-count yes; } common { protocol C; } syncer { al-extents 1801; rate 33M; } data_mirror.res resource data_mirror { device /dev/drbd1; disk /dev/sdb1; meta-disk internal; on cluster1 { address 192.168.33.10:7789; } on cluster2 { address 192.168.33.12:7789; } } For the hardware I have two identical machines: 6 GB RAM Quad core AMD Phenom 3.2Ghz Motherboard SATA controller 7200 RPM 64MB cache 1TB WD drive The network is 1Gb connected via a switch. I know that a direct connection is recommended, but could it make this much of a difference? Edited I just tried monitoring the bandwidth used to try to see what's happening. I used ibmonitor and measured average bandwidth while I ran the dd test 10 times. I got: avg ~450Mbits writing to ext4 avg ~800Mbits writing to raw device It looks like with ext4, drbd is using about half the bandwidth it uses with the raw device so there's a bottleneck that is not the network.

    Read the article

  • Save password in WCF adapter binding file

    - by Edmund Zhao
    Binding file for WCF Adapter doesn't save the password no matter it is generated by "Add Generated Items..." wizard in Visual Studio or "Export Bindings..." in administration console. It is by design dut to the consideration of security, but it is very annoying especially when you import bindings which contain multiple WCF send ports. The way to aviod retyping password everytime after an import is to edit the binding file before import. Here is what needs to be done. 1. Find the following string:     &lt;Password vt="1" /&gt; "&lt;" means "<", "&gt;" means ">", "vt" means "Variable Type", variable type 1 is "NULL", so the above string can be translated to "<Password/>" 2. Replace it with:     &lt;Password vt="8"&gt;MyPassword&lt;/Password&gt;    variable type 8 is "string", the above string can be transalted to "<Password>MyPassword</Password>"   Binding file uses a lot of character entity references for XML character encoding purpose. For a list of the special charactor entiy references, you can check from here. ...Edmund Zhao

    Read the article

  • WCF - Automatically create ServiceHost for multiple services

    - by Rajesh Pillai
    WCF - Automatically create ServiceHost for multiple services Welcome back readers!  This blog post is about a small tip that may make working with WCF servicehost a bit easier, if you have lots of services and you need to quickly host them for testing. Recently I was encountered a situation where we were faced to create multiple service host quickly for testing.  Here is the code snippet which is pretty self explanatory.  You can put this code in your service host which in this case is  a console application. class Program   {       static void Main(string[] args)       { // Stores all hosts           List<ServiceHost> hosts = new List<ServiceHost>();           try           { // Get the services element from the serviceModel element in the config file               var section = ConfigurationManager.GetSection("system.serviceModel/services") as ServicesSection;               if (section != null)               {                   foreach (ServiceElement element in section.Services)                   { // NOTE : If the assembly is in another namespace, provide a fully qualified name here in the form // <typename, namespace> // For e.g. Business.Services.CustomerService, Business.Services                       var serviceType = Type.GetType(element.Name); // Get the typeName                        var host = new ServiceHost(serviceType);                       hosts.Add(host); // Add to the host collection                       host.Open(); // Open the host                   }               }               Console.ReadLine();           }           catch (Exception e)           {               Console.WriteLine(e.Message);               Console.ReadLine();           }           finally           {               foreach (ServiceHost host in hosts)               {                   if (host.State == CommunicationState.Opened)                   {                       host.Close();                   }                   else                   {                       host.Abort();                   }               }           }       }   } I hope you find this useful.  You can make this as a windows service if required.

