Search Results

Search found 3436 results on 138 pages for 'math grad'.

Page 101/138 | < Previous Page | 97 98 99 100 101 102 103 104 105 106 107 108  | Next Page >

  • Why is my implementation of the Sieve of Atkin overlooking numbers close to the specified limit?

    - by Ross G
    My implementation either overlooks primes near the limit or composites near the limit. while some limits work and others don't. I'm am completely confused as to what is wrong. def AtkinSieve (limit): results = [2,3,5] sieve = [False]*limit factor = int(math.sqrt(lim)) for i in range(1,factor): for j in range(1, factor): n = 4*i**2+j**2 if (n <= lim) and (n % 12 == 1 or n % 12 == 5): sieve[n] = not sieve[n] n = 3*i**2+j**2 if (n <= lim) and (n % 12 == 7): sieve[n] = not sieve[n] if i>j: n = 3*i**2-j**2 if (n <= lim) and (n % 12 == 11): sieve[n] = not sieve[n] for index in range(5,factor): if sieve[index]: for jndex in range(index**2, limit, index**2): sieve[jndex] = False for index in range(7,limit): if sieve[index]: results.append(index) return results For example, when I generate a primes to the limit of 1000, the Atkin sieve misses the prime 997, but includes the composite 965. But if I generate up the limit of 5000, the list it returns is completely correct.

    Read the article

  • Why is my implementation of the Sieve of Atkin overlooking numbers close to the specified limit?

    - by Ross G
    My implementation either overlooks primes near the limit or composites near the limit. while some limits work and others don't. I'm am completely confused as to what is wrong. def AtkinSieve (limit): results = [2,3,5] sieve = [False]*limit factor = int(math.sqrt(lim)) for i in range(1,factor): for j in range(1, factor): n = 4*i**2+j**2 if (n <= lim) and (n % 12 == 1 or n % 12 == 5): sieve[n] = not sieve[n] n = 3*i**2+j**2 if (n <= lim) and (n % 12 == 7): sieve[n] = not sieve[n] if i>j: n = 3*i**2-j**2 if (n <= lim) and (n % 12 == 11): sieve[n] = not sieve[n] for index in range(5,factor): if sieve[index]: for jndex in range(index**2, limit, index**2): sieve[jndex] = False for index in range(7,limit): if sieve[index]: results.append(index) return results For example, when I generate a primes to the limit of 1000, the Atkin sieve misses the prime 997, but includes the composite 965. But if I generate up the limit of 5000, the list it returns is completely correct.

    Read the article

  • javascript summary function

    - by Phil Jackson
    Hello, im trying to make a small name summary function depending on the size of the elements container, here's what I have; function shorten_text(str, size){ size = size.match( /[0-9]*/ ); var endValue = Math.floor( Number(size) / 10 ); var number; var newStr; for ( number = 0; number <= endValue; number++ ) { if( str[number].length != 0 ) { newStr += str[number]; } } return newStr + '...'; } shorten_text('Phil Jackson', '94px'); // output should be 'Phil Jack...' What I seem to get is undefinedundef... can anyone see where I am going wrong?

    Read the article

  • SQL Profiler: Read/Write units

    - by Ian Boyd
    i've picked a query out of SQL Server Profiler that says it took 1,497 reads: EventClass: SQL:BatchCompleted TextData: SELECT Transactions.... CPU: 406 Reads: 1497 Writes: 0 Duration: 406 So i've taken this query into Query Analyzer, so i may try to reduce the number of reads. But when i turn on SET STATISTICS IO ON to see the IO activity for the query, i get nowhere close to one thousand reads: Table Scan Count Logical Reads =================== ========== ============= FintracTransactions 4 20 LCDs 2 4 LCTs 2 4 FintracTransacti... 0 0 Users 1 2 MALs 0 0 Patrons 0 0 Shifts 1 2 Cages 1 1 Windows 1 3 Logins 1 3 Sessions 1 6 Transactions 1 7 Which if i do my math right, there is a total of 51 reads; not 1,497. So i assume Reads in SQL Profiler is an arbitrary metric. Does anyone know the conversion of SQL Server Profiler Reads to IO Reads? See also SQL Profiler CPU / duration unit Query Analyzer VS. Query Profiler Reads, Writes, and Duration Discrepencies

    Read the article

  • How to count each digit in a range of integers?

