Search Results

Search found 8041 results on 322 pages for 'generic callback'.

Page 102/322 | < Previous Page | 98 99 100 101 102 103 104 105 106 107 108 109  | Next Page >

  • Sort objects and polymorphism

    - by ritmbo
    Suppose I have a class A. And B and C are child of A. Class A has a generic algorithm for sorting arrays of type A, so that I could use it for B and C without writing again the algorithm for each. In the algorithm, sometimes I have to swap. The problem is that I can only see the objects as type A, and if I do: A aux = array[i] array[i] = array[j] array[j] = aux I think I have a problem. Because array[i], maybe its of type B, and aux is of type A, so I think I'm losing information. I'm sure u understand this situation... how can I sort a generic array of objects using a father method algorithm?

    Read the article

  • int i vs int index etc. Which one is better?

    - by Earlz
    Coming from a C background I've always used int i for generic loop variables. Of course in big nested loops or other complex things I may use a descriptive name but which one had you rather see? int i; for(i=0;i<Controls.Count;i++){ DoStuff(Controls[i]); } or int index; for(index=0;index<Controls.Count;index++){ DoStuff(Controls[index]); } In the current project I am working on there are both of these styles and index being replaced by ndx. Which one is better? Is the i variable too generic? Also what about the other C style names? i, j, k Should all of these be replaced by actual descriptive variables?

    Read the article

  • parallel.foreach with custom collection

    - by SchwartzE
    I am extending the System.Net.Mail.MailAddress class to include an ID field, so I created a new custom MailAddress class that inherited from the existing class and a new custom MailAddressCollection class. I then overrode the existing System.Net.Mail.MailMessage.To to use my new collection. I would like to process the recipients in parallel, but I can't get the syntax right. This is the syntax I am using. Parallel.ForEach(EmailMessage.To, (MailAddress address) => { emailService.InsertRecipient(emailId, address.DisplayName, address.Address, " "); }); I get the following errors: The best overloaded method match for 'System.Threading.Tasks.Parallel.ForEach(System.Collections.Generic.IEnumerable, System.Action)' has some invalid arguments Argument 1: cannot convert from 'EmailService.MailAddressCollection' to 'System.Collections.Generic.IEnumerable' What syntax do I need to use custom collections?

    Read the article

  • How to add javascript to YII correctly?

    - by RD.
    I want to create several javascript function that will be needed on different pages. Most will be relevant only to one page, but some to several. I know if I add general conversion functions, it would be a good idea to just create a new javascript file and put all these generic functions into that one file. Bringing me to my first question: Where would you store the generic javascript file? In "protected"? Which subfolder? Then, I need to address the placement of other javascript code. If I have javascript that will only be used on one page, should I use this technique or should I stick to a similar approach as above? The emphasis is on doing it correctly. I want to fall exactly in line with the yii framework.

    Read the article

  • After upgrading to 2.6.35-24 kernel, why does adb no longer list devices?

    - by nbolton
    When I first installed Ubuntu 10.10 64-bit, I was able to see a physical Android device (connected via USB) in the Android Device Chooser (launched from Eclipse). But, after upgrading my kernel from 2.6.35-22-generic to 2.6.35-24-generic, no devices are listed any more, and I am unable to see any results when running adb devices like so: $ ./adb devices List of devices attached $ I have tried booting in the previous kernel version, but I get some udev error, so I was hoping I could get it working with the newer kernel version. I figured SO was the best place for this question, as it seems more developer related.

    Read the article

  • Resolve property at runtime. C#

    - by user1031381
    I have some class which have some code public IEnumerable<TypeOne> TypeOne { get { if (db != null) { var col = db.Select<TypeOne>(); if (col.Count > 0) return col; } return db2.TypeOne; } } public IEnumerable<TypeTwo> TypeTwo { get { if (db != null) { var col = db.Select<TypeTwo>(); if (col.Count > 0) return col; } return db2.TypeTwo; } } So as You can see there is a lot of duplicated Code and there are same property name and item type of enumerable. I want to call some property of object like "obj.MyProp". And MyProp must be resolved at runtime with some generic or non-generic method. Is it possible?

    Read the article

  • C# Deserializing to a dictionary<string, Object>

    - by lovecraft
    I'm writing a C#/VB application to connect to a database and do stuff with the data. I was given this code to take a serialized byte array and deserialized it, which is then written to a Dictionary The line of code is: Dictionary<string, Object> DictionaryEmployee = (Dictionary<string, Object> Deserializer(byteArrayEmp)); The errors I'm getting are exceedingly unhelpful. "Only assignment, call, increment, decrement, await, and new object expressions can be used as a statement" if I mouse over Object and "Using the generic type 'System.Collections.Generic.Dictionary' requires 2 type arguments if I mouse over Dictionary.

    Read the article

  • problem with Expression not equal types

    - by user428547
    class first { private int? firstID; } class second { private int secondID; private int secondField; } public override Expression<Func<first, bool>> FirstFilter() { Contex db = new Contex(); List<second> list = (from p in db.second select p).ToList(); return b => list.Select(p => p.secondID).Contains(b.firstID); } and i have error: cannot convert from 'System.Collections.Generic.IEnumerable' to 'System.Collections.Generic.IEnumerable' i have tried many diferent ways, but i just don't know how can i fix it.

    Read the article

  • How to see if type is instance of a class in Haskell?

    - by Raekye
    I'm probably doing this completely wrong (the unhaskell way); I'm just learning so please let me know if there's a better way to approach this. Context: I'm writing a bunch of tree structures. I want to reuse my prettyprint function for binary trees. Not all trees can use the generic Node/Branch data type though; different trees need different extra data. So to reuse the prettyprint function I thought of creating a class different trees would be instances of: class GenericBinaryTree a where is_leaf :: a -> Bool left :: a -> a node :: a -> b right :: a -> a This way they only have to implement methods to retrieve the left, right, and current node value, and prettyprint doesn't need to know about the internal structure. Then I get down to here: prettyprint_helper :: GenericBinaryTree a => a -> [String] prettyprint_helper tree | is_leaf tree = [] | otherwise = ("{" ++ (show (node tree)) ++ "}") : (prettyprint_subtree (left tree) (right tree)) where prettyprint_subtree left right = ((pad "+- " "| ") (prettyprint_helper right)) ++ ((pad "`- " " ") (prettyprint_helper left)) pad first rest = zipWith (++) (first : repeat rest) And I get the Ambiguous type variable 'a0' in the constraint: (Show a0) arising from a use of 'show' error for (show (node tree)) Here's an example of the most basic tree data type and instance definition (my other trees have other fields but they're irrelevant to the generic prettyprint function) data Tree a = Branch (Tree a) a (Tree a) | Leaf instance GenericBinaryTree (Tree a) where is_leaf Leaf = True is_leaf _ = False left (Branch left node right) = left right (Branch left node right) = right node (Branch left node right) = node I could have defined node :: a -> [String] and deal with the stringification in each instance/type of tree, but this feels neater. In terms of prettyprint, I only need a string representation, but if I add other generic binary tree functions later I may want the actual values. So how can I write this to work whether the node value is an instance of Show or not? Or what other way should I be approaching this problem? In an object oriented language I could easily check whether a class implements something, or if an object has a method. I can't use something like prettyprint :: Show a => a -> String Because it's not the tree that needs to be showable, it's the value inside the tree (returned by function node) that needs to be showable. I also tried changing node to Show b => a -> b without luck (and a bunch of other type class/preconditions/whatever/I don't even know what I'm doing anymore).