    Read the article

  • Need some critique on .NET/WCF SOA architecture plan

    - by user998101
    I am working on a refactoring of some services and would appreciate some critique on my general approach. I am working with three back-end data systems and need to expose an authenticated front-end API over http binding, JSON, and REST for internal apps as well as 3rd party integration. I've got a rough idea below that's a hybrid of what I have and where I intend to wind up. I intend to build guidance extensions to support this architecture so that devs can build this out quickly. Here's the current idea for our structure: Front-end WCF routing service (spread across multiple IIS servers via hardware load balancer) Load balancing of services behind routing is handled within routing service, probably round-robin One of the services will be a token Multiple bindings per-service exposed to address JSON, REST, and whatever else comes up later All in/out is handled via POCO DTOs Use unity to scan for what services are available and expose them The front-end services behind the routing service do nothing more than expose the API and do conversion of DTO<-Entity Unity inject service implementation to allow mocking automapper for DTO/Entity conversion Invoke WF services where response required immediately Queue to ESB for async WF -- ESB will invoke WF later Business logic WF layer Expose same api as front-end services Implement business logic Wrap transaction context where needed Call out to composite/atomic services Composite/Atomic Services Exposed as WCF One service per back-end system Standard atomic CRUD operations plus composite operations Supports transaction context The questions I have are: Are the separation of concerns outlined above beneficial? Current thought is each layer below is its own project, except the backend stuff, where each system gets one project. The project has a servicehost and all the services are under a services folder. Interfaces live in a separate project at each layer. DTO and Entities are in two separate projects under a shared folder. I am currently planning to build dedicated services for shared functionality such as logging and overload things like tracelistener to call those services. Is this a valid approach? Any other suggestions/comments?

    Read the article

  • Tellago is still hiring….

    - by gsusx
    Tellago 's SOA practice is rapidly growing and we are still hiring. In that sense, we are looking to for Connected Systems (WCF, BizTalk, WF) experts who are passionate about building game changing solutions with the latest Microsoft technologies. You will be working alongside technology gurus like DonXml , Pablo Cibraro or Dwight Goins . If you are interested and not afraid of working with a bunch of crazy people ;)please drop me a line at jesus dot rodriguez at tellago dot com. Hope to hear from...(read more)

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Tellago keeps hiring

    - by gsusx
    Tellago keeps growing and hiring very aggressively. We were recently received the American Business Award to the best company in the United States, under a 100 people, in the computer services industry ( More details about that in a future post J ) We are currently looking for architects to join our SOA and SharePoint practices. If you are a brilliant developer or architect with expertise on technologies such as WCF, WF or BizTalk Server, you are passionate about technologies and crazy enough to...(read more)

    Read the article

  • Telephone.com

    - by jrice
    Check Telephone.com our new website using .netframework 3.5 You can now add your own twist to telephone.com and personalize your messaging style by writing your own SMS applications to implement any feature you would like to add to your messaging experience using our wcf rest API Regards

    Read the article

  • Learning Issued Token in Federated Service

    - by Lijo
    I would like to learn federated WCF service. I have the following in my system. • Windows XP • Visual Studio 2010 Express • SQL Server 2008 Express Is it possible to create a federated service sample with this infrastructure? Is there any article for that? UPDATE Federation: http://msdn.microsoft.com/en-us/library/ms730908.aspx Federation Sample: http://msdn.microsoft.com/en-us/library/aa355045.aspx