    - by Carlos Gutiérrez
    Imagine you sell those metallic digits used to number houses, locker doors, hotel rooms, etc. You need to find how many of each digit to ship when your customer needs to number doors/houses: 1 to 100 51 to 300 1 to 2,000 with zeros to the left The obvious solution is to do a loop from the first to the last number, convert the counter to a string with or without zeros to the left, extract each digit and use it as an index to increment an array of 10 integers. I wonder if there is a better way to solve this, without having to loop through the entire integers range. Solutions in any language or pseudocode are welcome. Edit: Answers review John at CashCommons and Wayne Conrad comment that my current approach is good and fast enough. Let me use a silly analogy: If you were given the task of counting the squares in a chess board in less than 1 minute, you could finish the task by counting the squares one by one, but a better solution is to count the sides and do a multiplication, because you later may be asked to count the tiles in a building. Alex Reisner points to a very interesting mathematical law that, unfortunately, doesn’t seem to be relevant to this problem. Andres suggests the same algorithm I’m using, but extracting digits with %10 operations instead of substrings. John at CashCommons and phord propose pre-calculating the digits required and storing them in a lookup table or, for raw speed, an array. This could be a good solution if we had an absolute, unmovable, set in stone, maximum integer value. I’ve never seen one of those. High-Performance Mark and strainer computed the needed digits for various ranges. The result for one millon seems to indicate there is a proportion, but the results for other number show different proportions. strainer found some formulas that may be used to count digit for number which are a power of ten. Robert Harvey had a very interesting experience posting the question at MathOverflow. One of the math guys wrote a solution using mathematical notation. Aaronaught developed and tested a solution using mathematics. After posting it he reviewed the formulas originated from Math Overflow and found a flaw in it (point to Stackoverflow :). noahlavine developed an algorithm and presented it in pseudocode. A new solution After reading all the answers, and doing some experiments, I found that for a range of integer from 1 to 10n-1: For digits 1 to 9, n*10(n-1) pieces are needed For digit 0, if not using leading zeros, n*10n-1 - ((10n-1) / 9) are needed For digit 0, if using leading zeros, n*10n-1 - n are needed The first formula was found by strainer (and probably by others), and I found the other two by trial and error (but they may be included in other answers). For example, if n = 6, range is 1 to 999,999: For digits 1 to 9 we need 6*105 = 600,000 of each one For digit 0, without leading zeros, we need 6*105 – (106-1)/9 = 600,000 - 111,111 = 488,889 For digit 0, with leading zeros, we need 6*105 – 6 = 599,994 These numbers can be checked using High-Performance Mark results. Using these formulas, I improved the original algorithm. It still loops from the first to the last number in the range of integers, but, if it finds a number which is a power of ten, it uses the formulas to add to the digits count the quantity for a full range of 1 to 9 or 1 to 99 or 1 to 999 etc. Here's the algorithm in pseudocode: integer First,Last //First and last number in the range integer Number //Current number in the loop integer Power //Power is the n in 10^n in the formulas integer Nines //Nines is the resut of 10^n - 1, 10^5 - 1 = 99999 integer Prefix //First digits in a number. For 14,200, prefix is 142 array 0..9 Digits //Will hold the count for all the digits FOR Number = First TO Last CALL TallyDigitsForOneNumber WITH Number,1 //Tally the count of each digit //in the number, increment by 1 //Start of optimization. Comments are for Number = 1,000 and Last = 8,000. Power = Zeros at the end of number //For 1,000, Power = 3 IF Power 0 //The number ends in 0 00 000 etc Nines = 10^Power-1 //Nines = 10^3 - 1 = 1000 - 1 = 999 IF Number+Nines <= Last //If 1,000+999 < 8,000, add a full set Digits[0-9] += Power*10^(Power-1) //Add 3*10^(3-1) = 300 to digits 0 to 9 Digits[0] -= -Power //Adjust digit 0 (leading zeros formula) Prefix = First digits of Number //For 1000, prefix is 1 CALL TallyDigitsForOneNumber WITH Prefix,Nines //Tally the count of each //digit in prefix, //increment by 999 Number += Nines //Increment the loop counter 999 cycles ENDIF ENDIF //End of optimization ENDFOR SUBROUTINE TallyDigitsForOneNumber PARAMS Number,Count REPEAT Digits [ Number % 10 ] += Count Number = Number / 10 UNTIL Number = 0 For example, for range 786 to 3,021, the counter will be incremented: By 1 from 786 to 790 (5 cycles) By 9 from 790 to 799 (1 cycle) By 1 from 799 to 800 By 99 from 800 to 899 By 1 from 899 to 900 By 99 from 900 to 999 By 1 from 999 to 1000 By 999 from 1000 to 1999 By 1 from 1999 to 2000 By 999 from 2000 to 2999 By 1 from 2999 to 3000 By 1 from 3000 to 3010 (10 cycles) By 9 from 3010 to 3019 (1 cycle) By 1 from 3019 to 3021 (2 cycles) Total: 28 cycles Without optimization: 2,235 cycles Note that this algorithm solves the problem without leading zeros. To use it with leading zeros, I used a hack: If range 700 to 1,000 with leading zeros is needed, use the algorithm for 10,700 to 11,000 and then substract 1,000 - 700 = 300 from the count of digit 1. Benchmark and Source code I tested the original approach, the same approach using %10 and the new solution for some large ranges, with these results: Original 104.78 seconds With %10 83.66 With Powers of Ten 0.07 A screenshot of the benchmark application: If you would like to see the full source code or run the benchmark, use these links: Complete Source code (in Clarion): http://sca.mx/ftp/countdigits.txt Compilable project and win32 exe: http://sca.mx/ftp/countdigits.zip Accepted answer noahlavine solution may be correct, but l just couldn’t follow the pseudo code, I think there are some details missing or not completely explained. Aaronaught solution seems to be correct, but the code is just too complex for my taste. I accepted strainer’s answer, because his line of thought guided me to develop this new solution.