    Read the article

  • Disk operations freeze Debian

    - by Grzenio
    Hi, I have just installed Debian testing on my new desktop and I am not very happy with performance - when I perform a disk intensive operation, e.g. upgrade packages in the system, everything seems to freeze, e.g. changing tabs in Iceweasel takes 3 seconds. I run the Debian on my 3 year old Thinkpad X60 ultra-portable, and I don't have these issues. (every single parameter of the laptop is much worse than the desktop). I am using the default packaged kernel and scripts. I run hdparm -t /dev/sda1 And I got around 96GB/s, which is expected. What else can I try to make it work better? EDIT: grzes:/home/ga# hdparm -i /dev/sda /dev/sda: Model=WDC WD15EARS-00Z5B1, FwRev=80.00A80, SerialNo=WD-WMAVU1362357 Config={ HardSect NotMFM HdSw>15uSec SpinMotCtl Fixed DTR>5Mbs FmtGapReq } RawCHS=16383/16/63, TrkSize=0, SectSize=0, ECCbytes=50 BuffType=unknown, BuffSize=unknown, MaxMultSect=16, MultSect=16 CurCHS=16383/16/63, CurSects=16514064, LBA=yes, LBAsects=2930277168 IORDY=on/off, tPIO={min:120,w/IORDY:120}, tDMA={min:120,rec:120} PIO modes: pio0 pio3 pio4 DMA modes: mdma0 mdma1 mdma2 UDMA modes: udma0 udma1 udma2 udma3 udma4 udma5 *udma6 AdvancedPM=no WriteCache=enabled Drive conforms to: Unspecified: ATA/ATAPI-1,2,3,4,5,6,7 * signifies the current active mode EDIT2: Even my wife said "on this new computer I can't do anything when I copy the photos from the camera and its much worse than on the old one". So it must be serious. EDIT3: Updated to 2.6.32, but still no improvement EDIT4: I forgot to mention that the new disk is ext4, the old was ext3. EDIT5: Still not solved. I have a P43 ASUS P5QL-E board. Lines from dmesg that seem relevant: [ 0.370850] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253) [ 0.370852] io scheduler noop registered [ 0.370853] io scheduler anticipatory registered [ 0.370854] io scheduler deadline registered [ 0.370876] io scheduler cfq registered (default) ... [ 0.908233] ata_piix 0000:00:1f.2: version 2.13 [ 0.908243] ata_piix 0000:00:1f.2: PCI INT B -> GSI 19 (level, low) -> IRQ 19 [ 0.908246] ata_piix 0000:00:1f.2: MAP [ P0 P2 P1 P3 ] [ 0.908275] ata_piix 0000:00:1f.2: setting latency timer to 64 [ 0.908316] scsi0 : ata_piix [ 0.908374] scsi1 : ata_piix [ 0.909180] ata1: SATA max UDMA/133 cmd 0xa000 ctl 0x9c00 bmdma 0x9480 irq 19 [ 0.909183] ata2: SATA max UDMA/133 cmd 0x9880 ctl 0x9800 bmdma 0x9488 irq 19 [ 0.909199] ata_piix 0000:00:1f.5: PCI INT B -> GSI 19 (level, low) -> IRQ 19 [ 0.909202] ata_piix 0000:00:1f.5: MAP [ P0 -- P1 -- ] [ 0.909228] ata_piix 0000:00:1f.5: setting latency timer to 64 [ 0.909279] scsi2 : ata_piix [ 0.909326] scsi3 : ata_piix [ 0.910021] ata3: SATA max UDMA/133 cmd 0xb000 ctl 0xac00 bmdma 0xa480 irq 19 [ 0.910024] ata4: SATA max UDMA/133 cmd 0xa880 ctl 0xa800 bmdma 0xa488 irq 19 [ 0.915575] FDC 0 is a post-1991 82077 ... [ 1.716062] ata1.00: SATA link up 3.0 Gbps (SStatus 123 SControl 300) [ 1.716074] ata1.01: SATA link down (SStatus 0 SControl 300) [ 1.724318] ata1.00: ATA-8: WDC WD15EARS-00Z5B1, 80.00A80, max UDMA/133 [ 1.724322] ata1.00: 2930277168 sectors, multi 16: LBA48 NCQ (depth 0/32) [ 1.740339] ata1.00: configured for UDMA/133 [ 1.740428] scsi 0:0:0:0: Direct-Access ATA WDC WD15EARS-00Z 80.0 PQ: 0 ANSI: 5 [ 1.746788] scsi 6:0:0:0: CD-ROM ASUS DRW-1608P 1.17 PQ: 0 ANSI: 5 ... [ 1.925981] sd 0:0:0:0: [sda] 2930277168 512-byte logical blocks: (1.50 TB/1.36 TiB) [ 1.926005] sd 0:0:0:0: [sda] Write Protect is off [ 1.926007] sd 0:0:0:0: [sda] Mode Sense: 00 3a 00 00 [ 1.926020] sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA [ 1.926092] sda:sr0: scsi3-mmc drive: 40x/40x writer cd/rw xa/form2 cdda tray [ 1.931106] Uniform CD-ROM driver Revision: 3.20 [ 1.931191] sr 6:0:0:0: Attached scsi CD-ROM sr0 ... [ 1.941936] sda1 sda2 sda3 sda4 < sda5 sda6 > [ 1.967691] sd 0:0:0:0: [sda] Attached SCSI disk [ 1.970938] sd 0:0:0:0: Attached scsi generic sg0 type 0 [ 1.970959] sr 6:0:0:0: Attached scsi generic sg1 type 5 ... [ 2.500086] EXT4-fs (sda3): mounted filesystem with ordered data mode ... [ 7.150468] EXT4-fs (sda6): mounted filesystem with ordered data mode

    Read the article

  • why nginx rewrite post request from /login to //login?

    - by jiangchengwu
    There is a if statement, which will rewrite url when the client is Android. Everything ok. But, something got strange. Nginx will write post request /login to //login, even if the block of if statement is bank. So I got a 404 page. As the jetty server only accept /login request. Server conf: location / { proxy_pass http://localhost:8785/; proxy_set_header Host $http_host; proxy_set_header Remote-Addr $http_remote_addr; proxy_set_header X-Real-IP $remote_addr; if ( $http_user_agent ~ Android ){ # rewrite something, been commented } } Debug info, origin log https://gist.github.com/3799021 ... 2012/09/28 16:29:49 [debug] 26416#0: *1 http script regex: "Android" 2012/09/28 16:29:49 [notice] 26416#0: *1 "Android" matches "Android/1.0", client: 106.187.97.22, server: ireedr.com, request: "POST /login HTTP/1.1", host: "ireedr.com" ... 2012/09/28 16:29:49 [debug] 26416#0: *1 http proxy header: "POST //login HTTP/1.0 Host: ireedr.com X-Real-IP: 106.187.97.22 Connection: close Accept-Encoding: identity, deflate, compress, gzip Accept: */* User-Agent: Android/1.0 " ... 2012/09/28 16:29:49 [debug] 26416#0: *1 HTTP/1.1 404 Not Found Server: nginx/1.2.1 Date: Fri, 28 Sep 2012 08:29:49 GMT Content-Type: text/html;charset=ISO-8859-1 Transfer-Encoding: chunked Connection: keep-alive Cache-Control: must-revalidate,no-cache,no-store Content-Encoding: gzip ... Only when I commented the block in the configration file: location / { proxy_pass http://localhost:8785/; proxy_set_header Host $http_host; proxy_set_header Remote-Addr $http_remote_addr; proxy_set_header X-Real-IP $remote_addr; #if ( $http_user_agent ~ Android ){ # #} } The client can get an 200 response. Debug info, origin log https://gist.github.com/3799023 ... "POST /login HTTP/1.0 Host: ireedr.com X-Real-IP: 106.187.97.22 Connection: close Accept-Encoding: identity, deflate, compress, gzip Accept: */* User-Agent: Android/1.0 " ... 2012/09/28 16:27:19 [debug] 26319#0: *1 HTTP/1.1 200 OK Server: nginx/1.2.1 Date: Fri, 28 Sep 2012 08:27:19 GMT Content-Type: application/json;charset=UTF-8 Content-Length: 17 Connection: keep-alive ... As the log: 2012/09/28 16:29:49 [notice] 26416#0: *1 "Android" matches "Android/1.0", client: 106.187.97.22, server: ireedr.com, request: "POST /login HTTP/1.1", host: "ireedr.com" 2012/09/28 16:29:49 [debug] 26416#0: *1 http script if 2012/09/28 16:29:49 [debug] 26416#0: *1 post rewrite phase: 4 2012/09/28 16:29:49 [debug] 26416#0: *1 generic phase: 5 2012/09/28 16:29:49 [debug] 26416#0: *1 generic phase: 6 2012/09/28 16:29:49 [debug] 26416#0: *1 generic phase: 7 2012/09/28 16:29:49 [debug] 26416#0: *1 access phase: 8 2012/09/28 16:29:49 [debug] 26416#0: *1 access phase: 9 2012/09/28 16:29:49 [debug] 26416#0: *1 access phase: 10 2012/09/28 16:29:49 [debug] 26416#0: *1 post access phase: 11 2012/09/28 16:29:49 [debug] 26416#0: *1 try files phase: 12 2012/09/28 16:29:49 [debug] 26416#0: *1 posix_memalign: 0000000001E798F0:4096 @16 2012/09/28 16:29:49 [debug] 26416#0: *1 http init upstream, client timer: 0 2012/09/28 16:29:49 [debug] 26416#0: *1 epoll add event: fd:13 op:3 ev:80000005 2012/09/28 16:29:49 [debug] 26416#0: *1 http script copy: "Host: " 2012/09/28 16:29:49 [debug] 26416#0: *1 http script var: "ireedr.com" 2012/09/28 16:29:49 [debug] 26416#0: *1 http script copy: " " 2012/09/28 16:29:49 [debug] 26416#0: *1 http script copy: "" 2012/09/28 16:29:49 [debug] 26416#0: *1 http script copy: "" 2012/09/28 16:29:49 [debug] 26416#0: *1 http script copy: "X-Real-IP: " 2012/09/28 16:29:49 [debug] 26416#0: *1 http script var: "106.187.97.22" 2012/09/28 16:29:49 [debug] 26416#0: *1 http script copy: " " 2012/09/28 16:29:49 [debug] 26416#0: *1 http script copy: "Connection: close " 2012/09/28 16:29:49 [debug] 26416#0: *1 http proxy header: "Accept-Encoding: identity, deflate, compress, gzip" 2012/09/28 16:29:49 [debug] 26416#0: *1 http proxy header: "Accept: */*" 2012/09/28 16:29:49 [debug] 26416#0: *1 http proxy header: "User-Agent: Android/1.0" 2012/09/28 16:29:49 [debug] 26416#0: *1 http proxy header: "POST //login HTTP/1.0 Host: ireedr.com X-Real-IP: 106.187.97.22 Connection: close Accept-Encoding: identity, deflate, compress, gzip Accept: */* User-Agent: Android/1.0 " ... Maybe post rewrite phase had rewrite the request. Anybody can help me to solve this problem or know why nginx do that ? Much appreciated.