    Read the article

  • WebLogic Server Performance and Tuning: Part I - Tuning JVM

    - by Gokhan Gungor
    Each WebLogic Server instance runs in its own dedicated Java Virtual Machine (JVM) which is their runtime environment. Every Admin Server in any domain executes within a JVM. The same also applies for Managed Servers. WebLogic Server can be used for a wide variety of applications and services which uses the same runtime environment and resources. Oracle WebLogic ships with 2 different JVM, HotSpot and JRocket but you can choose which JVM you want to use. JVM is designed to optimize itself however it also provides some startup options to make small changes. There are default values for its memory and garbage collection. In real world, you will not want to stick with the default values provided by the JVM rather want to customize these values based on your applications which can produce large gains in performance by making small changes with the JVM parameters. We can tell the garbage collector how to delete garbage and we can also tell JVM how much space to allocate for each generation (of java Objects) or for heap. Remember during the garbage collection no other process is executed within the JVM or runtime, which is called STOP THE WORLD which can affect the overall throughput. Each JVM has its own memory segment called Heap Memory which is the storage for java Objects. These objects can be grouped based on their age like young generation (recently created objects) or old generation (surviving objects that have lived to some extent), etc. A java object is considered garbage when it can no longer be reached from anywhere in the running program. Each generation has its own memory segment within the heap. When this segment gets full, garbage collector deletes all the objects that are marked as garbage to create space. When the old generation space gets full, the JVM performs a major collection to remove the unused objects and reclaim their space. A major garbage collect takes a significant amount of time and can affect system performance. When we create a managed server either on the same machine or on remote machine it gets its initial startup parameters from $DOMAIN_HOME/bin/setDomainEnv.sh/cmd file. By default two parameters are set:     Xms: The initial heapsize     Xmx: The max heapsize Try to set equal initial and max heapsize. The startup time can be a little longer but for long running applications it will provide a better performance. When we set -Xms512m -Xmx1024m, the physical heap size will be 512m. This means that there are pages of memory (in the state of the 512m) that the JVM does not explicitly control. It will be controlled by OS which could be reserve for the other tasks. In this case, it is an advantage if the JVM claims the entire memory at once and try not to spend time to extend when more memory is needed. Also you can use -XX:MaxPermSize (Maximum size of the permanent generation) option for Sun JVM. You should adjust the size accordingly if your application dynamically load and unload a lot of classes in order to optimize the performance. You can set the JVM options/heap size from the following places:     Through the Admin console, in the Server start tab     In the startManagedWeblogic script for the managed servers     $DOMAIN_HOME/bin/startManagedWebLogic.sh/cmd     JAVA_OPTIONS="-Xms1024m -Xmx1024m" ${JAVA_OPTIONS}     In the setDomainEnv script for the managed servers and admin server (domain wide)     USER_MEM_ARGS="-Xms1024m -Xmx1024m" When there is free memory available in the heap but it is too fragmented and not contiguously located to store the object or when there is actually insufficient memory we can get java.lang.OutOfMemoryError. We should create Thread Dump and analyze if that is possible in case of such error. The second option we can use to produce higher throughput is to garbage collection. We can roughly divide GC algorithms into 2 categories: parallel and concurrent. Parallel GC stops the execution of all the application and performs the full GC, this generally provides better throughput but also high latency using all the CPU resources during GC. Concurrent GC on the other hand, produces low latency but also low throughput since it performs GC while application executes. The JRockit JVM provides some useful command-line parameters that to control of its GC scheme like -XgcPrio command-line parameter which takes the following options; XgcPrio:pausetime (To minimize latency, parallel GC) XgcPrio:throughput (To minimize throughput, concurrent GC ) XgcPrio:deterministic (To guarantee maximum pause time, for real time systems) Sun JVM has similar parameters (like  -XX:UseParallelGC or -XX:+UseConcMarkSweepGC) to control its GC scheme. We can add -verbosegc -XX:+PrintGCDetails to monitor indications of a problem with garbage collection. Try configuring JVM’s of all managed servers to execute in -server mode to ensure that it is optimized for a server-side production environment.