    Read the article

  • LaTeX: Default font(s) for greek letters?

    - by Marco
    I'm a programmer but new to (La)TeX. As far as I can tell, neither the Computer Modern nor Latin Modern fonts have glyphs for the full greek alphabet. I installed (OS X) a Latin Modern font that came with TeX Live (lmroman10-regular.otf). As you can see in the attached image, the lowercase greek letters (and nabla) are displayed (TextEdit) using some default font. Also shown in the image is LaTeXiT displaying pretty lowercase greek letters that seem to be Latin-Modern-Italic-ish. So what font(s) are used by LaTeX for greek (and math symbols)? Where would I find them in the TeX fonts directory? Image: http://imgur.com/dvyyB.png

    Read the article

  • Integer Linear Programming Java: Multiple Open Source and Commercial tools are available. Which one

    - by Sandeep Jindal
    Hi, I need to use Integer Linear Programming API/Tool for my application. Though my application is in Java but I don’t mind calling an EXE (Tool) from Java providing input using file (MPS, etc). My search analysis is as follows: There are multiple Open Source and Commercial tools available to solve ILP Following I found and think are useful for my needs. 1. Gnu LP Kit(GLPK): I think this is the oldest and probably most stable and efficient 2. IP_Solve: Has good reviews about it. 3. JavaILP: Found this, but not much reviews about it 4. Apache Common-Math: Supports LP but not ILP, so ruled out. 5. Coin-OR Can you please suggest which one shall be the best in terms of stability, efficiency, acceptance, etc Regards Sandeep Jindal