    Read the article

  • Refactor This (Ugly Code)!

    - by Alois Kraus
    Ayende has put on his blog some ugly code to refactor. First and foremost it is nearly impossible to reason about other peoples code without knowing the driving forces behind the current code. It is certainly possible to make it much cleaner when potential sources of errors cannot happen in the first place due to good design. I can see what the intention of the code is but I do not know about every brittle detail if I am allowed to reorder things here and there to simplify things. So I decided to make it much simpler by identifying the different responsibilities of the methods and encapsulate it in different classes. The code we need to refactor seems to deal with a handler after a message has been sent to a message queue. The handler does complete the current transaction if there is any and does handle any errors happening there. If during the the completion of the transaction errors occur the transaction is at least disposed. We can enter the handler already in a faulty state where we try to deliver the complete event in any case and signal a failure event and try to resend the message again to the queue if it was not inside a transaction. All is decorated with many try/catch blocks, duplicated code and some state variables to route the program flow. It is hard to understand and difficult to reason about. In other words: This code is a mess and could be written by me if I was under pressure. Here comes to code we want to refactor:         private void HandleMessageCompletion(                                      Message message,                                      TransactionScope tx,                                      OpenedQueue messageQueue,                                      Exception exception,                                      Action<CurrentMessageInformation, Exception> messageCompleted,                                      Action<CurrentMessageInformation> beforeTransactionCommit)         {             var txDisposed = false;             if (exception == null)             {                 try                 {                     if (tx != null)                     {                         if (beforeTransactionCommit != null)                             beforeTransactionCommit(currentMessageInformation);                         tx.Complete();                         tx.Dispose();                         txDisposed = true;                     }                     try                     {                         if (messageCompleted != null)                             messageCompleted(currentMessageInformation, exception);                     }                     catch (Exception e)                     {                         Trace.TraceError("An error occured when raising the MessageCompleted event, the error will NOT affect the message processing"+ e);                     }                     return;                 }                 catch (Exception e)                 {                     Trace.TraceWarning("Failed to complete transaction, moving to error mode"+ e);                     exception = e;                 }             }             try             {                 if (txDisposed == false && tx != null)                 {                     Trace.TraceWarning("Disposing transaction in error mode");                     tx.Dispose();                 }             }             catch (Exception e)             {                 Trace.TraceWarning("Failed to dispose of transaction in error mode."+ e);             }             if (message == null)                 return;                 try             {                 if (messageCompleted != null)                     messageCompleted(currentMessageInformation, exception);             }             catch (Exception e)             {                 Trace.TraceError("An error occured when raising the MessageCompleted event, the error will NOT affect the message processing"+ e);             }               try             {                 var copy = MessageProcessingFailure;                 if (copy != null)                     copy(currentMessageInformation, exception);             }             catch (Exception moduleException)             {                 Trace.TraceError("Module failed to process message failure: " + exception.Message+                                              moduleException);             }               if (messageQueue.IsTransactional == false)// put the item back in the queue             {                 messageQueue.Send(message);             }         }     You can see quite some processing and handling going on there. Yes this looks like real world code one did put together to make things work and he does not trust his callbacks. I guess these are event handlers which are optional and the delegates were extracted from an event to call them back later when necessary.  Lets see what the author of this code did intend:          private void HandleMessageCompletion(             TransactionHandler transactionHandler,             MessageCompletionHandler handler,             CurrentMessageInformation messageInfo,             ErrorCollector errors             )         {               // commit current pending transaction             transactionHandler.CallHandlerAndCommit(messageInfo, errors);               // We have an error for a null message do not send completion event             if (messageInfo.CurrentMessage == null)                 return;               // Send completion event in any case regardless of errors             handler.OnMessageCompleted(messageInfo, errors);               // put message back if queue is not transactional             transactionHandler.ResendMessageOnError(messageInfo.CurrentMessage, errors);         }   I did not bother to write the intention here again since the code should be pretty self explaining by now. I have used comments to explain the still nontrivial procedure step by step revealing the real intention about all this complex program flow. The original complexity of the problem domain does not go away but by applying the techniques of SRP (Single Responsibility Principle) and some functional style but we can abstract the necessary complexity away in useful abstractions which make it much easier to reason about it. Since most of the method seems to deal with errors I thought it was a good idea to encapsulate the error state of our current message in an ErrorCollector object which stores all exceptions in a list along with a description what the error all was about in the exception itself. We can log it later or not depending on the log level or whatever. It is really just a simple list that encapsulates the current error state.          class ErrorCollector          {              List<Exception> _Errors = new List<Exception>();                public void Add(Exception ex, string description)              {                  ex.Data["Description"] = description;                  _Errors.Add(ex);              }                public Exception Last              {                  get                  {                      return _Errors.LastOrDefault();                  }              }                public bool HasError              {                  get                  {                      return _Errors.Count > 0;                  }              }          }   Since the error state is global we have two choices to store a reference in the other helper objects (TransactionHandler and MessageCompletionHandler)or pass it to the method calls when necessary. I did chose the latter one because a second argument does not hurt and makes it easier to reason about the overall state while the helper objects remain stateless and immutable which makes the helper objects much easier to understand and as a bonus thread safe as well. This does not mean that the stored member variables are stateless or thread safe as well but at least our helper classes are it. Most of the complexity is located the transaction handling I consider as a separate responsibility that I delegate to the TransactionHandler which does nothing if there is no transaction or Call the Before Commit Handler Commit Transaction Dispose Transaction if commit did throw In fact it has a second responsibility to resend the message if the transaction did fail. I did see a good fit there since it deals with transaction failures.          class TransactionHandler          {              TransactionScope _Tx;              Action<CurrentMessageInformation> _BeforeCommit;              OpenedQueue _MessageQueue;                public TransactionHandler(TransactionScope tx, Action<CurrentMessageInformation> beforeCommit, OpenedQueue messageQueue)              {                  _Tx = tx;                  _BeforeCommit = beforeCommit;                  _MessageQueue = messageQueue;              }                public void CallHandlerAndCommit(CurrentMessageInformation currentMessageInfo, ErrorCollector errors)              {                  if (_Tx != null && !errors.HasError)                  {                      try                      {                          if (_BeforeCommit != null)                          {                              _BeforeCommit(currentMessageInfo);                          }                            _Tx.Complete();                          _Tx.Dispose();                      }                      catch (Exception ex)                      {                          errors.Add(ex, "Failed to complete transaction, moving to error mode");                          Trace.TraceWarning("Disposing transaction in error mode");                          try                          {                              _Tx.Dispose();                          }                          catch (Exception ex2)                          {                              errors.Add(ex2, "Failed to dispose of transaction in error mode.");                          }                      }                  }              }                public void ResendMessageOnError(Message message, ErrorCollector errors)              {                  if (errors.HasError && !_MessageQueue.IsTransactional)                  {                      _MessageQueue.Send(message);                  }              }          } If we need to change the handling in the future we have a much easier time to reason about our application flow than before. After we did complete our transaction and called our callback we can call the completion handler which is the main purpose of the HandleMessageCompletion method after all. The responsiblity o the MessageCompletionHandler is to call the completion callback and the failure callback when some error has occurred.            class MessageCompletionHandler          {              Action<CurrentMessageInformation, Exception> _MessageCompletedHandler;              Action<CurrentMessageInformation, Exception> _MessageProcessingFailure;                public MessageCompletionHandler(Action<CurrentMessageInformation, Exception> messageCompletedHandler,                                              Action<CurrentMessageInformation, Exception> messageProcessingFailure)              {                  _MessageCompletedHandler = messageCompletedHandler;                  _MessageProcessingFailure = messageProcessingFailure;              }                  public void OnMessageCompleted(CurrentMessageInformation currentMessageInfo, ErrorCollector errors)              {                  try                  {                      if (_MessageCompletedHandler != null)                      {                          _MessageCompletedHandler(currentMessageInfo, errors.Last);                      }                  }                  catch (Exception ex)                  {                      errors.Add(ex, "An error occured when raising the MessageCompleted event, the error will NOT affect the message processing");                  }                    if (errors.HasError)                  {                      SignalFailedMessage(currentMessageInfo, errors);                  }              }                void SignalFailedMessage(CurrentMessageInformation currentMessageInfo, ErrorCollector errors)              {                  try                  {                      if (_MessageProcessingFailure != null)                          _MessageProcessingFailure(currentMessageInfo, errors.Last);                  }                  catch (Exception moduleException)                  {                      errors.Add(moduleException, "Module failed to process message failure");                  }              }            }   If for some reason I did screw up the logic and we need to call the completion handler from our Transaction handler we can simple add to the CallHandlerAndCommit method a third argument to the MessageCompletionHandler and we are fine again. If the logic becomes even more complex and we need to ensure that the completed event is triggered only once we have now one place the completion handler to capture the state. During this refactoring I simple put things together that belong together and came up with useful abstractions. If you look at the original argument list of the HandleMessageCompletion method I have put many things together:   Original Arguments New Arguments Encapsulate Message message CurrentMessageInformation messageInfo         Message message TransactionScope tx Action<CurrentMessageInformation> beforeTransactionCommit OpenedQueue messageQueue TransactionHandler transactionHandler        TransactionScope tx        OpenedQueue messageQueue        Action<CurrentMessageInformation> beforeTransactionCommit Exception exception,             ErrorCollector errors Action<CurrentMessageInformation, Exception> messageCompleted MessageCompletionHandler handler          Action<CurrentMessageInformation, Exception> messageCompleted          Action<CurrentMessageInformation, Exception> messageProcessingFailure The reason is simple: Put the things that have relationships together and you will find nearly automatically useful abstractions. I hope this makes sense to you. If you see a way to make it even more simple you can show Ayende your improved version as well.

