Search Results

Search found 31628 results on 1266 pages for 'legacy database'.

Page 102/1266 | < Previous Page | 98 99 100 101 102 103 104 105 106 107 108 109  | Next Page >

  • Change Tracking

    - by Ricardo Peres
    You may recall my last post on Change Data Control. This time I am going to talk about other option for tracking changes to tables on SQL Server: Change Tracking. The main differences between the two are: Change Tracking works with SQL Server 2008 Express Change Tracking does not require SQL Server Agent to be running Change Tracking does not keep the old values in case of an UPDATE or DELETE Change Data Capture uses an asynchronous process, so there is no overhead on each operation Change Data Capture requires more storage and processing Here's some code that illustrates it's usage: -- for demonstrative purposes, table Post of database Blog only contains two columns, PostId and Title -- enable change tracking for database Blog, for 2 days ALTER DATABASE Blog SET CHANGE_TRACKING = ON (CHANGE_RETENTION = 2 DAYS, AUTO_CLEANUP = ON); -- enable change tracking for table Post ALTER TABLE Post ENABLE CHANGE_TRACKING WITH (TRACK_COLUMNS_UPDATED = ON); -- see current records on table Post SELECT * FROM Post SELECT * FROM sys.sysobjects WHERE name = 'Post' SELECT * FROM sys.sysdatabases WHERE name = 'Blog' -- confirm that table Post and database Blog are being change tracked SELECT * FROM sys.change_tracking_tables SELECT * FROM sys.change_tracking_databases -- see current version for table Post SELECT p.PostId, p.Title, c.SYS_CHANGE_VERSION, c.SYS_CHANGE_CONTEXT FROM Post AS p CROSS APPLY CHANGETABLE(VERSION Post, (PostId), (p.PostId)) AS c; -- update post UPDATE Post SET Title = 'First Post Title Changed' WHERE Title = 'First Post Title'; -- see current version for table Post SELECT p.PostId, p.Title, c.SYS_CHANGE_VERSION, c.SYS_CHANGE_CONTEXT FROM Post AS p CROSS APPLY CHANGETABLE(VERSION Post, (PostId), (p.PostId)) AS c; -- see changes since version 0 (initial) SELECT p.Title, c.PostId, SYS_CHANGE_VERSION, SYS_CHANGE_OPERATION, SYS_CHANGE_COLUMNS, SYS_CHANGE_CONTEXT FROM CHANGETABLE(CHANGES Post, 0) AS c LEFT OUTER JOIN Post AS p ON p.PostId = c.PostId; -- is column Title of table Post changed since version 0? SELECT CHANGE_TRACKING_IS_COLUMN_IN_MASK(COLUMNPROPERTY(OBJECT_ID('Post'), 'Title', 'ColumnId'), (SELECT SYS_CHANGE_COLUMNS FROM CHANGETABLE(CHANGES Post, 0) AS c)) -- get current version SELECT CHANGE_TRACKING_CURRENT_VERSION() -- disable change tracking for table Post ALTER TABLE Post DISABLE CHANGE_TRACKING; -- disable change tracking for database Blog ALTER DATABASE Blog SET CHANGE_TRACKING = OFF; You can read about the differences between the two options here. Choose the one that best suits your needs! SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.brushes.Xml.aliases = ['xml']; SyntaxHighlighter.all();