    Read the article

  • Prime Numbers Code Help

    - by andrew
    Hello Everybody, I am suppose to "write a Java program that reads a positive integer n from standard input, then prints out the first n prime number." It's divided into 3 parts. 1st: This function will return true or false according to whether m is prime or composite. The array argument P will contain a sufficient number of primes to do the testing. Specifically, at the time isPrime() is called, array P must contain (at least) all primes p in the range 2 p m . For instance, to test m = 53 for primality, one must do successive trial divisions by 2, 3, 5, and 7. We go no further since 11 53 . Thus a precondition for the function call isPrime(53, P) is that P[0] = 2 , P[1] = 3 , P[2] = 5, and P[3] = 7 . The return value in this case would be true since all these divisions fail. Similarly to test m =143 , one must do trial divisions by 2, 3, 5, 7, and 11 (since 13 143 ). The precondition for the function call isPrime(143, P) is therefore P[0] = 2 , P[1] = 3 , P[2] = 5, P[3] = 7 , and P[4] =11. The return value in this case would be false since 11 divides 143. Function isPrime() should contain a loop that steps through array P, doing trial divisions. This loop should terminate when 2 either a trial division succeeds, in which case false is returned, or until the next prime in P is greater than m , in which case true is returned. Then there is the "main function" • Check that the user supplied exactly one command line argument which can be interpreted as a positive integer n. If the command line argument is not a single positive integer, your program will print a usage message as specified in the examples below, then exit. • Allocate array Primes[] of length n and initialize Primes[0] = 2 . • Enter a loop which will discover subsequent primes and store them as Primes[1] , Primes[2], Primes[3] , ……, Primes[n -1] . This loop should contain an inner loop which walks through successive integers and tests them for primality by calling function isPrime() with appropriate arguments. • Print the contents of array Primes[] to stdout, 10 to a line separated by single spaces. In other words Primes[0] through Primes[9] will go on line 1, Primes[10] though Primes[19] will go on line 2, and so on. Note that if n is not a multiple of 10, then the last line of output will contain fewer than 10 primes. The last function is called "usage" which I am not sure how to execute this! Your program will include a function called Usage() having signature static void Usage() that prints this message to stderr, then exits. Thus your program will contain three functions in all: main(), isPrime(), and Usage(). Each should be preceded by a comment block giving it’s name, a short description of it’s operation, and any necessary preconditions (such as those for isPrime().) And hear is my code, but I am having a bit of a problem and could you guys help me fix it? If I enter the number "5" it gives me the prime numbers which are "6,7,8,9" which doesn't make much sense. import java.util.; import java.io.; import java.lang.*; public class PrimeNumber { static boolean isPrime(int m, int[] P){ int squarert = Math.round( (float)Math.sqrt(m) ); int i = 2; boolean ans=false; while ((i<=squarert) & (ans==false)) { int c= P[i]; if (m%c==0) ans= true; else ans= false; i++; } /* if(ans ==true) ans=false; else ans=true; return ans; } ///****main public static void main(String[] args ) { Scanner in= new Scanner(System.in); int input= in.nextInt(); int i, j; int squarert; boolean ans = false; int userNum; int remander = 0; System.out.println("input: " + input); int[] prime = new int[input]; prime[0]= 2; for(i=1; i ans = isPrime(j,prime); j++;} prime[i] = j; } //prnt prime System.out.println("The first " + input + " prime number(s) are: "); for(int r=0; r }//end of main } Thanks for the help

    Read the article

  • Looking for calculator source code, BSD-licensed

    - by Horace Ho
    I have an urgent project which need many functions of a calculator (plus a few in-house business rule formulas). As I won't have time to re-invent the wheel so I am looking for source code directly. Requirements: BSD licensed (GPL won't help) in c/c++ programming language 32-bit CPU minimum dependency on platform API/data structure best with both RPN and prefix notation supported emulator/simulator code also acceptable (if not impossible to add custom formula) with following functions (from wikipedia) Scientific notation for calculating large numbers floating point arithmetic logarithmic functions, using both base 10 and base e trigonometry functions (some including hyperbolic trigonometry) exponents and roots beyond the square root quick access to constants such as pi and e plus hexadecimal, binary, and octal calculations, including basic Boolean math fractions optional statistics and probability calculations complex numbers programmability equation solving

    Read the article

  • get rotation direction of UIView on touchesMoved

    - by mlecho
    this may sound funny, but i spent hours trying to recreate a knob with a realistic rotation using UIView and some trig. I achieved the goal, but now i can not figure out how to know if the knob is rotating left or right. The most pertinent part of the math is here: - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event { UITouch *touch = [touches anyObject]; CGPoint pt = [touch locationInView:self]; float dx = pt.x - iv.center.x; float dy = pt.y - iv.center.y; float ang = atan2(dy,dx); //do the rotation if (deltaAngle == 0.0) { deltaAngle = ang; initialTransform = iv.transform; }else { float angleDif = deltaAngle - ang; CGAffineTransform newTrans = CGAffineTransformRotate(initialTransform, -angleDif); iv.transform = newTrans; currentValue = [self goodDegrees:radiansToDegrees(angleDif)]; } } ideally, i could leverage a numeric value to tell me if the rotation is positive or negative.