    Read the article

  • SQL SERVER – Introduction to SQL Server 2014 In-Memory OLTP

    - by Pinal Dave
    In SQL Server 2014 Microsoft has introduced a new database engine component called In-Memory OLTP aka project “Hekaton” which is fully integrated into the SQL Server Database Engine. It is optimized for OLTP workloads accessing memory resident data. In-memory OLTP helps us create memory optimized tables which in turn offer significant performance improvement for our typical OLTP workload. The main objective of memory optimized table is to ensure that highly transactional tables could live in memory and remain in memory forever without even losing out a single record. The most significant part is that it still supports majority of our Transact-SQL statement. Transact-SQL stored procedures can be compiled to machine code for further performance improvements on memory-optimized tables. This engine is designed to ensure higher concurrency and minimal blocking. In-Memory OLTP alleviates the issue of locking, using a new type of multi-version optimistic concurrency control. It also substantially reduces waiting for log writes by generating far less log data and needing fewer log writes. Points to remember Memory-optimized tables refer to tables using the new data structures and key words added as part of In-Memory OLTP. Disk-based tables refer to your normal tables which we used to create in SQL Server since its inception. These tables use a fixed size 8 KB pages that need to be read from and written to disk as a unit. Natively compiled stored procedures refer to an object Type which is new and is supported by in-memory OLTP engine which convert it into machine code, which can further improve the data access performance for memory –optimized tables. Natively compiled stored procedures can only reference memory-optimized tables, they can’t be used to reference any disk –based table. Interpreted Transact-SQL stored procedures, which is what SQL Server has always used. Cross-container transactions refer to transactions that reference both memory-optimized tables and disk-based tables. Interop refers to interpreted Transact-SQL that references memory-optimized tables. Using In-Memory OLTP In-Memory OLTP engine has been available as part of SQL Server 2014 since June 2013 CTPs. Installation of In-Memory OLTP is part of the SQL Server setup application. The In-Memory OLTP components can only be installed with a 64-bit edition of SQL Server 2014 hence they are not available with 32-bit editions. Creating Databases Any database that will store memory-optimized tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is specifically designed to store the checkpoint files needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating the filegroup is almost the same as for creating a regular filestream filegroup, it must also specify the option CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a database that can support memory-optimized tables: CREATE DATABASE InMemoryDB ON PRIMARY(NAME = [InMemoryDB_data], FILENAME = 'D:\data\InMemoryDB_data.mdf', size=500MB), FILEGROUP [SampleDB_mod_fg] CONTAINS MEMORY_OPTIMIZED_DATA (NAME = [InMemoryDB_mod_dir], FILENAME = 'S:\data\InMemoryDB_mod_dir'), (NAME = [InMemoryDB_mod_dir], FILENAME = 'R:\data\InMemoryDB_mod_dir') LOG ON (name = [SampleDB_log], Filename='L:\log\InMemoryDB_log.ldf', size=500MB) COLLATE Latin1_General_100_BIN2; Above example code creates files on three different drives (D:  S: and R:) for the data files and in memory storage so if you would like to run this code kindly change the drive and folder locations as per your convenience. Also notice that binary collation was specified as Windows (non-SQL). BIN2 collation is the only collation support at this point for any indexes on memory optimized tables. It is also possible to add a MEMORY_OPTIMIZED_DATA file group to an existing database, use the below command to achieve the same. ALTER DATABASE AdventureWorks2012 ADD FILEGROUP hekaton_mod CONTAINS MEMORY_OPTIMIZED_DATA; GO ALTER DATABASE AdventureWorks2012 ADD FILE (NAME='hekaton_mod', FILENAME='S:\data\hekaton_mod') TO FILEGROUP hekaton_mod; GO