    Read the article

  • Passing javascript array of objects to WebService

    - by Yousef_Jadallah
    Hi folks. In the topic I will illustrate how to pass array of objects to WebService and how to deal with it in your WebService.   suppose we have this javascript code :  <script language="javascript" type="text/javascript"> var people = new Array(); function person(playerID, playerName, playerPPD) { this.PlayerID = playerID; this.PlayerName = playerName; this.PlayerPPD = parseFloat(playerPPD); } function saveSignup() { addSomeSampleInfo(); WebService.SaveSignups(people, SucceededCallback); } function SucceededCallback(result, eventArgs) { var RsltElem = document.getElementById("divStatusMessage"); RsltElem.innerHTML = result; } function OnError(error) { alert("Service Error: " + error.get_message()); } function addSomeSampleInfo() { people[people.length++] = new person(123, "Person 1 Name", 10); people[people.length++] = new person(234, "Person 2 Name", 20); people[people.length++] = new person(345, "Person 3 Name", 10.5); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } poeple :is the array that we want to send to the WebService. person :The function –constructor- that we are using to create object to our array. SucceededCallback : This is the callback function invoked if the Web service succeeded. OnError : this is the Error callback function so any errors that occur when the Web Service is called will trigger this function. saveSignup : This function used to call the WebSercie Method (SaveSignups), the first parameter that we pass to the WebService and the second is the name of the callback function.   Here is the body of the Page :<body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> <input type="button" id="btn1" onclick="saveSignup()" value="Click" /> <div id="divStatusMessage"> </div> </form> </body> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     Then main thing is the ServiceReference and it’s path "WebService.asmx” , this is the Web Service that we are using in this example.     A web service will be used to receive the javascript array and handle it in our code :using System; using System.Web; using System.Web.Services; using System.Xml; using System.Web.Services.Protocols; using System.Web.Script.Services; using System.Data.SqlClient; using System.Collections.Generic; [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [ScriptService] public class WebService : System.Web.Services.WebService { [WebMethod] public string SaveSignups(object [] values) { string strOutput=""; string PlayerID="", PlayerName="", PlayerPPD=""; foreach (object value in values) { Dictionary<string, object> dicValues = new Dictionary<string, object>(); dicValues = (Dictionary<string, object>)value; PlayerID = dicValues["PlayerID"].ToString(); PlayerName = dicValues["PlayerName"].ToString(); PlayerPPD = dicValues["PlayerPPD"].ToString(); strOutput += "PlayerID = " + PlayerID + ", PlayerName=" + PlayerName + ",PlayerPPD= " + PlayerPPD +"<br>"; } return strOutput; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The first thing I implement System.Collections.Generic Namespace, we need it to use the Dictionary Class. you can find in this code that I pass the javascript objects to array of object called values, then we need to deal with every separate Object and implicit it to Dictionary<string, object> . The Dictionary Represents a collection of keys and values Dictionary<TKey, TValue> TKey : The type of the keys in the dictionary TValue : The type of the values in the dictionary. For more information about Dictionary check this link : http://msdn.microsoft.com/en-us/library/xfhwa508(VS.80).aspx   Now we can get the value for every element because we have mapping from a set of keys to a set of values, the keys of this example is :  PlayerID ,PlayerName,PlayerPPD, this created from the original object person.    Ultimately,this Web method return the values as string, but the main idea of this method to show you how to deal with array of object and convert it to  Dictionary<string, object> object , and get the values of this Dictionary.   Hope this helps,

    Read the article

  • Passing javascript array of objects to WebService

    - by Yousef_Jadallah
    Hi folks. In the topic I will illustrate how to pass array of objects to WebService and how to deal with it in your WebService.   Suppose we have this javascript code :   <script language="javascript" type="text/javascript"> var people = new Array(); function person(playerID, playerName, playerPPD) { this.PlayerID = playerID; this.PlayerName = playerName; this.PlayerPPD = parseFloat(playerPPD); } function saveSignup() { addSomeSampleInfo(); WebService.SaveSignups(people, SucceededCallback); } function SucceededCallback(result, eventArgs) { var RsltElem = document.getElementById("divStatusMessage"); RsltElem.innerHTML = result; } function OnError(error) { alert("Service Error: " + error.get_message()); } function addSomeSampleInfo() { people = new Array(); people[people.length++] = new person(123, "Person 1 Name", 10); people[people.length++] = new person(234, "Person 2 Name", 20); people[people.length++] = new person(345, "Person 3 Name", 10.5); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } poeple :is the array that we want to send to the WebService. person :The function –constructor- that we are using to create object to our array. SucceededCallback : This is the callback function invoked if the Web service succeeded. OnError : this is the Error callback function so any errors that occur when the Web Service is called will trigger this function. saveSignup : This function used to call the WebSercie Method (SaveSignups), the first parameter that we pass to the WebService and the second is the name of the callback function.   Here is the body of the Page : <body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> <input type="button" id="btn1" onclick="saveSignup()" value="Click" /> <div id="divStatusMessage"> </div> </form> </body> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     Then main thing is the ServiceReference and it’s path "WebService.asmx” , this is the Web Service that we are using in this example.     A web service will be used to receive the javascript array and handle it in our code : using System; using System.Web; using System.Web.Services; using System.Xml; using System.Web.Services.Protocols; using System.Web.Script.Services; using System.Data.SqlClient; using System.Collections.Generic; [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [ScriptService] public class WebService : System.Web.Services.WebService { [WebMethod] public string SaveSignups(object [] values) { string strOutput=""; string PlayerID="", PlayerName="", PlayerPPD=""; foreach (object value in values) { Dictionary<string, object> dicValues = new Dictionary<string, object>(); dicValues = (Dictionary<string, object>)value; PlayerID = dicValues["PlayerID"].ToString(); PlayerName = dicValues["PlayerName"].ToString(); PlayerPPD = dicValues["PlayerPPD"].ToString(); strOutput += "PlayerID = " + PlayerID + ", PlayerName=" + PlayerName + ",PlayerPPD= " + PlayerPPD +"<br>"; } return strOutput; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The first thing I implement System.Collections.Generic Namespace, we need it to use the Dictionary Class. you can find in this code that I pass the javascript objects to array of object called values, then we need to deal with every separate Object and explicit it to Dictionary<string, object> . The Dictionary Represents a collection of keys and values Dictionary<TKey, TValue> TKey : The type of the keys in the dictionary TValue : The type of the values in the dictionary. For more information about Dictionary check this link : http://msdn.microsoft.com/en-us/library/xfhwa508(VS.80).aspx   Now we can get the value for every element because we have mapping from a set of keys to a set of values, the keys of this example is :  PlayerID ,PlayerName,PlayerPPD, this created from the original object person.    Ultimately,this Web method return the values as string, but the main idea of this method to show you how to deal with array of object and convert it to  Dictionary<string, object> object , and get the values of this Dictionary.   Hope this helps,