    Read the article

  • Mysql PHP generated table: doesn't work with Tablesorter

    - by echedey lorenzo
    Hi, I found this great Tablesorter plugin for jQuery but I can't make it work with my PHP generated table. Here's the code: <script type="text/javascript"> function table() { $("#container").load("table.php?randval="+Math.random()); } $(document).ready(function() { table(); $("table").tablesorter(); }); </script> Where #container is the div where the table will be and table is the name of the table. I get the table loaded but sorting function is not working. It works if I put the table directly in html in the page.. but I don't see the point in having a static table for sorting. Any help would be very appreciated.

    Read the article

  • A question about "empty" lists in Python

    - by bitrex
    I've started teaching myself Python, and as an exercise I've set myself the task of generating lookup tables I need for another project. I need to generate a list of 256 elements in which each element is the value of math.sin(2pi/256). The problem is I don't know how to generate a list initialized to "dummy" values that I can then use a for loop to step through and assign the values of the sin function. Using list[] seems to create an "empty" list, but with no elements so I get a "list assignment index out of range" error in the loop. Is there a way to this other than explicitly creating a list declaration containing 256 elements all with "0" as a value? Thanks!

    Read the article

  • How to only round selected corners in a fancytitle box with Tikz

    - by Christian Jonassen
    If you take a look at http://www.texample.net/tikz/examples/boxes-with-text-and-math/ the boxes there are with rounded corners. In the examples, both the box itself and the title is a box. I want the title box to not have the bottom corners rounded. On page 120 in the manual, there is a description of how to draw with and without rounded corners. However, I want to use this in a fancytitle. It looks a bit silly to have the fancytitle as a box where all corners are rounded when it is as wide as the box itself. \begin{tikzpicture}[baseline=-2cm] \node [mybox] (box){ \begin{minipage}[t!]{0.50\textwidth} Help, I'm a box \end{minipage} }; \node[fancytitle, text width=0.5423\textwidth, text centered, rounded corners] at (box.north) {Help, I'm a title}; \end{tikzpicture} The style I use is this \tikzstyle{mybox} = [draw=red, fill=blue!20, very thick, rectangle, rounded corners, inner sep=10pt, inner ysep=20pt] \tikzstyle{fancytitle} = [fill=red, text=white]

    Read the article

  • AudioQueue recording as float

    - by niklassaers
    Hi guys, I would like to have the result from my recording as a float in the range [0.0, 1.0], alternatively [-1.0, 1.0] because of a bit of math I want to do on it. When I set my recordingformat to be in float, like this: mRecordFormat.mFormatFlags = kLinearPCMFormatFlagIsFloat; I get: Error: AudioQueueNewInput failed ('fmt?') Does this mean the hardware doesn't support recording to floats? If not, how do I set it to record in floats? If so, are there any processor-friendly ways I can convert a signed integer array to a float array? Cheers Nik

    Read the article

  • Why doesn't my implementation of El Gamal work for long text strings?

    - by angstrom91
    I'm playing with the El Gamal cryptosystem, and my goal is to be able to encipher and decipher long sequences of text. I have come up with a method that works for short sequences, but does not work for long sequences, and I cannot figure out why. El Gamal requires the plaintext to be an integer. I have turned my string into a byte[] using the .getBytes() method for Strings, and then created a BigInteger out of the byte[]. After encryption/decryption, I turn the BigInteger into a byte[] using the .toByteArray() method for BigIntegers, and then create a new String object from the byte[]. This works perfectly when i call ElGamalEncipher with strings up to 129 characters. With 130 or more characters, the output produced is garbled. Can someone suggest how to solve this issue? Is this an issue with my method of turning the string into a BigInteger? If so, is there a better way to turn my string of text into a BigInteger and back? Below is my encipher/decipher code with a program to demonstrate the problem. import java.math.BigInteger; public class Main { static BigInteger P = new BigInteger("15893293927989454301918026303382412" + "2586402937727056707057089173871237566896685250125642378268385842" + "6917261652781627945428519810052550093673226849059197769795219973" + "9423619267147615314847625134014485225178547696778149706043781174" + "2873134844164791938367765407368476144402513720666965545242487520" + "288928241768306844169"); static BigInteger G = new BigInteger("33234037774370419907086775226926852" + "1714093595439329931523707339920987838600777935381196897157489391" + "8360683761941170467795379762509619438720072694104701372808513985" + "2267495266642743136795903226571831274837537691982486936010899433" + "1742996138863988537349011363534657200181054004755211807985189183" + "22832092343085067869"); static BigInteger R = new BigInteger("72294619754760174015019300613282868" + "7219874058383991405961870844510501809885568825032608592198728334" + "7842806755320938980653857292210955880919036195738252708294945320" + "3969657021169134916999794791553544054426668823852291733234236693" + "4178738081619274342922698767296233937873073756955509269717272907" + "8566607940937442517"); static BigInteger A = new BigInteger("32189274574111378750865973746687106" + "3695160924347574569923113893643975328118502246784387874381928804" + "6865920942258286938666201264395694101012858796521485171319748255" + "4630425677084511454641229993833255506759834486100188932905136959" + "7287419551379203001848457730376230681693887924162381650252270090" + "28296990388507680954"); public static void main(String[] args) { FewChars(); System.out.println(); ManyChars(); } public static void FewChars() { //ElGamalEncipher(String plaintext, BigInteger p, BigInteger g, BigInteger r) BigInteger[] cipherText = ElGamal.ElGamalEncipher("This is a string " + "of 129 characters which works just fine . This is a string " + "of 129 characters which works just fine . This is a s", P, G, R); System.out.println("This is a string of 129 characters which works " + "just fine . This is a string of 129 characters which works " + "just fine . This is a s"); //ElGamalDecipher(BigInteger c, BigInteger d, BigInteger a, BigInteger p) String output = ElGamal.ElGamalDecipher(cipherText[0], cipherText[1], A, P); System.out.println("The decrypted text is: " + output); } public static void ManyChars() { //ElGamalEncipher(String plaintext, BigInteger p, BigInteger g, BigInteger r) BigInteger[] cipherText = ElGamal.ElGamalEncipher("This is a string " + "of 130 characters which doesn’t work! This is a string of " + "130 characters which doesn’t work! This is a string of ", P, G, R); System.out.println("This is a string of 130 characters which doesn’t " + "work! This is a string of 130 characters which doesn’t work!" + " This is a string of "); //ElGamalDecipher(BigInteger c, BigInteger d, BigInteger a, BigInteger p) String output = ElGamal.ElGamalDecipher(cipherText[0], cipherText[1], A, P); System.out.println("The decrypted text is: " + output); } } import java.math.BigInteger; import java.security.SecureRandom; public class ElGamal { public static BigInteger[] ElGamalEncipher(String plaintext, BigInteger p, BigInteger g, BigInteger r) { // returns a BigInteger[] cipherText // cipherText[0] is c // cipherText[1] is d SecureRandom sr = new SecureRandom(); BigInteger[] cipherText = new BigInteger[2]; BigInteger pText = new BigInteger(plaintext.getBytes()); // 1: select a random integer k such that 1 <= k <= p-2 BigInteger k = new BigInteger(p.bitLength() - 2, sr); // 2: Compute c = g^k(mod p) BigInteger c = g.modPow(k, p); // 3: Compute d= P*r^k = P(g^a)^k(mod p) BigInteger d = pText.multiply(r.modPow(k, p)).mod(p); // C =(c,d) is the ciphertext cipherText[0] = c; cipherText[1] = d; return cipherText; } public static String ElGamalDecipher(BigInteger c, BigInteger d, BigInteger a, BigInteger p) { //returns the plaintext enciphered as (c,d) // 1: use the private key a to compute the least non-negative residue // of an inverse of (c^a)' (mod p) BigInteger z = c.modPow(a, p).modInverse(p); BigInteger P = z.multiply(d).mod(p); byte[] plainTextArray = P.toByteArray(); return new String(plainTextArray); } }