Creating Tables There is no major syntactical difference between creating a disk based table or a memory –optimized table but yes there are a few restrictions and a few new essential extensions. Essentially any memory-optimized table should use the MEMORY_OPTIMIZED = ON clause as shown in the Create Table query example. DURABILITY clause (SCHEMA_AND_DATA or SCHEMA_ONLY) Memory-optimized table should always be defined with a DURABILITY value which can be either SCHEMA_AND_DATA or  SCHEMA_ONLY the former being the default. A memory-optimized table defined with DURABILITY=SCHEMA_ONLY will not persist the data to disk which means the data durability is compromised whereas DURABILITY= SCHEMA_AND_DATA ensures that data is also persisted along with the schema. Indexing Memory Optimized Table A memory-optimized table must always have an index for all tables created with DURABILITY= SCHEMA_AND_DATA and this can be achieved by declaring a PRIMARY KEY Constraint at the time of creating a table. The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count must also be specified. CREATE TABLE Mem_Table ( [Name] VARCHAR(32) NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000), [City] VARCHAR(32) NULL, [State_Province] VARCHAR(32) NULL, [LastModified] DATETIME NOT NULL, ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); Now as you can see in the above query example we have used the clause MEMORY_OPTIMIZED = ON to make sure that it is considered as a memory optimized table and not just a normal table and also used the DURABILITY Clause= SCHEMA_AND_DATA which means it will persist data along with metadata and also you can notice this table has a PRIMARY KEY mentioned upfront which is also a mandatory clause for memory-optimized tables. We will talk more about HASH Indexes and BUCKET_COUNT in later articles on this topic which will be focusing more on Row and Index storage on Memory-Optimized tables. So stay tuned for that as well. Now as we covered the basics of Memory Optimized tables and understood the key things to remember while using memory optimized tables, let’s explore more using examples to understand the Performance gains using memory-optimized tables. I will be using the database which i created earlier in this article i.e. InMemoryDB in the below Demo Exercise. USE InMemoryDB GO -- Creating a disk based table CREATE TABLE dbo.Disktable ( Id INT IDENTITY, Name CHAR(40) ) GO CREATE NONCLUSTERED INDEX IX_ID ON dbo.Disktable (Id) GO -- Creating a memory optimized table with similar structure and DURABILITY = SCHEMA_AND_DATA CREATE TABLE dbo.Memorytable_durable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO -- Creating an another memory optimized table with similar structure but DURABILITY = SCHEMA_Only CREATE TABLE dbo.Memorytable_nondurable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_only) GO -- Now insert 100000 records in dbo.Disktable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Disktable(Name) VALUES('sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Do the same inserts for Memory table dbo.Memorytable_durable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_durable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Now finally do the same inserts for Memory table dbo.Memorytable_nondurable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_nondurable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END The above 3 Inserts took 1.20 minutes, 54 secs, and 2 secs respectively to insert 100000 records on my machine with 8 Gb RAM. This proves the point that memory-optimized tables can definitely help businesses achieve better performance for their highly transactional business table and memory- optimized tables with Durability SCHEMA_ONLY is even faster as it does not bother persisting its data to disk which makes it supremely fast. Koenig Solutions is one of the few organizations which offer IT training on SQL Server 2014 and all its updates. Now, I leave the decision on using memory_Optimized tables on you, I hope you like this article and it helped you understand  the fundamentals of IN-Memory OLTP . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Koenig