    Read the article

  • LLBLGen Pro feature highlights: grouping model elements

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) When working with an entity model which has more than a few entities, it's often convenient to be able to group entities together if they belong to a semantic sub-model. For example, if your entity model has several entities which are about 'security', it would be practical to group them together under the 'security' moniker. This way, you could easily find them back, yet they can be left inside the complete entity model altogether so their relationships with entities outside the group are kept. In other situations your domain consists of semi-separate entity models which all target tables/views which are located in the same database. It then might be convenient to have a single project to manage the complete target database, yet have the entity models separate of each other and have them result in separate code bases. LLBLGen Pro can do both for you. This blog post will illustrate both situations. The feature is called group usage and is controllable through the project settings. This setting is supported on all supported O/R mapper frameworks. Situation one: grouping entities in a single model. This situation is common for entity models which are dense, so many relationships exist between all sub-models: you can't split them up easily into separate models (nor do you likely want to), however it's convenient to have them grouped together into groups inside the entity model at the project level. A typical example for this is the AdventureWorks example database for SQL Server. This database, which is a single catalog, has for each sub-group a schema, however most of these schemas are tightly connected with each other: adding all schemas together will give a model with entities which indirectly are related to all other entities. LLBLGen Pro's default setting for group usage is AsVisualGroupingMechanism which is what this situation is all about: we group the elements for visual purposes, it has no real meaning for the model nor the code generated. Let's reverse engineer AdventureWorks to an entity model. By default, LLBLGen Pro uses the target schema an element is in which is being reverse engineered, as the group it will be in. This is convenient if you already have categorized tables/views in schemas, like which is the case in AdventureWorks. Of course this can be switched off, or corrected on the fly. When reverse engineering, we'll walk through a wizard which will guide us with the selection of the elements which relational model data should be retrieved, which we can later on use to reverse engineer to an entity model. The first step after specifying which database server connect to is to select these elements. below we can see the AdventureWorks catalog as well as the different schemas it contains. We'll include all of them. After the wizard completes, we have all relational model data nicely in our catalog data, with schemas. So let's reverse engineer entities from the tables in these schemas. We select in the catalog explorer the schemas 'HumanResources', 'Person', 'Production', 'Purchasing' and 'Sales', then right-click one of them and from the context menu, we select Reverse engineer Tables to Entity Definitions.... This will bring up the dialog below. We check all checkboxes in one go by checking the checkbox at the top to mark them all to be added to the project. As you can see LLBLGen Pro has already filled in the group name based on the schema name, as this is the default and we didn't change the setting. If you want, you can select multiple rows at once and set the group name to something else using the controls on the dialog. We're fine with the group names chosen so we'll simply click Add to Project. This gives the following result:   (I collapsed the other groups to keep the picture small ;)). As you can see, the entities are now grouped. Just to see how dense this model is, I've expanded the relationships of Employee: As you can see, it has relationships with entities from three other groups than HumanResources. It's not doable to cut up this project into sub-models without duplicating the Employee entity in all those groups, so this model is better suited to be used as a single model resulting in a single code base, however it benefits greatly from having its entities grouped into separate groups at the project level, to make work done on the model easier. Now let's look at another situation, namely where we work with a single database while we want to have multiple models and for each model a separate code base. Situation two: grouping entities in separate models within the same project. To get rid of the entities to see the second situation in action, simply undo the reverse engineering action in the project. We still have the AdventureWorks relational model data in the catalog. To switch LLBLGen Pro to see each group in the project as a separate project, open the Project Settings, navigate to General and set Group usage to AsSeparateProjects. In the catalog explorer, select Person and Production, right-click them and select again Reverse engineer Tables to Entities.... Again check the checkbox at the top to mark all entities to be added and click Add to Project. We get two groups, as expected, however this time the groups are seen as separate projects. This means that the validation logic inside LLBLGen Pro will see it as an error if there's e.g. a relationship or an inheritance edge linking two groups together, as that would lead to a cyclic reference in the code bases. To see this variant of the grouping feature, seeing the groups as separate projects, in action, we'll generate code from the project with the two groups we just created: select from the main menu: Project -> Generate Source-code... (or press F7 ;)). In the dialog popping up, select the target .NET framework you want to use, the template preset, fill in a destination folder and click Start Generator (normal). This will start the code generator process. As expected the code generator has simply generated two code bases, one for Person and one for Production: The group name is used inside the namespace for the different elements. This allows you to add both code bases to a single solution and use them together in a different project without problems. Below is a snippet from the code file of a generated entity class. //... using System.Xml.Serialization; using AdventureWorks.Person; using AdventureWorks.Person.HelperClasses; using AdventureWorks.Person.FactoryClasses; using AdventureWorks.Person.RelationClasses; using SD.LLBLGen.Pro.ORMSupportClasses; namespace AdventureWorks.Person.EntityClasses { //... /// <summary>Entity class which represents the entity 'Address'.<br/><br/></summary> [Serializable] public partial class AddressEntity : CommonEntityBase //... The advantage of this is that you can have two code bases and work with them separately, yet have a single target database and maintain everything in a single location. If you decide to move to a single code base, you can do so with a change of one setting. It's also useful if you want to keep the groups as separate models (and code bases) yet want to add relationships to elements from another group using a copy of the entity: you can simply reverse engineer the target table to a new entity into a different group, effectively making a copy of the entity. As there's a single target database, changes made to that database are reflected in both models which makes maintenance easier than when you'd have a separate project for each group, with its own relational model data. Conclusion LLBLGen Pro offers a flexible way to work with entities in sub-models and control how the sub-models end up in the generated code.