    Read the article

  • How to preselect nodes using jsTree jQuery plug-in

    - by Ed Schembor
    I am using the jsTree jQuery plug-in with its "Checkbox" plug-in and using an async http request to lazy-load each level of the tree. All works great, except that I cannot get the tree to pre-select certain nodes after the first level. I am using the "selected" attribute to provide an array of ID's to preselect. ID's in the top level of the tree are correctly pre-selected. However, ID's in lower levels of the tree are not selected when the level loads. Am I missing something? Here is the constructor code: $(sDivID).tree( { data : { async : true, opts : {url : sURL} }, plugins:{ "checkbox" : {three_state : false} }, selected : myArrayOfIDs, ui:{ theme_name : "checkbox", dots : false, animation : 400 }, callback : { beforedata : function(NODE, TREE_OBJ) { return { id : $(NODE).attr("id") || 0, rand : Math.random().toString() } } } } )

    Read the article

  • Android: 2D. OpenGl or android.graphics?

    - by DroidIn.net
    I'm working with my friend on our first Android game. Basic idea is that every frame the whole surface is redrawn (1 large bitmap) which then sprinkled all over with large number of particles which produces effect of soapy bubbles where there's a pool of about 20 bitmaps which randomly gets picked to produce illusion that all bubbles (between 200 - 300) are all different. The math engine is in C (JNI) and currently all drawing is done using android.graphics package very similar (since that was the example I was using) to Lunar Lander. It works but animation is somewhat jerky and I can feel by temperature of my phone that it is very busy. Will we benefit from switching to OpenGL? And as a bonus question: what would be a good way to optimize the drawing mechanism (Lunar Lander like) we have now?

    Read the article

  • How do I perform an HSL transform on a texture?

    - by Mason Wheeler
    If I have an OpenGL texture, and I need to perform HSL modifications on it before rendering the texture, from what I've heard I need a shader. Problem is, I know nothing about shaders. Does anyone know where I would need to look? I want to write a function where I can pass in a texture and three values, a hue shift in degrees, and saturation and lightness multipliers between 0 and 2, and then have it call a shader that will apply these transformations to the texture before it renders. The interface would look something like this: procedure HSLTransform(texture: GLuint; hShift: integer; sMult, lMult: GLfloat); I have no idea what's supposed to go inside the routine, though. I understand the basic math involved in HSL/RGB conversions, but I don't know how to write a shader or how to apply it. Can someone point me in the right direction? Delphi examples preferred, but I can also read C if I have to.

    Read the article

  • How to use V8's built in functions

    - by Victor jiang
    I'm new in both javascript and V8. According to Google's Embedder's Guide, I saw something in the context section talking about built-in utility javascript functions. And I also found some .js files(e.g. math.js) in the downloaded source code, so I tried to write a simple program to call functions in these files, but I failed. Does a context created by Persistent<Context> context = Context::New() have any built-in js functions? How can I access them? Is there a way to first import existing js files as a library(something like src="xxx" type="text/javascript" in HTML page) and then run my own execute script? Can I call google maps api through the embedded V8 library in app? How?

    Read the article

  • Extrapolation using fft in octave

    - by CFP
    Using GNU octave, I'm computing a fft over a piece of signal, then eliminating some frequencies, and finally reconstructing the signal. This give me a nice approximation of the signal ; but it doesn't give me a way to extrapolate the data. Suppose basically that I have plotted three periods and a half of f: x -> sin(x) + 0.5*sin(3*x) + 1.2*sin(5*x) and then added a piece of low amplitude, zero-centered random noise. With fft/ifft, I can easily remove most of the noise ; but then how do I extrapolate 3 more periods of my signal data? (other of course that duplicating the signal). The math way is easy : you have a decomposition of your function as an infinite sum of sines/cosines, and you just need to extract a partial sum and apply it anywhere. But I don't quite get the programmatic way... Thanks!

    Read the article

  • Converting from samplerate/cutoff frequency to pi-radians/sample in a discrete time sampled IIR filter system.

    - by Fake Name
    I am working on doing some digital filter work using Python and Numpy/Scipy. I'm using scipy.signal.iirdesign to generate my filter coefficents, but it requires the filter passband coefficents in a format I am not familiar with wp, ws : float Passband and stopband edge frequencies, normalized from 0 to 1 (1 corresponds to pi radians / sample). For example: Lowpass: wp = 0.2, ws = 0.3 Highpass: wp = 0.3, ws = 0.2 (from here) I'm not familiar with digital filters (I'm coming from a hardware design background). In an analog context, I would determine the desired slope and the 3db down point, and calculate component values from that. In this context, how do I take a known sample rate, a desired corner frequency, and a desired rolloff, and calculate the wp, ws values from that? (This might be more appropriate for math.stackexchange. I'm not sure)

    Read the article

  • Is generic Money<T_amount> a good idea?

    - by jdk
    I have a Money Type that allows math operations and is sensitive to exchange rates so it will reduce one currency to another if rate is available to calculate in a given currency, rounds by various methods. It has other features that are sensitive to money, but I need to ask if the basic data type used should be made generic in nature. I've realized that the basic data type to hold an amount may differ for financial situations, for example: retail money might be expressed as all cents using int or long where fractions of cents do not matter, decimal is commonly used for its fixed behaviour, sometimes double seems to be used for big finance and large values sometimes a special BigInteger or 3rd-party type is used. I want to know if it would be considered good form to turn Money into Money<T_amount> so it can be used in any one of the above chosen scenarios?

    Read the article

  • How does .NET determine the week in a TimeZoneInfo.TransitionTime ?

    - by Travis Brooks
    Greetings I'm trying to do some DateTime math for various time zones and I wanted to take daylight savings into account. Lets say I have a TimeZoneInfo and i've determined the appropriate AdjustmentRule for a given DateTime. Lets also say the particular TimeZoneInfo i'm dealing with is specified as rule.DaylightTransitionStart.IsFixedDateRule == false, so I need to figure out if the given DateTime falls within the start/end TransitionTime.Week values. This is where I'm getting confused, what is .NET considering as a "week"? My first thought was it probably used something like DayOfWeek thisMarksWeekBoundaries = Thread.CurrentThread.CurrentUICulture.DateTimeFormat.FirstDayOfWeek; and went through the calendar assigning days to week, incrementing week every time it crossed a boundary. But, if I do this for May 2010 there are 6 week boundary buckets, and the max valid value for TransitionTime.Week is 5 so this can't be right. Whats the right way to slice up May 2010?

    Read the article

  • Using python to play two sine tones at once

    - by Alex
    I'm using python to play a sine tone. The tone is based off the computer's internal time in minutes, but I'd like to simultaneously play one based off the second for a harmonized or dualing sound. This is what I have so far; can someone point me in the right direction? from struct import pack from math import sin, pi import time def au_file(name, freq, dur, vol): fout = open(name, 'wb') # header needs size, encoding=2, sampling_rate=8000, channel=1 fout.write('.snd' + pack('>5L', 24, 8*dur, 2, 8000, 1)) factor = 2 * pi * freq/8000 # write data for seg in range(8 * dur): # sine wave calculations sin_seg = sin(seg * factor) fout.write(pack('b', vol * 127 * sin_seg)) fout.close() t = time.strftime("%S", time.localtime()) ti = time.strftime("%M", time.localtime()) tis = float(t) tis = tis * 100 tim = float(ti) tim = tim * 100 if __name__ == '__main__': au_file(name='timeSound1.au', freq = tim, dur=1000, vol=1.0) import os os.startfile('timeSound1.au')

    Read the article

  • Compiler optimization of repeated accessor calls

    - by apocalypse9
    I've found recently that for some types of financial calculations that the following pattern is much easier to follow and test especially in situations where we may need to get numbers from various stages of the computation. public class nonsensical_calculator { ... double _rate; int _term; int _days; double monthlyRate { get { return _rate / 12; }} public double days { get { return (1 - i); }} double ar { get { return (1+ days) /(monthlyRate * days) double bleh { get { return Math.Pow(ar - days, _term) public double raar { get { return bleh * ar/2 * ar / days; }} .... } Obviously this often results in multiple calls to the same accessor within a given formula. I was curious as to whether or not the compiler is smart enough to optimize away these repeated calls with no intervening change in state, or whether this style is causing a decent performance hit. Further reading suggestions are always appreciated

    Read the article

< Previous Page | 97 98 99 100 101 102 103 104 105 106 107 108  | Next Page >