    Read the article

  • Understanding LINQ to SQL (11) Performance

    - by Dixin
    [LINQ via C# series] LINQ to SQL has a lot of great features like strong typing query compilation deferred execution declarative paradigm etc., which are very productive. Of course, these cannot be free, and one price is the performance. O/R mapping overhead Because LINQ to SQL is based on O/R mapping, one obvious overhead is, data changing usually requires data retrieving:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { Product product = database.Products.Single(item => item.ProductID == id); // SELECT... product.UnitPrice = unitPrice; // UPDATE... database.SubmitChanges(); } } Before updating an entity, that entity has to be retrieved by an extra SELECT query. This is slower than direct data update via ADO.NET:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (SqlConnection connection = new SqlConnection( "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=True")) using (SqlCommand command = new SqlCommand( @"UPDATE [dbo].[Products] SET [UnitPrice] = @UnitPrice WHERE [ProductID] = @ProductID", connection)) { command.Parameters.Add("@ProductID", SqlDbType.Int).Value = id; command.Parameters.Add("@UnitPrice", SqlDbType.Money).Value = unitPrice; connection.Open(); command.Transaction = connection.BeginTransaction(); command.ExecuteNonQuery(); // UPDATE... command.Transaction.Commit(); } } The above imperative code specifies the “how to do” details with better performance. For the same reason, some articles from Internet insist that, when updating data via LINQ to SQL, the above declarative code should be replaced by:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.ExecuteCommand( "UPDATE [dbo].[Products] SET [UnitPrice] = {0} WHERE [ProductID] = {1}", id, unitPrice); } } Or just create a stored procedure:CREATE PROCEDURE [dbo].[UpdateProductUnitPrice] ( @ProductID INT, @UnitPrice MONEY ) AS BEGIN BEGIN TRANSACTION UPDATE [dbo].[Products] SET [UnitPrice] = @UnitPrice WHERE [ProductID] = @ProductID COMMIT TRANSACTION END and map it as a method of NorthwindDataContext (explained in this post):private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.UpdateProductUnitPrice(id, unitPrice); } } As a normal trade off for O/R mapping, a decision has to be made between performance overhead and programming productivity according to the case. In a developer’s perspective, if O/R mapping is chosen, I consistently choose the declarative LINQ code, unless this kind of overhead is unacceptable. Data retrieving overhead After talking about the O/R mapping specific issue. Now look into the LINQ to SQL specific issues, for example, performance in the data retrieving process. The previous post has explained that the SQL translating and executing is complex. Actually, the LINQ to SQL pipeline is similar to the compiler pipeline. It consists of about 15 steps to translate an C# expression tree to SQL statement, which can be categorized as: Convert: Invoke SqlProvider.BuildQuery() to convert the tree of Expression nodes into a tree of SqlNode nodes; Bind: Used visitor pattern to figure out the meanings of names according to the mapping info, like a property for a column, etc.; Flatten: Figure out the hierarchy of the query; Rewrite: for SQL Server 2000, if needed Reduce: Remove the unnecessary information from the tree. Parameterize Format: Generate the SQL statement string; Parameterize: Figure out the parameters, for example, a reference to a local variable should be a parameter in SQL; Materialize: Executes the reader and convert the result back into typed objects. So for each data retrieving, even for data retrieving which looks simple: private static Product[] RetrieveProducts(int productId) { using (NorthwindDataContext database = new NorthwindDataContext()) { return database.Products.Where(product => product.ProductID == productId) .ToArray(); } } LINQ to SQL goes through above steps to translate and execute the query. Fortunately, there is a built-in way to cache the translated query. Compiled query When such a LINQ to SQL query is executed repeatedly, The CompiledQuery can be used to translate query for one time, and execute for multiple times:internal static class CompiledQueries { private static readonly Func<NorthwindDataContext, int, Product[]> _retrieveProducts = CompiledQuery.Compile((NorthwindDataContext database, int productId) => database.Products.Where(product => product.ProductID == productId).ToArray()); internal static Product[] RetrieveProducts( this NorthwindDataContext database, int productId) { return _retrieveProducts(database, productId); } } The new version of RetrieveProducts() gets better performance, because only when _retrieveProducts is first time invoked, it internally invokes SqlProvider.Compile() to translate the query expression. And it also uses lock to make sure translating once in multi-threading scenarios. Static SQL / stored procedures without translating Another way to avoid the translating overhead is to use static SQL or stored procedures, just as the above examples. Because this is a functional programming series, this article not dive into. For the details, Scott Guthrie already has some excellent articles: LINQ to SQL (Part 6: Retrieving Data Using Stored