    Read the article

  • how do I access XHR responseBody from Javascript?

    - by Cheeso
    I've got a web page that uses XMLHttpRequest to download a binary resource. Because it's binary I'm trying to use xhr.responseBody to access the bytes. I've seen a few posts suggesting that it's impossible to access the bytes directly from Javascript. This sounds crazy to me. Weirdly, xhr.responseBody is accessible from VBScript, so the suggestion is that I must define a method in VBScript in the webpage, and then call that method from Javascript. See jsdap for one example. var IE_HACK = (/msie/i.test(navigator.userAgent) && !/opera/i.test(navigator.userAgent)); if (IE_HACK) document.write('<script type="text/vbscript">\n\ Function BinaryToArray(Binary)\n\ Dim i\n\ ReDim byteArray(LenB(Binary))\n\ For i = 1 To LenB(Binary)\n\ byteArray(i-1) = AscB(MidB(Binary, i, 1))\n\ Next\n\ BinaryToArray = byteArray\n\ End Function\n\ </script>'); var xml = (window.XMLHttpRequest) ? new XMLHttpRequest() // Mozilla/Safari/IE7+ : (window.ActiveXObject) ? new ActiveXObject("MSXML2.XMLHTTP") // IE6 : null; // Commodore 64? xml.open("GET", url, true); if (xml.overrideMimeType) { xml.overrideMimeType('text/plain; charset=x-user-defined'); } else { xml.setRequestHeader('Accept-Charset', 'x-user-defined'); } xml.onreadystatechange = function() { if (xml.readyState == 4) { if (!binary) { callback(xml.responseText); } else if (IE_HACK) { // call a VBScript method to copy every single byte callback(BinaryToArray(xml.responseBody).toArray()); } else { callback(getBuffer(xml.responseText)); } } }; xml.send(''); Is this really true? The best way? copying every byte? For a large binary stream that's not gonna be very efficient. There is also a possible technique using ADODB.Stream, which is a COM equivalent of a MemoryStream. See here for an example. It does not require VBScript but does require a separate COM object. if (typeof (ActiveXObject) != "undefined" && typeof (httpRequest.responseBody) != "undefined") { // Convert httpRequest.responseBody byte stream to shift_jis encoded string var stream = new ActiveXObject("ADODB.Stream"); stream.Type = 1; // adTypeBinary stream.Open (); stream.Write (httpRequest.responseBody); stream.Position = 0; stream.Type = 1; // adTypeBinary; stream.Read.... /// ???? what here } I don't think that's gonna work - ADODB.Stream is disabled on most machines these days. In The IE8 developer tools - the IE equivalent of Firebug - I can see the responseBody is an array of bytes and I can even see the bytes themselves. The data is right there. I don't understand why I can't get to it. Is it possible for me to read it with responseText? hints? (other than defining a VBScript method)

    Read the article

  • Get Asynchronous HttpResponse through Silverlight (F#)

    - by jack2010
    I am a newbie with F# and SL and playing with getting asynchronous HttpResponse through Silverlight. The following is the F# code pieces, which is tested on VS2010 and Window7 and works well, but the improvement is necessary. Any advices and discussion, especially the callback part, are welcome and great thanks. module JSONExample open System open System.IO open System.Net open System.Text open System.Web open System.Security.Authentication open System.Runtime.Serialization [<DataContract>] type Result<'TResult> = { [<field: DataMember(Name="code") >] Code:string [<field: DataMember(Name="result") >] Result:'TResult array [<field: DataMember(Name="message") >] Message:string } // The elements in the list [<DataContract>] type ChemicalElement = { [<field: DataMember(Name="name") >] Name:string [<field: DataMember(Name="boiling_point") >] BoilingPoint:string [<field: DataMember(Name="atomic_mass") >] AtomicMass:string } //http://blogs.msdn.com/b/dsyme/archive/2007/10/11/introducing-f-asynchronous-workflows.aspx //http://lorgonblog.spaces.live.com/blog/cns!701679AD17B6D310!194.entry type System.Net.HttpWebRequest with member x.GetResponseAsync() = Async.FromBeginEnd(x.BeginGetResponse, x.EndGetResponse) type RequestState () = let mutable request : WebRequest = null let mutable response : WebResponse = null let mutable responseStream : Stream = null member this.Request with get() = request and set v = request <- v member this.Response with get() = response and set v = response <- v member this.ResponseStream with get() = responseStream and set v = responseStream <- v let allDone = new System.Threading.ManualResetEvent(false) let getHttpWebRequest (query:string) = let query = query.Replace("'","\"") let queryUrl = sprintf "http://api.freebase.com/api/service/mqlread?query=%s" "{\"query\":"+query+"}" let request : HttpWebRequest = downcast WebRequest.Create(queryUrl) request.Method <- "GET" request.ContentType <- "application/x-www-form-urlencoded" request let GetAsynResp (request : HttpWebRequest) (callback: AsyncCallback) = let myRequestState = new RequestState() myRequestState.Request <- request let asyncResult = request.BeginGetResponse(callback, myRequestState) () // easy way to get it to run syncrnously w/ the asynch methods let GetSynResp (request : HttpWebRequest) : HttpWebResponse = let response = request.GetResponseAsync() |> Async.RunSynchronously downcast response let RespCallback (finish: Stream -> _) (asynchronousResult : IAsyncResult) = try let myRequestState : RequestState = downcast asynchronousResult.AsyncState let myWebRequest1 : WebRequest = myRequestState.Request myRequestState.Response <- myWebRequest1.EndGetResponse(asynchronousResult) let responseStream = myRequestState.Response.GetResponseStream() myRequestState.ResponseStream <- responseStream finish responseStream myRequestState.Response.Close() () with | :? WebException as e -> printfn "WebException raised!" printfn "\n%s" e.Message printfn "\n%s" (e.Status.ToString()) () | _ as e -> printfn "Exception raised!" printfn "Source : %s" e.Source printfn "Message : %s" e.Message () let printResults (stream: Stream)= let result = try use reader = new StreamReader(stream) reader.ReadToEnd(); finally () let data = Encoding.Unicode.GetBytes(result); let stream = new MemoryStream() stream.Write(data, 0, data.Length); stream.Position <- 0L let JsonSerializer = Json.DataContractJsonSerializer(typeof<Result<ChemicalElement>>) let result = JsonSerializer.ReadObject(stream) :?> Result<ChemicalElement> if result.Code<>"/api/status/ok" then raise (InvalidOperationException(result.Message)) else result.Result |> Array.iter(fun element->printfn "%A" element) let test = // Call Query (w/ generics telling it you wand an array of ChemicalElement back, the query string is wackyJSON too –I didn’t build it don’t ask me! let request = getHttpWebRequest "[{'type':'/chemistry/chemical_element','name':null,'boiling_point':null,'atomic_mass':null}]" //let response = GetSynResp request let response = GetAsynResp request (AsyncCallback (RespCallback printResults)) () ignore(test) System.Console.ReadLine() |> ignore

    Read the article

  • ObjectContext.SaveChanges() fails with SQL CE

    - by David Veeneman
    I am creating a model-first Entity Framework 4 app that uses SQL CE as its data store. All is well until I call ObjectContext.SaveChanges() to save changes to the entities in the model. At that point, SaveChanges() throws a System.Data.UpdateException, with an inner exception message that reads as follows: Server-generated keys and server-generated values are not supported by SQL Server Compact. I am completely puzzled by this message. Any idea what is going on and how to fix it? Thanks. Here is the Exception dump: System.Data.UpdateException was unhandled Message=An error occurred while updating the entries. See the inner exception for details. Source=System.Data.Entity StackTrace: at System.Data.Mapping.Update.Internal.UpdateTranslator.Update(IEntityStateManager stateManager, IEntityAdapter adapter) at System.Data.EntityClient.EntityAdapter.Update(IEntityStateManager entityCache) at System.Data.Objects.ObjectContext.SaveChanges(SaveOptions options) at System.Data.Objects.ObjectContext.SaveChanges() at FsDocumentationBuilder.ViewModel.Commands.SaveFileCommand.Execute(Object parameter) in D:\Users\dcveeneman\Documents\Visual Studio 2010\Projects\FsDocumentationBuilder\FsDocumentationBuilder\ViewModel\Commands\SaveFileCommand.cs:line 68 at MS.Internal.Commands.CommandHelpers.CriticalExecuteCommandSource(ICommandSource commandSource, Boolean userInitiated) at System.Windows.Controls.Primitives.ButtonBase.OnClick() at System.Windows.Controls.Button.OnClick() at System.Windows.Controls.Primitives.ButtonBase.OnMouseLeftButtonUp(MouseButtonEventArgs e) at System.Windows.UIElement.OnMouseLeftButtonUpThunk(Object sender, MouseButtonEventArgs e) at System.Windows.Input.MouseButtonEventArgs.InvokeEventHandler(Delegate genericHandler, Object genericTarget) at System.Windows.RoutedEventArgs.InvokeHandler(Delegate handler, Object target) at System.Windows.RoutedEventHandlerInfo.InvokeHandler(Object target, RoutedEventArgs routedEventArgs) at System.Windows.EventRoute.InvokeHandlersImpl(Object source, RoutedEventArgs args, Boolean reRaised) at System.Windows.UIElement.ReRaiseEventAs(DependencyObject sender, RoutedEventArgs args, RoutedEvent newEvent) at System.Windows.UIElement.OnMouseUpThunk(Object sender, MouseButtonEventArgs e) at System.Windows.Input.MouseButtonEventArgs.InvokeEventHandler(Delegate genericHandler, Object genericTarget) at System.Windows.RoutedEventArgs.InvokeHandler(Delegate handler, Object target) at System.Windows.RoutedEventHandlerInfo.InvokeHandler(Object target, RoutedEventArgs routedEventArgs) at System.Windows.EventRoute.InvokeHandlersImpl(Object source, RoutedEventArgs args, Boolean reRaised) at System.Windows.UIElement.RaiseEventImpl(DependencyObject sender, RoutedEventArgs args) at System.Windows.UIElement.RaiseTrustedEvent(RoutedEventArgs args) at System.Windows.UIElement.RaiseEvent(RoutedEventArgs args, Boolean trusted) at System.Windows.Input.InputManager.ProcessStagingArea() at System.Windows.Input.InputManager.ProcessInput(InputEventArgs input) at System.Windows.Input.InputProviderSite.ReportInput(InputReport inputReport) at System.Windows.Interop.HwndMouseInputProvider.ReportInput(IntPtr hwnd, InputMode mode, Int32 timestamp, RawMouseActions actions, Int32 x, Int32 y, Int32 wheel) at System.Windows.Interop.HwndMouseInputProvider.FilterMessage(IntPtr hwnd, WindowMessage msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at System.Windows.Interop.HwndSource.InputFilterMessage(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndWrapper.WndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndSubclass.DispatcherCallbackOperation(Object o) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Int32 numArgs) at MS.Internal.Threading.ExceptionFilterHelper.TryCatchWhen(Object source, Delegate method, Object args, Int32 numArgs, Delegate catchHandler) at System.Windows.Threading.Dispatcher.InvokeImpl(DispatcherPriority priority, TimeSpan timeout, Delegate method, Object args, Int32 numArgs) at MS.Win32.HwndSubclass.SubclassWndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam) at MS.Win32.UnsafeNativeMethods.DispatchMessage(MSG& msg) at System.Windows.Threading.Dispatcher.PushFrameImpl(DispatcherFrame frame) at System.Windows.Threading.Dispatcher.PushFrame(DispatcherFrame frame) at System.Windows.Threading.Dispatcher.Run() at System.Windows.Application.RunDispatcher(Object ignore) at System.Windows.Application.RunInternal(Window window) at System.Windows.Application.Run(Window window) at System.Windows.Application.Run() at FsDocumentationBuilder.App.Main() in D:\Users\dcveeneman\Documents\Visual Studio 2010\Projects\FsDocumentationBuilder\FsDocumentationBuilder\obj\x86\Debug\App.g.cs:line 50 at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() InnerException: System.Data.EntityCommandCompilationException Message=An error occurred while preparing the command definition. See the inner exception for details. Source=System.Data.Entity StackTrace: at System.Data.Mapping.Update.Internal.UpdateTranslator.CreateCommand(DbModificationCommandTree commandTree) at System.Data.Mapping.Update.Internal.DynamicUpdateCommand.CreateCommand(UpdateTranslator translator, Dictionary`2 identifierValues) at System.Data.Mapping.Update.Internal.DynamicUpdateCommand.Execute(UpdateTranslator translator, EntityConnection connection, Dictionary`2 identifierValues, List`1 generatedValues) at System.Data.Mapping.Update.Internal.UpdateTranslator.Update(IEntityStateManager stateManager, IEntityAdapter adapter) InnerException: System.NotSupportedException Message=Server-generated keys and server-generated values are not supported by SQL Server Compact. Source=System.Data.SqlServerCe.Entity StackTrace: at System.Data.SqlServerCe.SqlGen.DmlSqlGenerator.GenerateReturningSql(StringBuilder commandText, DbModificationCommandTree tree, ExpressionTranslator translator, DbExpression returning) at System.Data.SqlServerCe.SqlGen.DmlSqlGenerator.GenerateInsertSql(DbInsertCommandTree tree, List`1& parameters, Boolean isLocalProvider) at System.Data.SqlServerCe.SqlGen.SqlGenerator.GenerateSql(DbCommandTree tree, List`1& parameters, CommandType& commandType, Boolean isLocalProvider) at System.Data.SqlServerCe.SqlCeProviderServices.CreateCommand(DbProviderManifest providerManifest, DbCommandTree commandTree) at System.Data.SqlServerCe.SqlCeProviderServices.CreateDbCommandDefinition(DbProviderManifest providerManifest, DbCommandTree commandTree) at System.Data.Common.DbProviderServices.CreateCommandDefinition(DbCommandTree commandTree) at System.Data.Common.DbProviderServices.CreateCommand(DbCommandTree commandTree) at System.Data.Mapping.Update.Internal.UpdateTranslator.CreateCommand(DbModificationCommandTree commandTree) InnerException:

    Read the article

  • jQuery AJAX (google PageRank)

    - by RobertPitt
    Hey guys, I need a little help.. iv'e been developing a Jqery plug-in to get the page ranks of urls on a website using XHR, The problem is when requesting the rank from google servers the page is returned no content, but if i use an inspector and get the url that was requests and go to it via my browser the pageranks are shown. so it must be something with headers but its just got me puzzled. Heres some source code but i have removed several aspects that are not needed to review. pagerank.plugin.js ( $.fn.PageRank = function(callback) { var _library = new Object(); //Creat the system library _library.parseUrl = function(a) { var b = {}; var a = a || ''; /* * parse the url to extract its parts */ if (a = a.match(/((s?ftp|https?):\/\/){1}([^\/:]+)?(:([0-9]+))?([^\?#]+)?(\?([^#]+))?(#(.+))?/)) { b.scheme = a[2] ? a[2] : "http"; b.host = a[3] ? a[3] : null; b.port = a[5] ? a[5] : null; b.path = a[6] ? a[6] : null; b.args = a[8] ? a[8] : null; b.anchor = a[10] ? a[10] : null } return b } _library.ValidUrl = function(url) { var b = true; return b = url.host === undefined ? false : url.scheme != "http" && url.scheme != "https" ? false : url.host == "localhost" ? false : true } _library.toHex = function(a){ return (a < 16 ? "0" : "") + a.toString(16) } _library.hexEncodeU32 = function(a) { } _library.generateHash = function(a) { for (var b = 16909125, c = 0; c < a.length; c++) { } return _library.hexEncodeU32(b) } var CheckPageRank = function(domain,_call) { var hash = _library.generateHash(domain); $.ajax( { url: 'http://www.google.com/search?client=navclient-auto&ch=8'+hash+'&features=Rank&q=info:' + escape(domain), async: true, dataType: 'html', ifModified:true, contentType:'', type:'GET', beforeSend:function(xhr) { xhr.setRequestHeader('Referer','http://google.com/'); //Set Referer }, success: function(content,textS,xhr){ var d = xhr.responseText.substr(9, 2).replace(/\s$/, ""); if (d == "" || isNaN(d * 1)) d = "0"; _call(d); } }); } //Return the callback $(this).each(function(){ urlsegments = _library.parseUrl($(this).attr('href')) if(_library.ValidUrl(urlsegments)) { CheckPageRank(urlsegments.host,function(rank){ alert(rank) callback(rank); }); } }); return this; //Dont break any chain. } )(jQuery); Index.html (example) <html> <head> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.1/jquery.min.js"></script> <script type="text/javascript" src="pagerank.plugin.js"></script> <script type="text/javascript"> $(document).ready(function() { $('a').PageRank(function(pr){ alert(pr); }) }); </script> </head> <body> <a href="http://facebook.com">a</a> <a href="http://twitter.com">a</a> <div></div> </body> </html> i just cant understand why its doing this.

    Read the article

  • Error on 64 Bit Install of IIS &ndash; LoadLibraryEx failed on aspnet_filter.dll

    - by Rick Strahl
    I’ve been having a few problems with my Windows 7 install and trying to get IIS applications to run properly in 64 bit. After installing IIS and creating virtual directories for several of my applications and firing them up I was left with the following error message from IIS: Calling LoadLibraryEx on ISAPI filter “c:\windows\Microsoft.NET\Framework\v4.0.30319\aspnet_filter.dll” failed This is on Windows 7 64 bit and running on an ASP.NET 4.0 Application configured for running 64 bit (32 bit disabled). It’s also on what is essentially a brand new installation of IIS and Windows 7. So it failed right out of the box. The problem here is that IIS is trying to loading this ISAPI filter from the 32 bit folder – it should be loading from Framework64 folder note the Framework folder. The aspnet_filter.dll component is a small Win32 ISAPI filter used to back up the cookieless session state for ASP.NET on IIS 7 applications. It’s not terribly important because of this focus, but it’s a default loaded component. After a lot of fiddling I ended up with two solutions (with the help and support of some Twitter folks): Switch IIS to run in 32 bit mode Fix the filter listing in ApplicationHost.config Switching IIS to allow 32 Bit Code This is a quick fix for the problem above which enables 32 bit code in the Application Pool. The problem above is that IIS is trying to load a 32 bit ISAPI filter and enabling 32 bit code gets you around this problem. To configure your Application Pool, open the Application Pool in IIS Manager bring up Advanced Options and Enable 32 Bit Applications: And voila the error message above goes away. Fix Filters Enabling 32 bit code is a quick fix solution to this problem, but not an ideal one. If you’re running a pure .NET application that doesn’t need to do COM or pInvoke Interop with 32 bit apps there’s usually no need for enabling 32 bit code in an Application Pool as you can run in native 64 bit code. So trying to get 64 bit working natively is a pretty key feature in my opinion :-) So what’s the problem – why is IIS trying to load a 32 bit DLL in a 64 bit install, especially if the application pool is configured to not allow 32 bit code at all? The problem lies in the server configuration and the fact that 32 bit and 64 bit configuration settings exist side by side in IIS. If I open my Default Web Site (or any other root Web Site) and go to the ISAPI filter list here’s what I see: Notice that there are 3 entries for ASP.NET 4.0 in this list. Only two of them however are specifically scoped to the specifically to 32 bit or 64 bit. As you can see the 64 bit filter correctly points at the Framework64 folder to load the dll, while both the 32 bit and the ‘generic’ entry point at the plain Framework 32 bit folder. Aha! Hence lies our problem. You can edit ApplicationHost.config manually, but I ran into the nasty issue of not being able to easily edit that file with the 32 bit editor (who ever thought that was a good idea???? WTF). You have to open ApplicationHost.Config in a 64 bit native text editor – which Visual Studio is not. Or my favorite editor: EditPad Pro. Since I don’t have a native 64 bit editor handy Notepad was my only choice. Or as an alternative you can use the IIS 7.5 Configuration Editor which lets you interactively browse and edit most ApplicationHost settings. You can drill into the configuration hierarchy visually to find your keys and edit attributes and sub values in property editor type interface. I had no idea this tool existed prior to today and it’s pretty cool as it gives you some visual clues to options available – especially in absence of an Intellisense scheme you’d get in Visual Studio (which doesn’t work). To use the Configuration Editor go the Web Site root and use the Configuration Editor option in the Management Group. Drill into System.webServer/isapiFilters and then click on the Collection’s … button on the right. You should now see a display like this: which shows all the same attributes you’d see in ApplicationHost.config (cool!). These entries correspond to these raw ApplicationHost.config entries: <filter name="ASP.Net_4.0" path="C:\Windows\Microsoft.NET\Framework\v4.0.30319\aspnet_filter.dll" enableCache="true" preCondition="runtimeVersionv4.0" /> <filter name="ASP.Net_4.0_64bit" path="C:\Windows\Microsoft.NET\Framework64\v4.0.30319\aspnet_filter.dll" enableCache="true" preCondition="runtimeVersionv4.0,bitness64" /> <filter name="ASP.Net_4.0_32bit" path="C:\Windows\Microsoft.NET\Framework\v4.0.30319\aspnet_filter.dll" enableCache="true" preCondition="runtimeVersionv4.0,bitness32" /> The key attribute we’re concerned with here is the preCondition and the bitness subvalue. Notice that the ‘generic’ version – which comes first in the filter list – has no bitness assigned to it, so it defaults to 32 bit and the 32 bit dll path. And this is where our problem comes from. The simple solution to fix the startup problem is to remove the generic entry from this list here or in the filters list shown earlier and leave only the bitness specific versions active. The preCondition attribute acts as a filter and as you can see here it filters the list by runtime version and bitness value. This is something to keep an eye out in general – if a bitness values are missing it’s easy to run into conflicts like this with any settings that are global and especially those that load modules and handlers and other executable code. On 64 bit systems it’s a good idea to explicitly set the bitness of all entries or remove the non-specific versions and add bit specific entries. So how did this get misconfigured? I installed IIS before everything else was installed on this machine and then went ahead and installed Visual Studio. I suspect the Visual Studio install munged this up as I never saw a similar problem on my live server where everything just worked right out of the box. In searching about this problem a lot of solutions pointed at using aspnet_regiis –r from the Framework64 directory, but that did not fix this extra entry in the filters list – it adds the required 32 bit and 64 bit entries, but it doesn’t remove the errand un-bitness set entry. Hopefully this post will help out anybody who runs into a similar situation without having to trouble shoot all the way down into the configuration settings and noticing the bitness settings. It’s a good lesson learned for me – this is my first desktop install of a 64 bit OS and things like this are what I was reluctant to find. Now that I ran into this I have a good idea what to look for with 32/64 bit misconfigurations in IIS at least.© Rick Strahl, West Wind Technologies, 2005-2011Posted in IIS7   ASP.NET  