    Read the article

  • SQL SERVER – SQL Server High Availability Options – Notes from the Field #032

    - by Pinal Dave
    [Notes from Pinal]: When it is about High Availability or Disaster Recovery, I often see people getting confused. There are so many options available that when the user has to select what is the most optimal solution for their organization they are often confused. Most of the people even know the salient features of various options, but when they have to figure out one single option to use they are often not sure which option to use. I like to give ask my dear friend time all these kinds of complicated questions. He has a skill to make a complex subject very simple and easy to understand. Linchpin People are database coaches and wellness experts for a data driven world. In this 26th episode of the Notes from the Fields series database expert Tim Radney (partner at Linchpin People) explains in a very simple words the best High Availability Option for your SQL Server.  Working with SQL Server a common challenge we are faced with is providing the maximum uptime possible.  To meet these demands we have to design a solution to provide High Availability (HA). Microsoft SQL Server depending on your edition provides you with several options.  This could be database mirroring, log shipping, failover clusters, availability groups or replication. Each possible solution comes with pro’s and con’s.  Not anyone one solution fits all scenarios so understanding which solution meets which need is important.  As with anything IT related, you need to fully understand your requirements before trying to solution the problem.  When it comes to building an HA solution, you need to understand the risk your organization needs to mitigate the most. I have found that most are concerned about hardware failure and OS failures. Other common concerns are data corruption or storage issues.  For data corruption or storage issues you can mitigate those concerns by having a second copy of the databases. That can be accomplished with database mirroring, log shipping, replication or availability groups with a secondary replica.  Failover clustering and virtualization with shared storage do not provide redundancy of the data. I recently created a chart outlining some pros and cons of each of the technologies that I posted on my blog. I like to use this chart to help illustrate how each technology provides a certain number of benefits.  Each of these solutions carries with it some level of cost and complexity.  As a database professional we should all be familiar with these technologies so we can make the best possible choice for our organization. If you want me to take a look at your server and its settings, or if your server is facing any issue we can Fix Your SQL Server. Note: Tim has also written an excellent book on SQL Backup and Recovery, a must have for everyone. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Shrinking Database

    Read the article

  • Best practices when creating/modeling databases?

    - by Oscar Mederos
    I learned at the University some steps to model a database: Model the problem using the Extended Entity-Relationship Model. Extract the functional dependencies Apply some algorithms to normalize the database (3NF or Boyce-Codd) Create the database I'm studying Computer Science and since I received that course I'm wondering if I always need to do those steps when creating a complex database for an specified problem. For example, do PHP / .NET / .. programmers always do that? or there are some tools to simplify that process, maybe using another way of represent the problem instead of the EERM?

    Read the article

  • Oracle Technológia Fórum, 2010. május 5.

    - by Fekete Zoltán
    Holnap, május 5-ikén lesz Exadata/Database Machine eloadás is (by me). Többek között elmondom, hogyan lehet a Database Machine, Exadata környezeteket patch-elni: Database, Exadata, további elemek. Oracle Technológia Fórum rendezvény, 2010. május 5. szerda. Tessék jönni, kérdezni.

    Read the article

  • New Exadata Book Available Soon

    - by Rob Reynolds
    Oracle Press is set to released the first book on data warehouse performance and Exadata on March 14th. Achieving Extreme Performance with Oracle Exadata , by my colleagues Rick Greenwald, Robert Stackowiak, Maqsood Alam, and Mans Bhuller will be available at your favorite booksellers next week. I've seen a sneak peak of the content in this book and its a great way to fully grasp the power of Exadata and how to best apply it to achieve extreme data warehouse performance. From the publisher's description: Achieving Extreme Performance with Oracle Exadata and the Sun Oracle Database Machine is filled with best practices for deployments, hardware sizing, architecting the database machine environments for maximum availability, and backup and recovery. Oracle Database 11gR2 features used within these offerings, as well as migration options and paths for Oracle and non-Oracle databases to Oracle Exadata are covered. This Oracle Press guide also discusses architecture, administration, maintenance, monitoring, and tuning of Oracle Exadata Storage Servers and the Sun Oracle Database Machine. If your company is considering Exadata, or if you need more horsepower out of your data warehouse, I highly recommend grabbing a copy of this book next week.

    Read the article

  • SharePoint 2010 Server Configuration Error -> "Cannot connect to database master"

    - by Chrish Riis
    I recieve the following error when I try to configure SharePoint 2010 Server: "Cannot connect to the database master at SQL server at [computer.domain]. The database might not exist, or the current user does not have permission to connect to it." I run the following setup: Windows Server 2008 R2 Standard with SP1 and all the updates SQL Server 2008 R2 with SP1 SharePoint Server 2010 with SP1 Everything is installed on the same server (it's a testserver) I have tried the following: Rebooting the server Checking the install account's DB rights (dbcreator, securityadmin - I even let it have sysadmin) Opened up the firewall on port 1433 and 1434 Uninstalled both SQL and SP, then reinstalled the both Enabled all client protocols in SQL Server Configuration Made sure I used the correct account for installing SharePoint (local admin) Useful links: TCP/IP settings – http:// blog.vanmeeuwen-online.nl/2010/10/cannot-connect-to-database-master-at.html http:// ybbest.wordpress.com/2011/04/22/cannot-connect-to-database-master-at-sql-server-at-sql2008r2/ Wrong slash - http:// yakimadev.com/2010/11/cannot-connect-to-database-master-at-sql-server-at-serverdbname-error-during-sharepoint-2010-products-configuration-wizard-and-installation/ Port error - http:// www.knowsharepoint.com/2011/08/error-connecting-to-database-server.html

    Read the article

  • Best practices when creating/modeling databases?

    - by Oscar Mederos
    Hello, I learned at the University some steps to model a database: Model the problem using the Extended Entity-Relationship Model. Extract the functional dependencies Apply some algorithms to normalize the database (3NF or Boyce-Codd) Create the database I'm studying Computer Science and since I received that course I'm wondering if I always need to do those steps when creating a complex database for an specified problem. For example, do PHP / .NET / .. programmers always do that? or there are some tools to simplify that process, maybe using another way of represent the problem instead of the EERM?

    Read the article

  • SQL SERVER Find Most Active Database in SQL Server DMV dm_io_virtual_file_stats

    Few days ago, I wrote about SQL SERVER Find Current Location of Data and Log File of All the Database. There was very interesting conversation in comments by blog readers. Blog reader and SQL Expert Sreedhar has very interesting DMV presented which lists the most active database in SQL Server. For quick reference he [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • The case of the phantom ADF developer (and other yarns)

    - by Chris Muir
    A few years of ADF experience means I see common mistakes made by different developers, some I regularly make myself.  This post is designed to assist beginners to Oracle JDeveloper Application Development Framework (ADF) avoid a common ADF pitfall, the case of the phantom ADF developer [add Scooby-Doo music here]. ADF Business Components - triggers, default table values and instead of views. Oracle's JDeveloper tutorials help with the A-B-Cs of ADF development, typically built on the nice 'n safe demo schema provided by with the Oracle database such as the HR demo schema. However it's not too long until ADF beginners, having built up some confidence from learning with the tutorials and vanilla demo schemas, start building ADF Business Components based upon their own existing database schema objects.  This is where unexpected problems can sneak in. The crime Developers may encounter a surprising error at runtime when editing a record they just created or updated and committed to the database, based on their own existing tables, namely the error: JBO-25014: Another user has changed the row with primary key oracle.jbo.Key[x] ...where X is the primary key value of the row at hand.  In a production environment with multiple users this error may be legit, one of the other users has updated the row since you queried it.  Yet in a development environment this error is just plain confusing.  If developers are isolated in their own database, creating and editing records they know other users can't possibly be working with, or all the other developers have gone home for the day, how is this error possible? There are no other users?  It must be the phantom ADF developer! [insert dramatic music here] The following picture is what you'll see in the Business Component Browser, and you'll receive a similar error message via an ADF Faces page: A false conclusion What can possibly cause this issue if it isn't our phantom ADF developer?  Doesn't ADF BC implement record locking, locking database records when the row is modified in the ADF middle-tier by a user?  How can our phantom ADF developer even take out a lock if this is the case?  Maybe ADF has a bug, maybe ADF isn't implementing record locking at all?  Shouldn't we see the error "JBO-26030: Failed to lock the record, another user holds the lock" as we attempt to modify the record, why do we see JBO-25014? : Let's verify that ADF is in fact issuing the correct SQL LOCK-FOR-UPDATE statement to the database. First we need to verify ADF's locking strategy.  It is determined by the Application Module's jbo.locking.mode property.  The default (as of JDev 11.1.1.4.0 if memory serves me correct) and recommended value is optimistic, and the other valid value is pessimistic. Next we need a mechanism to check that ADF is issuing the LOCK statements to the database.  We could ask DBAs to monitor locks with OEM, but optimally we'd rather not involve overworked DBAs in this process, so instead we can use the ADF runtime setting –Djbo.debugoutput=console.  At runtime this options turns on instrumentation within the ADF BC layer, which among a lot of extra detail displayed in the log window, will show the actual SQL statement issued to the database, including the LOCK statement we're looking to confirm. Setting our locking mode to pessimistic, opening the Business Components Browser of a JSF page allowing us to edit a record, say the CHARGEABLE field within a BOOKINGS record where BOOKING_NO = 1206, upon editing the record see among others the following log entries: [421] Built select: 'SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings'[422] Executing LOCK...SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings WHERE BOOKING_NO=:1 FOR UPDATE NOWAIT[423] Where binding param 1: 1206  As can be seen on line 422, in fact a LOCK-FOR-UPDATE is indeed issued to the database.  Later when we commit the record we see: [441] OracleSQLBuilder: SAVEPOINT 'BO_SP'[442] OracleSQLBuilder Executing, Lock 1 DML on: BOOKINGS (Update)[443] UPDATE buf Bookings>#u SQLStmtBufLen: 210, actual=62[444] UPDATE BOOKINGS Bookings SET CHARGEABLE=:1 WHERE BOOKING_NO=:2[445] Update binding param 1: N[446] Where binding param 2: 1206[447] BookingsView1 notify COMMIT ... [448] _LOCAL_VIEW_USAGE_model_Bookings_ResourceTypesView1 notify COMMIT ... [449] EntityCache close prepared statement ....and as a result the changes are saved to the database, and the lock is released. Let's see what happens when we use the optimistic locking mode, this time to change the same BOOKINGS record CHARGEABLE column again.  As soon as we edit the record we see little activity in the logs, nothing to indicate any SQL statement, let alone a LOCK has been taken out on the row. However when we save our records by issuing a commit, the following is recorded in the logs: [509] OracleSQLBuilder: SAVEPOINT 'BO_SP'[510] OracleSQLBuilder Executing doEntitySelect on: BOOKINGS (true)[511] Built select: 'SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings'[512] Executing LOCK...SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings WHERE BOOKING_NO=:1 FOR UPDATE NOWAIT[513] Where binding param 1: 1205[514] OracleSQLBuilder Executing, Lock 2 DML on: BOOKINGS (Update)[515] UPDATE buf Bookings>#u SQLStmtBufLen: 210, actual=62[516] UPDATE BOOKINGS Bookings SET CHARGEABLE=:1 WHERE BOOKING_NO=:2[517] Update binding param 1: Y[518] Where binding param 2: 1205[519] BookingsView1 notify COMMIT ... [520] _LOCAL_VIEW_USAGE_model_Bookings_ResourceTypesView1 notify COMMIT ... [521] EntityCache close prepared statement Again even though we're seeing the midtier delay the LOCK statement until commit time, it is in fact occurring on line 412, and released as part of the commit issued on line 419.  Therefore with either optimistic or pessimistic locking a lock is indeed issued. Our conclusion at this point must be, unless there's the unlikely cause the LOCK statement is never really hitting the database, or the even less likely cause the database has a bug, then ADF does in fact take out a lock on the record before allowing the current user to update it.  So there's no way our phantom ADF developer could even modify the record if he tried without at least someone receiving a lock error. Hmm, we can only conclude the locking mode is a red herring and not the true cause of our problem.  Who is the phantom? At this point we'll need to conclude that the error message "JBO-25014: Another user has changed" is somehow legit, even though we don't understand yet what's causing it. This leads onto two further questions, how does ADF know another user has changed the row, and what's been changed anyway? To answer the first question, how does ADF know another user has changed the row, the Fusion Guide's section 4.10.11 How to Protect Against Losing Simultaneous Updated Data , that details the Entity Object Change-Indicator property, gives us the answer: At runtime the framework provides automatic "lost update" detection for entity objects to ensure that a user cannot unknowingly modify data that another user has updated and committed in the meantime. Typically, this check is performed by comparing the original values of each persistent entity attribute against the corresponding current column values in the database at the time the underlying row is locked. Before updating a row, the entity object verifies that the row to be updated is still consistent with the current state of the database.  The guide further suggests to make this solution more efficient: You can make the lost update detection more efficient by identifying any attributes of your entity whose values you know will be updated whenever the entity is modified. Typical candidates include a version number column or an updated date column in the row.....To detect whether the row has been modified since the user queried it in the most efficient way, select the Change Indicator option to compare only the change-indicator attribute values. We now know that ADF BC doesn't use the locking mechanism at all to protect the current user against updates, but rather it keeps a copy of the original record fetched, separate to the user changed version of the record, and it compares the original record against the one in the database when the lock is taken out.  If values don't match, be it the default compare-all-columns behaviour, or the more efficient Change Indicator mechanism, ADF BC will throw the JBO-25014 error. This leaves one last question.  Now we know the mechanism under which ADF identifies a changed row, what we don't know is what's changed and who changed it? The real culprit What's changed?  We know the record in the mid-tier has been changed by the user, however ADF doesn't use the changed record in the mid-tier to compare to the database record, but rather a copy of the original record before it was changed.  This leaves us to conclude the database record has changed, but how and by who? There are three potential causes: Database triggers The database trigger among other uses, can be configured to fire PLSQL code on a database table insert, update or delete.  In particular in an insert or update the trigger can override the value assigned to a particular column.  The trigger execution is actioned by the database on behalf of the user initiating the insert or update action. Why this causes the issue specific to our ADF use, is when we insert or update a record in the database via ADF, ADF keeps a copy of the record written to the database.  However the cached record is instantly out of date as the database triggers have modified the record that was actually written to the database.  Thus when we update the record we just inserted or updated for a second time to the database, ADF compares its original copy of the record to that in the database, and it detects the record has been changed – giving us JBO-25014. This is probably the most common cause of this problem. Default values A second reason this issue can occur is another database feature, default column values.  When creating a database table the schema designer can define default values for specific columns.  For example a CREATED_BY column could be set to SYSDATE, or a flag column to Y or N.  Default values are only used by the database when a user inserts a new record and the specific column is assigned NULL.  The database in this case will overwrite the column with the default value. As per the database trigger section, it then becomes apparent why ADF chokes on this feature, though it can only specifically occur in an insert-commit-update-commit scenario, not the update-commit-update-commit scenario. Instead of trigger views I must admit I haven't double checked this scenario but it seems plausible, that of the Oracle database's instead of trigger view (sometimes referred to as instead of views).  A view in the database is based on a query, and dependent on the queries complexity, may support insert, update and delete functionality to a limited degree.  In order to support fully insertable, updateable and deletable views, Oracle introduced the instead of view, that gives the view designer the ability to not only define the view query, but a set of programmatic PLSQL triggers where the developer can define their own logic for inserts, updates and deletes. While this provides the database programmer a very powerful feature, it can cause issues for our ADF application.  On inserting or updating a record in the instead of view, the record and it's data that goes in is not necessarily the data that comes out when ADF compares the records, as the view developer has the option to practically do anything with the incoming data, including throwing it away or pushing it to tables which aren't used by the view underlying query for fetching the data. Readers are at this point reminded that this article is specifically about how the JBO-25014 error occurs in the context of 1 developer on an isolated database.  The article is not considering how the error occurs in a production environment where there are multiple users who can cause this error in a legitimate fashion.  Assuming none of the above features are the cause of the problem, and optimistic locking is turned on (this error is not possible if pessimistic locking is the default mode *and* none of the previous causes are possible), JBO-25014 is quite feasible in a production ADF application if 2 users modify the same record. At this point under project timelines pressure, the obvious fix for developers is to drop both database triggers and default values from the underlying tables.  However we must be careful that these legacy constructs aren't used and assumed to be in place by other legacy systems.  Dropping the database triggers or default value that the existing Oracle Forms  applications assumes and requires to be in place could cause unexpected behaviour and bugs in the Forms application.  Proficient software engineers would recognize such a change may require a partial or full regression test of the existing legacy system, a potentially costly and timely exercise, not ideal. Solving the mystery once and for all Luckily ADF has built in functionality to deal with this issue, though it's not a surprise, as Oracle as the author of ADF also built the database, and are fully aware of the Oracle database's feature set.  At the Entity Object attribute level, the Refresh After Insert and Refresh After Update properties.  Simply selecting these instructs ADF BC after inserting or updating a record to the database, to expect the database to modify the said attributes, and read a copy of the changed attributes back into its cached mid-tier record.  Thus next time the developer modifies the current record, the comparison between the mid-tier record and the database record match, and JBO-25014: Another user has changed" is no longer an issue. [Post edit - as per the comment from Oracle's Steven Davelaar below, as he correctly points out the above solution will not work for instead-of-triggers views as it relies on SQL RETURNING clause which is incompatible with this type of view] Alternatively you can set the Change Indicator on one of the attributes.  This will work as long as the relating column for the attribute in the database itself isn't inadvertently updated.  In turn you're possibly just masking the issue rather than solving it, because if another developer turns the Change Indicator back on the original issue will return.

    Read the article

  • Oracle saves with Oracle Database 11g and Advanced Compression

    - by jenny.gelhausen
    Oracle Corporation runs a centralized eBusiness Suite system on Oracle Database 11g for all its employees around the globe. This clustered Global Single Instance (GSI) has scaled seamlessly with many acquisitions over the years, doubling the number of employees since 2001 and supporting around 100,000 employees today, 24 hours a day, 7 days a week around the world. In this podcast, you'll hear from Raji Mani, IT Director for Oracle's PDIT Group, on how Oracle Database 11g and Advanced Compression is helping to save big on storage costs. var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-13185312-1"); pageTracker._trackPageview(); } catch(err) {}

    Read the article

  • Deploying Data Mining Models using Model Export and Import

    - by [email protected]
    In this post, we'll take a look at how Oracle Data Mining facilitates model deployment. After building and testing models, a next step is often putting your data mining model into a production system -- referred to as model deployment. The ability to move data mining model(s) easily into a production system can greatly speed model deployment, and reduce the overall cost. Since Oracle Data Mining provides models as first class database objects, models can be manipulated using familiar database techniques and technology. For example, one or more models can be exported to a flat file, similar to a database table dump file (.dmp). This file can be moved to a different instance of Oracle Database EE, and then imported. All methods for exporting and importing models are based on Oracle Data Pump technology and found in the DBMS_DATA_MINING package. Before performing the actual export or import, a directory object must be created. A directory object is a logical name in the database for a physical directory on the host computer. Read/write access to a directory object is necessary to access the host computer file system from within Oracle Database. For our example, we'll work in the DMUSER schema. First, DMUSER requires the privilege to create any directory. This is often granted through the sysdba account. grant create any directory to dmuser; Now, DMUSER can create the directory object specifying the path where the exported model file (.dmp) should be placed. In this case, on a linux machine, we have the directory /scratch/oracle. CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/oracle'; If you aren't sure of the exact name of the model or models to export, you can find the list of models using the following query: select model_name from user_mining_models; There are several options when exporting models. We can export a single model, multiple models, or all models in a schema using the following procedure calls: BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODEL.dmp','dmdir','name =''MY_DT_MODEL'''); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODELS.dmp','dmdir',              'name IN (''MY_DT_MODEL'',''MY_KM_MODEL'')'); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('ALL_DMUSER_MODELS.dmp','dmdir'); END; A .dmp file can be imported into another schema or database using the following procedure call, for example: BEGIN   DBMS_DATA_MINING.IMPORT_MODEL('MY_MODELS.dmp', 'dmdir'); END; As with models from any data mining tool, when moving a model from one environment to another, care needs to be taken to ensure the transformations that prepare the data for model building are matched (with appropriate parameters and statistics) in the system where the model is deployed. Oracle Data Mining provides automatic data preparation (ADP) and embedded data preparation (EDP) to reduce, or possibly eliminate, the need to explicitly transport transformations with the model. In the case of ADP, ODM automatically prepares the data and includes the necessary transformations in the model itself. In the case of EDP, users can associate their own transformations with attributes of a model. These transformations are automatically applied when applying the model to data, i.e., scoring. Exporting and importing a model with ADP or EDP results in these transformations being immediately available with the model in the production system.

    Read the article

  • Entity Framework Code First: Get Entities From Local Cache or the Database

    - by Ricardo Peres
    Entity Framework Code First makes it very easy to access local (first level) cache: you just access the DbSet<T>.Local property. This way, no query is sent to the database, only performed in already loaded entities. If you want to first search local cache, then the database, if no entries are found, you can use this extension method: 1: public static class DbContextExtensions 2: { 3: public static IQueryable<T> LocalOrDatabase<T>(this DbContext context, Expression<Func<T, Boolean>> expression) where T : class 4: { 5: IEnumerable<T> localResults = context.Set<T>().Local.Where(expression.Compile()); 6:  7: if (localResults.Any() == true) 8: { 9: return (localResults.AsQueryable()); 10: } 11:  12: IQueryable<T> databaseResults = context.Set<T>().Where(expression); 13:  14: return (databaseResults); 15: } 16: }

    Read the article

  • Complex knowledge management system with CRM..written internally

    - by JonH
    We've all heard of salesforce and sugarcrm and the likes of systems like this. Unfortunately at my workplace we have been asked to write a similiar system (rather then license or purchase). Basically the database is fairly large. Think of modules such as: Corporate groups, customers, programs, projects, sub projects, and issue management. In simple terms a corporate group has one to many customers. A program has one or more projects. A project has one or more sub projects. And an issue can be created on many sub projects. Of course the system is a bit more complex but instead of listing every single module I think its best to keep it simple. In any event, the system in its current state has only two resources to be working on it (basically we have to do it all: CSS, database, jquery, asp.net and C#). We've started off well by defining the UI master and footer pages that way we can reuse those across all of our pages. Now comes the hard part. The system will have about 4k end users with say 5-10% being concurrent users. We are wondering if it makes sense to cache our database data (For say 5-10 minutes) rather then continously hit our database. The reason being is some of these pages may have 5-10 search filters associated with the page. Imagine every time a selection is made from a search box how many database hits. Also some of these search fields cascade so selecting for instance an initial drop down may cascade several drop down boxes under them. Is it wrong to cache because I am not finding too many articles on whether it is a good idea or not. Remember the system is similiar to say a CRM system where we manage our various customers, projects, sub projects, issues, etc.

    Read the article

  • What's the entry path towards a database administrator job?

    - by FarmBoy
    I've recently lost my job, and I'm working towards changing vocations. My degrees are in Mathematics, but I'm interested in IT, particularly working as a DBA or a programmer. I don't have IT experience, but I have the resourses to be patient with the transition, and I'm currently learning SQL and Java. Obviously, I need some job experience. My question is this: What entry-level jobs might allow me to gain useful experience towards obtaining a DBA job? It seems to me that programmers often start as testers, and system administrators could start at a help-desk position, but it is unclear how one begins to work with a company's database.

    Read the article

  • OVM Templates: Oracle Solaris Container with Oracle Database 11gR2

    - by Roman Ivanov
    I am delighted to inform you that Oracle just made available new Oracle Solaris Virtual Machine (VM) Templates: Oracle Solaris Container with Oracle Database 11gR2. This VM Templates available for SPARC and x86 platforms. Both Oracle VM Templates based on encapsulating an Oracle Solaris 10 Container which can then be attached to SPARC or x86 system running Oracle Solaris 10 10/09 or later. Make sure your select correct SPARC or x86 platform. The download includes Oracle Solaris 10 10/09 Container Oracle Database 11gR2 pre-installed in the Container.

    Read the article

  • Latest Security Inside Out Newsletter Now Available

    - by Troy Kitch
    The September/October edition of the Security Inside Out Newsletter is now available. Learn about Oracle OpenWorld database security sessions, hands on labs, and demos you'll want to attend, as well as frequently asked question about Label-Based Access Controls in Oracle Database 11g. Subscriber here for the bi-monthly newsletter.  ...and if you haven't already done so, join Oracle Database on these social networks: Twitter Facebook LinkedIn Google+ 

    Read the article

< Previous Page | 98 99 100 101 102 103 104 105 106 107 108 109  | Next Page >