Procedures) LINQ to SQL (Part 7: Updating our Database using Stored Procedures) LINQ to SQL (Part 8: Executing Custom SQL Expressions) Data changing overhead By looking into the data updating process, it also needs a lot of work: Begins transaction Processes the changes (ChangeProcessor) Walks through the objects to identify the changes Determines the order of the changes Executes the changings LINQ queries may be needed to execute the changings, like the first example in this article, an object needs to be retrieved before changed, then the above whole process of data retrieving will be went through If there is user customization, it will be executed, for example, a table’s INSERT / UPDATE / DELETE can be customized in the O/R designer It is important to keep these overhead in mind. Bulk deleting / updating Another thing to be aware is the bulk deleting:private static void DeleteProducts(int categoryId) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.Products.DeleteAllOnSubmit( database.Products.Where(product => product.CategoryID == categoryId)); database.SubmitChanges(); } } The expected SQL should be like:BEGIN TRANSACTION exec sp_executesql N'DELETE FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=9 COMMIT TRANSACTION Hoverer, as fore mentioned, the actual SQL is to retrieving the entities, and then delete them one by one:-- Retrieves the entities to be deleted: exec sp_executesql N'SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel], [t0].[Discontinued] FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=9 -- Deletes the retrieved entities one by one: BEGIN TRANSACTION exec sp_executesql N'DELETE FROM [dbo].[Products] WHERE ([ProductID] = @p0) AND ([ProductName] = @p1) AND ([SupplierID] IS NULL) AND ([CategoryID] = @p2) AND ([QuantityPerUnit] IS NULL) AND ([UnitPrice] = @p3) AND ([UnitsInStock] = @p4) AND ([UnitsOnOrder] = @p5) AND ([ReorderLevel] = @p6) AND (NOT ([Discontinued] = 1))',N'@p0 int,@p1 nvarchar(4000),@p2 int,@p3 money,@p4 smallint,@p5 smallint,@p6 smallint',@p0=78,@p1=N'Optimus Prime',@p2=9,@p3=$0.0000,@p4=0,@p5=0,@p6=0 exec sp_executesql N'DELETE FROM [dbo].[Products] WHERE ([ProductID] = @p0) AND ([ProductName] = @p1) AND ([SupplierID] IS NULL) AND ([CategoryID] = @p2) AND ([QuantityPerUnit] IS NULL) AND ([UnitPrice] = @p3) AND ([UnitsInStock] = @p4) AND ([UnitsOnOrder] = @p5) AND ([ReorderLevel] = @p6) AND (NOT ([Discontinued] = 1))',N'@p0 int,@p1 nvarchar(4000),@p2 int,@p3 money,@p4 smallint,@p5 smallint,@p6 smallint',@p0=79,@p1=N'Bumble Bee',@p2=9,@p3=$0.0000,@p4=0,@p5=0,@p6=0 -- ... COMMIT TRANSACTION And the same to the bulk updating. This is really not effective and need to be aware. Here is already some solutions from the Internet, like this one. The idea is wrap the above SELECT statement into a INNER JOIN:exec sp_executesql N'DELETE [dbo].[Products] FROM [dbo].[Products] AS [j0] INNER JOIN ( SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel], [t0].[Discontinued] FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0) AS [j1] ON ([j0].[ProductID] = [j1].[[Products])', -- The Primary Key N'@p0 int',@p0=9 Query plan overhead The last thing is about the SQL Server query plan. Before .NET 4.0, LINQ to SQL has an issue (not sure if it is a bug). LINQ to SQL internally uses ADO.NET, but it does not set the SqlParameter.Size for a variable-length argument, like argument of NVARCHAR type, etc. So for two queries with the same SQL but different argument length:using (NorthwindDataContext database = new NorthwindDataContext()) { database.Products.Where(product => product.ProductName == "A") .Select(product => product.ProductID).ToArray(); // The same SQL and argument type, different argument length. database.Products.Where(product => product.ProductName == "AA") .Select(product => product.ProductID).ToArray(); } Pay attention to the argument length in the translated SQL:exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(1)',@p0=N'A' exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(2)',@p0=N'AA' Here is the overhead: The first query’s query plan cache is not reused by the second one:SELECT sys.syscacheobjects.cacheobjtype, sys.dm_exec_cached_plans.usecounts, sys.syscacheobjects.[sql] FROM sys.syscacheobjects INNER JOIN sys.dm_exec_cached_plans ON sys.syscacheobjects.bucketid = sys.dm_exec_cached_plans.bucketid; They actually use different query plans. Again, pay attention to the argument length in the [sql] column (@p0 nvarchar(2) / @p0 nvarchar(1)). Fortunately, in .NET 4.0 this is fixed:internal static class SqlTypeSystem { private abstract class ProviderBase : TypeSystemProvider { protected int? GetLargestDeclarableSize(SqlType declaredType) { SqlDbType sqlDbType = declaredType.SqlDbType; if (sqlDbType <= SqlDbType.Image) { switch (sqlDbType) { case SqlDbType.Binary: case SqlDbType.Image: return 8000; } return null; } if (sqlDbType == SqlDbType.NVarChar) { return 4000; // Max length for NVARCHAR. } if (sqlDbType != SqlDbType.VarChar) { return null; } return 8000; } } } In this above example, the translated SQL becomes:exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(4000)',@p0=N'A' exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(4000)',@p0=N'AA' So that they reuses the same query plan cache: Now the [usecounts] column is 2.