    Read the article

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

  • Dynamic Paging and Sorting

    - by Ricardo Peres
    Since .NET 3.5 brought us LINQ and expressions, I became a great fan of these technologies. There are times, however, when strong typing cannot be used - for example, when you are developing an ObjectDataSource and you need to do paging having just a column name, a page index and a page size, so I set out to fix this. Yes, I know about Dynamic LINQ, and even talked on it previously, but there's no need to add this extra assembly. So, without further delay, here's the code, in both generic and non-generic versions: public static IList ApplyPagingAndSorting(IEnumerable enumerable, Type elementType, Int32 pageSize, Int32 pageIndex, params String [] orderByColumns) { MethodInfo asQueryableMethod = typeof(Queryable).GetMethods(BindingFlags.Static | BindingFlags.Public).Where(m = (m.Name == "AsQueryable") && (m.ContainsGenericParameters == false)).Single(); IQueryable query = (enumerable is IQueryable) ? (enumerable as IQueryable) : asQueryableMethod.Invoke(null, new Object [] { enumerable }) as IQueryable; if ((orderByColumns != null) && (orderByColumns.Length 0)) { PropertyInfo orderByProperty = elementType.GetProperty(orderByColumns [ 0 ]); MemberExpression member = Expression.MakeMemberAccess(Expression.Parameter(elementType, "n"), orderByProperty); LambdaExpression orderBy = Expression.Lambda(member, member.Expression as ParameterExpression); MethodInfo orderByMethod = typeof(Queryable).GetMethods(BindingFlags.Public | BindingFlags.Static).Where(m = m.Name == "OrderBy").ToArray() [ 0 ].MakeGenericMethod(elementType, orderByProperty.PropertyType); query = orderByMethod.Invoke(null, new Object [] { query, orderBy }) as IQueryable; if (orderByColumns.Length 1) { MethodInfo thenByMethod = typeof(Queryable).GetMethods(BindingFlags.Public | BindingFlags.Static).Where(m = m.Name == "ThenBy").ToArray() [ 0 ].MakeGenericMethod(elementType, orderByProperty.PropertyType); PropertyInfo thenByProperty = null; MemberExpression thenByMember = null; LambdaExpression thenBy = null; for (Int32 i = 1; i 0) { MethodInfo takeMethod = typeof(Queryable).GetMethod("Take", BindingFlags.Public | BindingFlags.Static).MakeGenericMethod(elementType); MethodInfo skipMethod = typeof(Queryable).GetMethod("Skip", BindingFlags.Public | BindingFlags.Static).MakeGenericMethod(elementType); query = skipMethod.Invoke(null, new Object [] { query, pageSize * pageIndex }) as IQueryable; query = takeMethod.Invoke(null, new Object [] { query, pageSize }) as IQueryable; } MethodInfo toListMethod = typeof(Enumerable).GetMethod("ToList", BindingFlags.Static | BindingFlags.Public).MakeGenericMethod(elementType); IList list = toListMethod.Invoke(null, new Object [] { query }) as IList; return (list); } public static List ApplyPagingAndSorting(IEnumerable enumerable, Int32 pageSize, Int32 pageIndex, params String [] orderByColumns) { return (ApplyPagingAndSorting(enumerable, typeof(T), pageSize, pageIndex, orderByColumns) as List); } List list = new List { new DateTime(2010, 1, 1), new DateTime(1999, 1, 12), new DateTime(1900, 10, 10), new DateTime(1900, 2, 20), new DateTime(2012, 5, 5), new DateTime(2012, 1, 20) }; List sortedList = ApplyPagingAndSorting(list, 3, 0, "Year", "Month", "Day"); SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • Analyze your IIS Log Files - Favorite Log Parser Queries

    - by The Official Microsoft IIS Site
    The other day I was asked if I knew about a tool that would allow users to easily analyze the IIS Log Files, to process and look for specific data that could easily be automated. My recommendation was that if they were comfortable with using a SQL-like language that they should use Log Parser . Log Parser is a very powerful tool that provides a generic SQL-like language on top of many types of data like IIS Logs, Event Viewer entries, XML files, CSV files, File System and others; and it allows you...(read more)

    Read the article

  • RSS feeds in Orchard

    - by Bertrand Le Roy
    When we added RSS to Orchard, we wanted to make it easy for any module to expose any contents as a feed. We also wanted the rendering of the feed to be handled by Orchard in order to minimize the amount of work from the module developer. A typical example of such feed exposition is of course blog feeds. We have an IFeedManager interface for which you can get the built-in implementation through dependency injection. Look at the BlogController constructor for an example: public BlogController( IOrchardServices services, IBlogService blogService, IBlogSlugConstraint blogSlugConstraint, IFeedManager feedManager, RouteCollection routeCollection) { If you look a little further in that same controller, in the Item action, you’ll see a call to the Register method of the feed manager: _feedManager.Register(blog); This in reality is a call into an extension method that is specialized for blogs, but we could have made the two calls to the actual generic Register directly in the action instead, that is just an implementation detail: feedManager.Register(blog.Name, "rss", new RouteValueDictionary { { "containerid", blog.Id } }); feedManager.Register(blog.Name + " - Comments", "rss", new RouteValueDictionary { { "commentedoncontainer", blog.Id } }); What those two effective calls are doing is to register two feeds: one for the blog itself and one for the comments on the blog. For each call, the name of the feed is provided, then we have the type of feed (“rss”) and some values to be injected into the generic RSS route that will be used later to route the feed to the right providers. This is all you have to do to expose a new feed. If you’re only interested in exposing feeds, you can stop right there. If on the other hand you want to know what happens after that under the hood, carry on. What happens after that is that the feedmanager will take care of formatting the link tag for the feed (see FeedManager.GetRegisteredLinks). The GetRegisteredLinks method itself will be called from a specialized filter, FeedFilter. FeedFilter is an MVC filter and the event we’re interested in hooking into is OnResultExecuting, which happens after the controller action has returned an ActionResult and just before MVC executes that action result. In other words, our feed registration has already been called but the view is not yet rendered. Here’s the code for OnResultExecuting: model.Zones.AddAction("head:after", html => html.ViewContext.Writer.Write( _feedManager.GetRegisteredLinks(html))); This is another piece of code whose execution is differed. It is saying that whenever comes time to render the “head” zone, this code should be called right after. The code itself is rendering the link tags. As a result of all that, here’s what can be found in an Orchard blog’s head section: <link rel="alternate" type="application/rss+xml"     title="Tales from the Evil Empire"     href="/rss?containerid=5" /> <link rel="alternate" type="application/rss+xml"     title="Tales from the Evil Empire - Comments"     href="/rss?commentedoncontainer=5" /> The generic action that these two feeds point to is Index on FeedController. That controller has three important dependencies: an IFeedBuilderProvider, an IFeedQueryProvider and an IFeedItemProvider. Different implementations of these interfaces can provide different formats of feeds, such as RSS and Atom. The Match method enables each of the competing providers to provide a priority for themselves based on arbitrary criteria that can be found on the FeedContext. This means that a provider can be selected based not only on the desired format, but also on the nature of the objects being exposed as a feed or on something even more arbitrary such as the destination device (you could imagine for example giving shorter text only excerpts of posts on mobile devices, and full HTML on desktop). The key here is extensibility and dynamic competition and collaboration from unknown and loosely coupled parts. You’ll find this pattern pretty much everywhere in the Orchard architecture. The RssFeedBuilder implementation of IFeedBuilderProvider is also a regular controller with a Process action that builds a RssResult, which is itself a thin ActionResult wrapper around an XDocument. Let’s get back to the FeedController’s Index action. After having called into each known feed builder to get its priority on the currently requested feed, it will select the one with the highest priority. The next thing it needs to do is to actually fetch the data for the feed. This again is a collaborative effort from a priori unknown providers, the implementations of IFeedQueryProvider. There are several implementations by default in Orchard, the choice of which is again done through a Match method. ContainerFeedQuery for example chimes in when a “containerid” parameter is found in the context (see URL in the link tag above): public FeedQueryMatch Match(FeedContext context) { var containerIdValue = context.ValueProvider.GetValue("containerid"); if (containerIdValue == null) return null; return new FeedQueryMatch { FeedQuery = this, Priority = -5 }; } The actual work is done in the Execute method, which finds the right container content item in the Orchard database and adds elements for each of them. In other words, the feed query provider knows how to retrieve the list of content items to add to the feed. The last step is to translate each of the content items into feed entries, which is done by implementations of IFeedItemBuilder. There is no Match method this time. Instead, all providers are called with the collection of items (or more accurately with the FeedContext, but this contains the list of items, which is what’s relevant in most cases). Each provider can then choose to pick those items that it knows how to treat and transform them into the format requested. This enables the construction of heterogeneous feeds that expose content items of various types into a single feed. That will be extremely important when you’ll want to expose a single feed for all your site. So here are feeds in Orchard in a nutshell. The main point here is that there is a fair number of components involved, with some complexity in implementation in order to allow for extreme flexibility, but the part that you use to expose a new feed is extremely simple and light: declare that you want your content exposed as a feed and you’re done. There are cases where you’ll have to dive in and provide new implementations for some or all of the interfaces involved, but that requirement will only arise as needed. For example, you might need to create a new feed item builder to include your custom content type but that effort will be extremely focused on the specialized task at hand. The rest of the system won’t need to change. So what do you think?

    Read the article

< Previous Page | 98 99 100 101 102 103 104 105 106 107 108 109  | Next Page >