    Read the article

  • Live CD / Live USB much faster than full install

    - by user29347
    I've observed it on both laptops I own! HP Compaq nx6125 and Ubuntu 11.04 x64 - somewhat solved Lenovo Thinkpad T500 and Ubuntu 11.10 x64 - help needed! I'm still struggling with the Thinkpad to get performance level similar to that of 10 y.o. laptops... All in all a really serious issue with multiple versions of Ubuntu that renders computers with perfectly compatible hardware unusable, as far as out of the box experience is concerned. Troubleshooting resultant issues seems to be a hard case even for users with some experience with installing graphics drivers. EDIT: I can't really post additional details. Two different ubuntu versions, two laptops, two different set of graph. drivers (OS vs ATI prop.) - all with the same symptoms. Also I can't stress enough how massive the performance degradation is compared to a healthy system. For that reason I ask for input from people who may know roughly what are we dealing with here. I can post more details if we were to focus on my current Thinkpad T500. In that case my current system details: Lenovo Thinkpad T500 Ubuntu 11.10 x64 ATI Mobility Radeon HD 3650 (also see the "What I have already tried" section about Intel graphics tested) ATI Catalyst 11.10 drivers OCZ Agility 3 SSD but! same with the default driver for ATI the card same with the prop. driver for the ATI card from Jockey (Additional drivers applet) What I have already tried: 0. Switching to Intel integrated card (Intel GMA 4500M HD) with the default driver - same effects = may indicate not driver related problem but a problem with something of global influence like e.g. nomodeset or other I don't even know about. (What you can read above) ATI Catalyst 11.10 and radeon.modeset=0 boot parameter + disabled Wait for VBlank. Unity 2D Ubuntu 10.04 LTS tested (ubuntu-10.04.3-desktop-i386.iso): Both live USB and installed version blazing fast! (on the default drivers - without even installing the proprietary fglrx drivers). re2 a) seems to give me the only significant results (still poor) - perfect Unity elements performance with the same crawling stuttering/lagging when dragging windows around. re2 b) this happens often http://i17.photobucket.com/albums/b68/Bucic/ubuntuforumsorg/Screenshotat2011-10-28083140.png re2 c) Sometimes I am able to witness a normal performance when dragging a window around but only for a second or two. When I try to shake it longer it starts to lag and it will keep lagging like that with an increased probability of what you see in the sshot in point re2 b). re2 d) I can't establish the radeon.modeset=0 influence though. Once it seems to work be smooth with it, the other time - without it. Really can't tell.

    Read the article

  • ATG Live Webcast March 29: Diagnosing E-Business Suite JVM and Forms Performance Issues (Performance Series Part 4 of 4)

    - by BillSawyer
    The next webcast in our popular EBS series on performance management is going to be a showstopper.  Dave Suri, Project Lead, Applications Performance and Gustavo Jimenez, Senior Development Manager will discuss some of the steps involved in triaging and diagnosing E-Business Suite systems related to JVM and Forms components. Please join us for our next ATG Live Webcast on Mar. 29, 2012: Triage and Diagnostics for E-Business Suite JVM and Forms The topics covered in this webcast will be: Overall Menu/Sections Architecture Patches/Certified browsers/jdk versions JVM Tuning JVM Tools (jstat,eclipse mat, ibm tda) Forms Tools (strace/FRD) Java Concurrent Program options location Case studies Case Studies JVM Thread dump case for Oracle Advanced Product Catalog Forms FRD trace relating to Saving an SR Java Concurrent Program for BT Date:               Thursday, March 29, 2012Time:              8:00 AM - 9:00 AM Pacific Standard TimePresenters:  Dave Suri, Project Lead, Applications Performance                        Gustavo Jimenez, Senior Development ManagerWebcast Registration Link (Preregistration is optional but encouraged)To hear the audio feed:   Domestic Participant Dial-In Number:            877-697-8128    International Participant Dial-In Number:      706-634-9568    Additional International Dial-In Numbers Link:    Dial-In Passcode:                                              99342To see the presentation:    The Direct Access Web Conference details are:    Website URL: https://ouweb.webex.com    Meeting Number:  597073984 If you miss the webcast, or you have missed any webcast, don't worry -- we'll post links to the recording as soon as it's available from Oracle University.  You can monitor this blog for pointers to the replay. And, you can find our archive of our past webcasts and training here.If you have any questions or comments, feel free to email Bill Sawyer (Senior Manager, Applications Technology Curriculum) at BilldotSawyer-AT-Oracle-DOT-com. 

    Read the article

< Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >