Search Results

Search found 4066 results on 163 pages for 'intel x25'.

Page 103/163 | < Previous Page | 99 100 101 102 103 104 105 106 107 108 109 110  | Next Page >

  • BSOD Code 16, artifacts all over the place (gtx 260)

    - by belinea
    I have a following, quite dated rig E8400 Core 2 Duo cpu Intel Dragontail Peak DP35DP motherboard on Intel Bearlake P35 chipset 4GB ram Geforce 260gtx Corsair 650W PSU Windows 7 64 bit The following things has happened in the last few days. I first decided to update my Nvidia drivers to the latest version. That was 4 days ago. PC worked fine for 2 days and I was able to play few games as well without any problems. Then 2 days ago a first crash happened while playing the new XCOM game. BSOD code 16. Just the blue screen, no artifacts. PC rebooted and worked well again, I continued playing this game for another 2 hours and went to sleep. Next evening I tried to play some BF3 multiplayer (use to play on LOW settings). Approx. 10 minutes into the game red/pink-ish artifacts appeared on the screen and game quit to desktop. Restarted the game and another 3-4 minutes afterwards another crash to desktop but this time followed shortly by BSOD Code 16. From that moment I started to seeing artifacts on random startups, including Windows loading screen and the BIOS itself. Windows would still load but soon enough it would BSOD on a simple task like opening a Internet browser. Today I get tons of artifacts (little small red dashes all over the screen) on BIOS, loading screen, normal Windows mode as well as safe mode. I suspect it wouldn't be drivers but I tried removing and sweeping them entirely in the safe mode. PC would still start with artifacts all over the place but would load the normal mode, just without the driver, in the default lowest resolution. As soon as proper Nvidia drivers are installed though and PC rebooted, Windows doesn't load at all as BSOD now appears on loading screen. However, again, if I go to safe mode and remove drivers, normal mode launches fine. So obviously crash happens only on high resolution. I opened my machine this morning and gave it a proper cleaning even though it wasn't heavily dusted. It didn't help and number of artifacts seems to increase with every PC restart. I write these words in safe mode, which works, but I have to look through all the red dots and dashes. I don't have built in GPU chipset so I can't try removing my Geforce card nor can I borrow A GPU from anyone else. What are my options? I was looking into getting a completely new rig around Christmas so I'm not freaking out about this. If everything points to hardware issue I may simply decide to get the new machine earlier and don't bother with fixing this one. However it would be great to learn more if this is indeed situation that has slim chances of getting sorted. I realize BSOD Code 16 is rather popular topic online but every story seems a bit different and there can be number of issues with it. Hence a new thread.

    Read the article

  • WNDR3700 Router + Cisco SG200-08 + LACP + Dual Uplink

    - by kobaltz
    Background I have a storage server that has several virtual machine images stored on them. I would store them locally, but I have limited space on my desktop (using SSD storage). I would like to increase the bandwidth between the desktop and the storage server by using two NICs on each computer. My original configuration allowed about 55MBps between the desktop and storage server. This storage server also has several TBs of documents, pictures, movies, vms, and ISO/programs. The storage server has 8 1.5TB hard drives in a RAID 10 configuration with a hardware RAID controller. The benchmarks on the RAID 10 are about 300MBps. Configuration In short, I am trying to bridge my switch and router. The switch is a small 8 port Cisco smart switch that supports 802.3ad LACP. I have two computers plugged into the switch, each with 2 Intel Gigabit NICs. The first computer is a Windows 7 machine that has the Intel ANS software installed. I have LACP configured with the computer and now show 3 NICs (2 Physical + 1 TEAM Virtual @ 2Gbps). It looks like this computer is configured correctly. I trunked the two ports that this computer is plugged into with the switch's web interface. The second computer is a homebrew storage box running debian. I also have the bonding enabled on this machine and the switch configured with LACP. Without having the WNDR3700 router in the picture yet, I am able to communicate between the Windows 7 machine and the debian box since they both have static IP addresses. With LACP enabled on both machines I am getting about 106-108MBps speeds. Issue I plug in a network cable from the switch into the router and enable DHCP on the desktop. I saw no need to have a static address on the desktop. My transfer rates are still from 106MBps-108MBps. While this is still a boost, I am trying to figure out how to get about 140-180MBps. I am thinking that I need to increase the bandwidth from the router to the switch. My switch allows 4 groups for port trunking. I plugged in a second network cable from the router to the switch. My question is, what is the proper way to fix this issue. Should I port trunk the two ports that are going from the switch to the router? Keep in mind that the router is a WNDR3700 and is unsure whether or not it supports LACP. I do have OpenWRT installed on the router, but it still wasn't clear in any documentation that I found if it supported 802.3ad LACP standards. I am also wondering if there needs to be anything changed within the Cisco settings. [Edit] - Corrected some numbers, wasn't really paying attention. It looks like the speeds though at least two NICs are bonded with LACP is still reaching the max bandwidth of one port. Is there a way to configure the switch so that I can increase this bandwidth? Also, on the storage server, I had a couple of extra NICs laying around and threw them on there as well. Another EDIT and More Findings I happened to look at the traffic of each individual NIC and think that I see the problem. I tested with a simple transfer for a 4GB file. I noticed that only one of the NICs was taking the load of the traffic. I then copied the file back to the Storage Server and noticed that the other NIC was sending out the traffic. I have 802.3ad LACP enabled on the two NICs and I see that it gets enabled dynamically on the switch's interface. Should I be using Static Link Aggregation?

    Read the article

  • Getting Started with Boxee

    - by DigitalGeekery
    Boxee is a free Media PC application that runs on Windows, Mac, and Ubuntu Linux. With Boxee, you can integrate online video, music and pictures, with your own local media and social networking. Today we are going to take a closer look at Boxee and some of it’s features. Note: We used Windows 7 for this tutorial. Your experience on a Mac or Ubuntu Linux build may vary slightly. Hardware Requirements x86 (Intel/AMD processor) based system running at 1.0GHz or greater 512MB system memory (RAM) or more Video card capable of OpenGL 1.4, Direct X 9.0 Software Requirements Mac OS X 10.4+ (Intel based processor) Ubuntu Linux 9.04+ x86 only Windows XP / Vista / 7 (64 bit in Vista or 7) Installing Boxee Before downloading and installing Boxee, you’ll need to register for a free account. (See link below) Once your account is registered and verified, you’ll be able to log in and download the application. Installation is pretty straightforward…just take the defaults. Boxee will open in full screen mode and you’ll be prompted to login with your username and password. Before you login, you may want to take a moment to click on the “Guide” icon and learn a bit about navigating in Boxee. Some basic keyboard navigation is as follows. Move right, left, up, & down with the arrow keys. Hit “Enter” to make a selection, the forward slash key “\” to toggle between full screen and windowed mode, and “Esc” to go back to the previous screen. For Playback, the volume is controlled by plus & minus (+/-) keys, you can Play / Pause using the spacebar, and skip using the arrow keys. Boxee will also work with any infrared remote. If you have an iPhone or iPod Touch you can download software to enable them as a Boxee remote. If you’re using a mouse and keyboard, hover over the username and password boxes to enter your login credentials. If using a a remote, click your OK button and enter credentials with the on screen keyboard. Click “Done” when finished.   When you are ready to login, enter your credentials and click “Login.” On first login, you’ll be prompted to calibrate your screen. If you choose “Skip” you can always calibrate your screen later under Settings > Appearance > Screen. When Boxee opens, you’ll be greeted by the Home screen. To the left will be your Feeds. This will be any recommended content from friends on Boxee, and social networks such as Facebook and Twitter. Although, when you first login, it will mainly be info from the Boxee staff. You’ll have “Featured” content in the center and your Queue on the right. You’ll also have the Menu along the top.   Pop Up Menu The Pop Menu can be accessed by hitting the “Esc” key, or back on your remote. Depending on where you are located in Boxee, you may have to hit it a few time to “back out” to the Pop Up menu. From the Pop Up Menu, you can easily access any of the resources, settings, and favorites. Queue The Queue is your playlist of TV shows, movies, or Internet videos you wish to watch. When you find an offering you’d like to watch, select it and then click “Add to Queue.” The selected item will be added to your Queue and can be accessed at any time from the Menu. TV Show Library The TV Show library can contain files from your local hard drive or streaming content from the Web. Boxee pulls content from a variety of online locations such as Hulu and TV network sites. Click on the show to see which specific episodes are currently available. To search for your favorite shows, click on the yellow arrow to the left, or navigate to the left with your keyboard or remote. Enter your selection into the search box. My Apps By default, the “My Apps” section includes a list of the most popular apps, such as Netflix, Pandora, YouTube, and others. You can remove Apps from “My Apps,” or add new Apps from the Apps Library.   To access all the available Apps, click on the left arrow button, or click on the yellow arrow at the left, then select “App Library.” Choose an App from the Library and click it to open… … and then select “Add to My Apps.” Or, you can click start to play the App if you don’t wish to Add it to your “My Apps.”   Music, Pictures, and Movies Boxee will scan your PC for movies, pictures, and music. You can choose to scan specific folders by clicking on “Scan Media Folders…” … or from the Pop Up Menu, selecting Settings > Media, and then browsing for your media.   Conclusion Boxee to be a great way to integrate your local media with online streaming content. It can be run as an application on your home PC, or as a stand alone media PC. It should also be noted, however, that your access to online content will vary depending on your country. If you are a Windows Media Center user and and want to add the additional features of Boxee, check out our article on integrating Boxee with Windows 7 Media Center. Download Boxee Similar Articles Productive Geek Tips Integrate Boxee with Media Center in Windows 7Disable Fast User Switching on Windows XPOops! Sorry About the Feed ErrorsDisplay a list of Started Services from the Command Line (Windows)Feedburner to Google: Worst Transition Ever. TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Discover New Bundled Feeds in Google Reader Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox)

    Read the article

  • Slow NFS and GFS2 performance

    - by Tiago
    Recently I've designed and configured a 4 node cluster for a webapp that does lots of file handling. The cluster have been broken down into 2 main roles, webserver and storage. Each role is replicated to a second server using drbd in active/passive mode. The webserver does a NFS mount of the data directory of the storage server and the latter also has a webserver running to serve files to browser clients. In the storage servers I've created a GFS2 FS to hold the data which is wired to drbd. I've chose GFS2 mainly because the announced performance and also because the volume size which has to be pretty high. Since we entered production I've been facing two problems that I think are deeply connected. First of all, the NFS mount on the webservers keeps hanging for a minute or so and then resumes normal operations. By analyzing the logs I've found out that NFS stops answering for a while and outputs the following log lines: Oct 15 18:15:42 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:44 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:46 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:47 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:47 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:47 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:48 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:48 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:51 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:52 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:52 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:55 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:55 <server hostname> kernel: nfs: server active.storage.vlan not responding, still trying Oct 15 18:15:58 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK Oct 15 18:15:59 <server hostname> kernel: nfs: server active.storage.vlan OK In this case, the hang lasted for 16 seconds but sometimes it takes 1 or 2 minutes to resume normal operations. My first guess was this was happening due to heavy load of the NFS mount and that by increasing RPCNFSDCOUNT to a higher value, this would become stable. I've increased it several times and apparently, after a while, the logs started appearing less times. The value is now on 32. After further investigating the issue, I've came across a different hang, despite the NFS messages still appear in the logs. Sometimes, the GFS2 FS simply hangs which causes both the NFS and the storage webserver to serve files. Both stay hang for a while and then they resume normal operations. This hangs leaves no trace on client side (also leaves no NFS ... not responding messages) and, on the storage side, the log system appears to be empty, even though the rsyslogd is running. The nodes connect themselves through a 10Gbps non-dedicated connection but I don't think this is an issue because the GFS2 hang is confirmed but connecting directly to the active storage server. I've been trying to solve this for a while now and I've tried different NFS configuration options, before I've found out the GFS2 FS is also hanging. The NFS mount is exported as such: /srv/data/ <ip_address>(rw,async,no_root_squash,no_all_squash,fsid=25) And the NFS client mounts with: mount -o "async,hard,intr,wsize=8192,rsize=8192" active.storage.vlan:/srv/data /srv/data After some tests, these were the configurations that yielded more performance to the cluster. I am desperate to find a solution for this as the cluster is already in production mode and I need to fix this so that this hangs won't happen in the future and I don't really know for sure what and how I should be benchmarking. What I can tell is that this is happening due to heavy loads as I have tested the cluster earlier and this problems weren't happening at all. Please tell me if you need me to provide configuration details of the cluster, and which do you want me to post. As last resort I can migrate the files to a different FS but I need some solid pointers on whether this will solve this problems as the volume size is extremely large at this point. The servers are being hosted by a third-party enterprise and I don't have physical access to them. Best regards. EDIT 1: The servers are physical servers and their specs are: Webservers: Intel Bi Xeon E5606 2x4 2.13GHz 24GB DDR3 Intel SSD 320 2 x 120GB Raid 1 Storage: Intel i5 3550 3.3GHz 16GB DDR3 12 x 2TB SATA Initially there was a VRack setup between the servers but we've upgraded one of the storage servers to have more RAM and it wasn't inside the VRack. They connect through a shared 10Gbps connection between them. Please note that it is the same connection that is used for public access. They use a single IP (using IP Failover) to connect between them and to allow for a graceful failover. NFS is therefore over a public connection and not under any private network (it was before the upgrade, were the problem still existed). The firewall was configured and tested thoroughly but I disabled it for a while to see if the problem still occurred, and it did. From my knowledge the hosting provider isn't blocking or limiting the connection between either the servers and the public domain (at least under a given bandwidth consumption threshold that hasn't been reached yet). Hope this helps figuring out the problem. EDIT 2: Relevant software versions: CentOS 2.6.32-279.9.1.el6.x86_64 nfs-utils-1.2.3-26.el6.x86_64 nfs-utils-lib-1.1.5-4.el6.x86_64 gfs2-utils-3.0.12.1-32.el6_3.1.x86_64 kmod-drbd84-8.4.2-1.el6_3.elrepo.x86_64 drbd84-utils-8.4.2-1.el6.elrepo.x86_64 DRBD configuration on storage servers: #/etc/drbd.d/storage.res resource storage { protocol C; on <server1 fqdn> { device /dev/drbd0; disk /dev/vg_storage/LV_replicated; address <server1 ip>:7788; meta-disk internal; } on <server2 fqdn> { device /dev/drbd0; disk /dev/vg_storage/LV_replicated; address <server2 ip>:7788; meta-disk internal; } } NFS Configuration in storage servers: #/etc/sysconfig/nfs RPCNFSDCOUNT=32 STATD_PORT=10002 STATD_OUTGOING_PORT=10003 MOUNTD_PORT=10004 RQUOTAD_PORT=10005 LOCKD_UDPPORT=30001 LOCKD_TCPPORT=30001 (can there be any conflict in using the same port for both LOCKD_UDPPORT and LOCKD_TCPPORT?) GFS2 configuration: # gfs2_tool gettune <mountpoint> incore_log_blocks = 1024 log_flush_secs = 60 quota_warn_period = 10 quota_quantum = 60 max_readahead = 262144 complain_secs = 10 statfs_slow = 0 quota_simul_sync = 64 statfs_quantum = 30 quota_scale = 1.0000 (1, 1) new_files_jdata = 0 Storage network environment: eth0 Link encap:Ethernet HWaddr <mac address> inet addr:<ip address> Bcast:<bcast address> Mask:<ip mask> inet6 addr: <ip address> Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:957025127 errors:0 dropped:0 overruns:0 frame:0 TX packets:1473338731 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:2630984979622 (2.3 TiB) TX bytes:1648430431523 (1.4 TiB) eth0:0 Link encap:Ethernet HWaddr <mac address> inet addr:<ip failover address> Bcast:<bcast address> Mask:<ip mask> UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 The IP addresses are statically assigned with the given network configurations: DEVICE="eth0" BOOTPROTO="static" HWADDR=<mac address> ONBOOT="yes" TYPE="Ethernet" IPADDR=<ip address> NETMASK=<net mask> and DEVICE="eth0:0" BOOTPROTO="static" HWADDR=<mac address> IPADDR=<ip failover> NETMASK=<net mask> ONBOOT="yes" BROADCAST=<bcast address> Hosts file to allow for a graceful NFS failover in conjunction with NFS option fsid=25 set on both storage servers: #/etc/hosts <storage ip failover address> active.storage.vlan <webserver ip failover address> active.service.vlan As you can see, packet errors are down to 0. I've also ran ping for a long time without any packet loss. MTU size is the normal 1500. As there is no VLan by now, this is the MTU used to communicate between servers. The webservers' network environment is similar. One thing I forgot to mention is that the storage servers handle ~200GB of new files each day through the NFS connection, which is a key point for me to think this is some kind of heavy load problem with either NFS or GFS2. If you need further configuration details please tell me. EDIT 3: Earlier today we had a major filesystem crash on the storage server. I couldn't get the details of the crash right away because the server stop responding. After the reboot, I noticed the filesystem was extremely slow, and I was not being able to serve a single file through either NFS or httpd, perhaps due to cache warming or so. Nevertheless, I've been monitoring the server closely and the following error came up in dmesg. The source of the problem is clearly GFS, which is waiting for a lock and ends up starving after a while. INFO: task nfsd:3029 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. nfsd D 0000000000000000 0 3029 2 0x00000080 ffff8803814f79e0 0000000000000046 0000000000000000 ffffffff8109213f ffff880434c5e148 ffff880624508d88 ffff8803814f7960 ffffffffa037253f ffff8803815c1098 ffff8803814f7fd8 000000000000fb88 ffff8803815c1098 Call Trace: [<ffffffff8109213f>] ? wake_up_bit+0x2f/0x40 [<ffffffffa037253f>] ? gfs2_holder_wake+0x1f/0x30 [gfs2] [<ffffffff814ff42e>] __mutex_lock_slowpath+0x13e/0x180 [<ffffffff814ff2cb>] mutex_lock+0x2b/0x50 [<ffffffffa0379f21>] gfs2_log_reserve+0x51/0x190 [gfs2] [<ffffffffa0390da2>] gfs2_trans_begin+0x112/0x1d0 [gfs2] [<ffffffffa0369b05>] ? gfs2_dir_check+0x35/0xe0 [gfs2] [<ffffffffa0377943>] gfs2_createi+0x1a3/0xaa0 [gfs2] [<ffffffff8121aab1>] ? avc_has_perm+0x71/0x90 [<ffffffffa0383d1e>] gfs2_create+0x7e/0x1a0 [gfs2] [<ffffffffa037783f>] ? gfs2_createi+0x9f/0xaa0 [gfs2] [<ffffffff81188cf4>] vfs_create+0xb4/0xe0 [<ffffffffa04217d6>] nfsd_create_v3+0x366/0x4c0 [nfsd] [<ffffffffa0429703>] nfsd3_proc_create+0x123/0x1b0 [nfsd] [<ffffffffa041a43e>] nfsd_dispatch+0xfe/0x240 [nfsd] [<ffffffffa025a5d4>] svc_process_common+0x344/0x640 [sunrpc] [<ffffffff810602a0>] ? default_wake_function+0x0/0x20 [<ffffffffa025ac10>] svc_process+0x110/0x160 [sunrpc] [<ffffffffa041ab62>] nfsd+0xc2/0x160 [nfsd] [<ffffffffa041aaa0>] ? nfsd+0x0/0x160 [nfsd] [<ffffffff81091de6>] kthread+0x96/0xa0 [<ffffffff8100c14a>] child_rip+0xa/0x20 [<ffffffff81091d50>] ? kthread+0x0/0xa0 [<ffffffff8100c140>] ? child_rip+0x0/0x20

    Read the article

  • SPARC T4-4 Beats 8-CPU IBM POWER7 on TPC-H @3000GB Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered a world record TPC-H @3000GB benchmark result for systems with four processors. This result beats eight processor results from IBM (POWER7) and HP (x86). The SPARC T4-4 server also delivered better performance per core than these eight processor systems from IBM and HP. Comparisons below are based upon system to system comparisons, highlighting Oracle's complete software and hardware solution. This database world record result used Oracle's Sun Storage 2540-M2 arrays (rotating disk) connected to a SPARC T4-4 server running Oracle Solaris 11 and Oracle Database 11g Release 2 demonstrating the power of Oracle's integrated hardware and software solution. The SPARC T4-4 server based configuration achieved a TPC-H scale factor 3000 world record for four processor systems of 205,792 QphH@3000GB with price/performance of $4.10/QphH@3000GB. The SPARC T4-4 server with four SPARC T4 processors (total of 32 cores) is 7% faster than the IBM Power 780 server with eight POWER7 processors (total of 32 cores) on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 36% better in price performance compared to the IBM Power 780 server on the TPC-H @3000GB Benchmark. The SPARC T4-4 server is 29% faster than the IBM Power 780 for data loading. The SPARC T4-4 server is up to 3.4 times faster than the IBM Power 780 server for the Refresh Function. The SPARC T4-4 server with four SPARC T4 processors is 27% faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 52% faster than the HP ProLiant DL980 G7 server for data loading. The SPARC T4-4 server is up to 3.2 times faster than the HP ProLiant DL980 G7 for the Refresh Function. The SPARC T4-4 server achieved a peak IO rate from the Oracle database of 17 GB/sec. This rate was independent of the storage used, as demonstrated by the TPC-H @3000TB benchmark which used twelve Sun Storage 2540-M2 arrays (rotating disk) and the TPC-H @1000TB benchmark which used four Sun Storage F5100 Flash Array devices (flash storage). [*] The SPARC T4-4 server showed linear scaling from TPC-H @1000GB to TPC-H @3000GB. This demonstrates that the SPARC T4-4 server can handle the increasingly larger databases required of DSS systems. [*] The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase. [*] The TPC believes that comparisons of results published with different scale factors are misleading and discourages such comparisons. Performance Landscape The table lists the leading TPC-H @3000GB results for non-clustered systems. TPC-H @3000GB, Non-Clustered Systems System Processor P/C/T – Memory Composite(QphH) $/perf($/QphH) Power(QppH) Throughput(QthH) Database Available SPARC Enterprise M9000 3.0 GHz SPARC64 VII+ 64/256/256 – 1024 GB 386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11 SPARC T4-4 3.0 GHz SPARC T4 4/32/256 – 1024 GB 205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12 SPARC Enterprise M9000 2.88 GHz SPARC64 VII 32/128/256 – 512 GB 198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10 IBM Power 780 4.1 GHz POWER7 8/32/128 – 1024 GB 192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64/128 – 512 GB 162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10 P/C/T = Processors, Cores, Threads QphH = the Composite Metric (bigger is better) $/QphH = the Price/Performance metric in USD (smaller is better) QppH = the Power Numerical Quantity QthH = the Throughput Numerical Quantity The following table lists data load times and refresh function times during the power run. TPC-H @3000GB, Non-Clustered Systems Database Load & Database Refresh System Processor Data Loading(h:m:s) T4Advan RF1(sec) T4Advan RF2(sec) T4Advan SPARC T4-4 3.0 GHz SPARC T4 04:08:29 1.0x 67.1 1.0x 39.5 1.0x IBM Power 780 4.1 GHz POWER7 05:51:50 1.5x 147.3 2.2x 133.2 3.4x HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 08:35:17 2.1x 173.0 2.6x 126.3 3.2x Data Loading = database load time RF1 = power test first refresh transaction RF2 = power test second refresh transaction T4 Advan = the ratio of time to T4 time Complete benchmark results found at the TPC benchmark website http://www.tpc.org. Configuration Summary and Results Hardware Configuration: SPARC T4-4 server 4 x SPARC T4 3.0 GHz processors (total of 32 cores, 128 threads) 1024 GB memory 8 x internal SAS (8 x 300 GB) disk drives External Storage: 12 x Sun Storage 2540-M2 array storage, each with 12 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 Enterprise Edition Audited Results: Database Size: 3000 GB (Scale Factor 3000) TPC-H Composite: 205,792.0 QphH@3000GB Price/performance: $4.10/QphH@3000GB Available: 05/31/2012 Total 3 year Cost: $843,656 TPC-H Power: 190,325.1 TPC-H Throughput: 222,515.9 Database Load Time: 4:08:29 Benchmark Description The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC. TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system. The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor. Key Points and Best Practices Twelve Sun Storage 2540-M2 arrays were used for the benchmark. Each Sun Storage 2540-M2 array contains 12 15K RPM drives and is connected to a single dual port 8Gb FC HBA using 2 ports. Each Sun Storage 2540-M2 array showed 1.5 GB/sec for sequential read operations and showed linear scaling, achieving 18 GB/sec with twelve Sun Storage 2540-M2 arrays. These were stand alone IO tests. The peak IO rate measured from the Oracle database was 17 GB/sec. Oracle Solaris 11 11/11 required very little system tuning. Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric in which to compare systems. The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle Database parallel processes. Six Sun Storage 2540-M2 arrays were mirrored to another six Sun Storage 2540-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays. The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.) See Also Transaction Processing Performance Council (TPC) Home Page Ideas International Benchmark Page SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Sun Storage 2540-M2 Array oracle.com OTN Disclosure Statement TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • External usb 3.0 hard drive is not recognised when plugged into usb 3 port (ubuntu natty 64 bit).

    - by kimangroo
    I have an Iomega Prestige Portable External Hard Drive 1TB USB 3.0. It works fine on windows 7 as a usb 3.0 drive. It isn't detected on ubuntu natty 64bit, 2.6.38-8-generic. fdisk -l cannot see it at all: Disk /dev/sda: 500.1 GB, 500107862016 bytes 255 heads, 63 sectors/track, 60801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x1bed746b Device Boot Start End Blocks Id System /dev/sda1 1 1689 13560832 27 Unknown /dev/sda2 * 1689 1702 102400 7 HPFS/NTFS /dev/sda3 1702 19978 146805760 7 HPFS/NTFS /dev/sda4 19978 60802 327914497 5 Extended /dev/sda5 25555 60802 283120640 7 HPFS/NTFS /dev/sda6 19978 23909 31571968 83 Linux /dev/sda7 23909 25555 13218816 82 Linux swap / Solaris Partition table entries are not in disk order lsusb can see it: Bus 003 Device 003: ID 059b:0070 Iomega Corp. Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 002 Device 004: ID 05fe:0011 Chic Technology Corp. Browser Mouse Bus 002 Device 003: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode) Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 005: ID 0489:e00f Foxconn / Hon Hai Bus 001 Device 004: ID 0c45:64b5 Microdia Bus 001 Device 003: ID 08ff:168f AuthenTec, Inc. Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub And dmesg | grep -i xhci (I may have unplugged the drive and plugged it back in again after booting): [ 1.659060] pci 0000:04:00.0: xHCI HW did not halt within 2000 usec status = 0x0 [ 11.484971] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 [ 11.484997] xhci_hcd 0000:04:00.0: setting latency timer to 64 [ 11.485002] xhci_hcd 0000:04:00.0: xHCI Host Controller [ 11.485064] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 [ 11.636149] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 [ 11.636241] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X [ 11.636246] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X [ 11.636251] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X [ 11.636256] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X [ 11.636261] xhci_hcd 0000:04:00.0: irq 47 for MSI/MSI-X [ 11.639654] xHCI xhci_add_endpoint called for root hub [ 11.639655] xHCI xhci_check_bandwidth called for root hub [ 11.956366] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 2 [ 12.001073] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.007059] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.012932] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.018922] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.049139] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.056754] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.131607] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 12.179717] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.686876] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 12.687058] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 12.687152] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 43.330737] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 2 [ 43.422579] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 43.422658] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af00 [ 43.422665] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af40 [ 43.422671] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af80 [ 43.422677] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669afc0 [ 43.531159] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 125.160248] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.766466] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 3 [ 903.807789] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.813530] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.819400] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.825104] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.855067] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862314] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862597] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.913211] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 904.424416] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 904.424599] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 904.424700] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 935.139021] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 3 [ 935.226075] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 935.226140] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b00 [ 935.226148] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b40 [ 935.226153] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b80 [ 935.226159] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186bc0 [ 935.343339] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst I thought it might be that the firmware wasn't compatible with linux or something, but when booting a live image of partedmagic, (2.6.38.4-pmagic), the drive was detected fine, I could mount it and got usb 3.0 speeds (at least they double the speeds I got from plugging same drive in usb 2 ports). dmesg in partedmagic did say something about no SuperSpeed endpoint which was an error I saw in a previous dmesg of ubuntu: Jun 27 15:49:02 (none) user.info kernel: [ 2.978743] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 Jun 27 15:49:02 (none) user.debug kernel: [ 2.978771] xhci_hcd 0000:04:00.0: setting latency timer to 64 Jun 27 15:49:02 (none) user.info kernel: [ 2.978781] xhci_hcd 0000:04:00.0: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 2.978856] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 Jun 27 15:49:02 (none) user.info kernel: [ 3.089458] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 Jun 27 15:49:02 (none) user.debug kernel: [ 3.089541] xhci_hcd 0000:04:00.0: irq 42 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089544] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089546] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089548] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089550] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X Jun 27 15:49:02 (none) user.warn kernel: [ 3.092857] usb usb3: No SuperSpeed endpoint companion for config 1 interface 0 altsetting 0 ep 129: using minimum values Jun 27 15:49:02 (none) user.info kernel: [ 3.092864] usb usb3: New USB device found, idVendor=1d6b, idProduct=0003 Jun 27 15:49:02 (none) user.info kernel: [ 3.092866] usb usb3: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Jun 27 15:49:02 (none) user.info kernel: [ 3.092867] usb usb3: Product: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 3.092869] usb usb3: Manufacturer: Linux 2.6.38.4-pmagic xhci_hcd Jun 27 15:49:02 (none) user.info kernel: [ 3.092870] usb usb3: SerialNumber: 0000:04:00.0 Jun 27 15:49:02 (none) user.debug kernel: [ 3.092961] xHCI xhci_add_endpoint called for root hub Jun 27 15:49:02 (none) user.debug kernel: [ 3.092963] xHCI xhci_check_bandwidth called for root hub Well I have no idea what's going wrong, and I haven't had much luck from google and the forums so far. A number of unanswered threads with people with similar error messages and problems only. Hopefully someone here can help or point me in the right direction?!

    Read the article

  • NVIDIA x server - "sudo nvidia config" does not generate a working 'xorg.config'

    - by Mike
    I am over 18 hours deep on this challenge. I got to this point and am stuck. very stuck. Maybe you can figure it out? Ubuntu Version 12.04 LTS with all the updates installed. Problem: The default settings in "etc/X11/xorg.conf" that are generated by the "nvidia-xconfig" tool, do not allow the NVIDIA x server to connect to the driver in my "System Settings Additional Driver window". (that's how I understand it. Lots of information below). Symptoms of Problem "System Settings Additional Driver" window has drivers, but the nvidia x server cannot connect/utilize any of the 4 drivers. the drivers are activated, but not in use. When I go to "System Tools Administration NVIDIA x server settings" I get an error that basically tells me to create a default file to initialize the NVIDIA X server (screen shot below). This is the messages the terminal gives after running a "sudo nvidia-xconfig" command for the first time. It seems that the generated file by the tool i just ran is generating a bad/unusable file: If I run the "sudo nvidia-xconfig" command again, I wont get an error the second time. However when I reboot, the default file that is generated (etc/X11/xorg.conf) simply puts the screen resolution at 800 x 600 (or something big like that). When I try to go to NVIDIA x server settings I am greeted with the same screen as the screen shot as in symptom 2 (no option to change the resolution). If I try to go to "system settings display" there are no other resolutions to choose from. At this point I must delete the newly minted "xorg.conf" and reinstate the original in its place. Here are the contents of the "xorg.conf" that is generated first (the one missing required information): # nvidia-xconfig: X configuration file generated by nvidia-xconfig # nvidia-xconfig: version 304.88 (buildmeister@swio-display-x86-rhel47-06) Wed Mar 27 15:32:58 PDT 2013 Section "ServerLayout" Identifier "Layout0" Screen 0 "Screen0" InputDevice "Keyboard0" "CoreKeyboard" InputDevice "Mouse0" "CorePointer" EndSection Section "Files" EndSection Section "InputDevice" # generated from default Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/psaux" Option "Emulate3Buttons" "no" Option "ZAxisMapping" "4 5" EndSection Section "InputDevice" # generated from default Identifier "Keyboard0" Driver "kbd" EndSection Section "Monitor" Identifier "Monitor0" VendorName "Unknown" ModelName "Unknown" HorizSync 28.0 - 33.0 VertRefresh 43.0 - 72.0 Option "DPMS" EndSection Section "Device" Identifier "Device0" Driver "nvidia" VendorName "NVIDIA Corporation" EndSection Section "Screen" Identifier "Screen0" Device "Device0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Depth 24 EndSubSection EndSection Hardware: I ran the "lspci|grep VGA". There results are: 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 01:00.0 VGA compatible controller: NVIDIA Corporation GF108 [Quadro 1000M] (rev a1) More Hardware info: Ram: 16GB CPU: Intel Core i7-2720QM @2.2GHz * 8 Other: 64 bit. This is a triple boot computer and not a VM. Attempts With Not Success on My End: 1) Tried to append the "xorg.conf" with what I perceive is missing information and obviously it didn't fly. 2) All the other stuff I tried got me to this point. 3) See if this link is helpful to you (I barely get it, but i get enough knowing that a smarter person might find this useful): http://manpages.ubuntu.com/manpages/lucid/man1/nvidia-xconfig.1.html 4) I am completely new to Linux (40 hours over past week), but not to programming. However I am very serious about changing over to Linux. When you respond (I hope someone responds...) please respond in a way that a person new to Linux can understand. 5) By the way, the reason I am in this mess is because I MUST have a second monitor running from my laptop, and "System Settings Display" doesn't recognize my second display. I know it is possible to make the second display work in my system, because when I boot from the install CD, I perform work on the native laptop monitor, but the second monitor shows a purple screen with Ubuntu in the middle, so I know the VGA port is sending a signal out. If this is too much for you to tackle please suggest an alternative method to get a second display. I don't want to go to windows but I cannot have a single display. I am really fudged here. I hope some smart person can help. Thanks in advance. Mike. **********************EDIT #1********************** More Details About Graphics Card I was asked "which brand of nvidia-card do you have exactly?" Here is what I did to provide more info (maybe relevant, maybe not, but here is everything): 1) Took my Lenovo W520 right apart to see if there is an identifier on the actual card. However I realized that if I get deep enough to take a look, the laptop "won't like it". so I put it back together. Figuring out the card this way is not an option for me right now. 2) (My computer is triple boot) I logged into Win7 and ran 'dxdiag' command. here is the screen shot: 3) I tried to look on the lenovo website for more details... but no luck. I took a look at my receipts and here is info form receipt: System Unit: W520 NVIDIA Quadro 1000M 2GB 4) In win7 I went to the NVIDIA website and used the option to have my card 'scanned' by a Java applet to determine the latest update for my card. I tried the same with Ubuntu but I can't get the applet to run. Here is the recommended driver from from the NVIDIA Applet for my card for Win7 (I hope this shines some light on the specifics of the card): Quadro/NVS/Tesla/GRID Desktop Driver Release R319 Version: 320.00 WHQL Release Date: 3.5.2013 5) Also I went on the NVIDIA driver search and looked through every possible combination of product type + product series + product to find all the combinations that yield a 1000M card. My card is: Product Type: Quadro Product Series: Quadro Series (Notebooks) Product: 1000M ***********************EDIT #2******************* Additional Symptoms Another question that generated more symptoms I previously didn't mention was: "After generating xorg.conf by nvidia-xconfig, go to additional drivers, do you see nvidia-304?" 1) I took a screen shot of the "additional drivers" right after generating xorg.conf by nvidia-xconfig. Here it is: 2) Then I did a reboot. Now Ubuntu is 600 x 800 resolution. When I logged in after the computer came up I got an error (which I always get after generating xorg.conf by nvidia-xconfig and rebooting) 3) To finally answer the question - No. There is no "NVIDIA-304" driver. Screen shot of additional drivers after generating xorg.conf by nvidia-xconfig and rebooting : At this point I revert to the original xorg.conf and delete the xorg.conf generated by Nvidia.

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • GLSL compiler messages from different vendors [on hold]

    - by revers
    I'm writing a GLSL shader editor and I want to parse GLSL compiler messages to make hyperlinks to invalid lines in a shader code. I know that these messages are vendor specific but currently I have access only to AMD's video cards. I want to handle at least NVidia's and Intel's hardware, apart from AMD's. If you have video card from different vendor than AMD, could you please give me the output of following C++ program: #include <GL/glew.h> #include <GL/freeglut.h> #include <iostream> using namespace std; #define STRINGIFY(X) #X static const char* fs = STRINGIFY( out vec4 out_Color; mat4 m; void main() { vec3 v3 = vec3(1.0); vec2 v2 = v3; out_Color = vec4(5.0 * v2.x, 1.0); vec3 k = 3.0; float = 5; } ); static const char* vs = STRINGIFY( in vec3 in_Position; void main() { vec3 v(5); gl_Position = vec4(in_Position, 1.0); } ); void printShaderInfoLog(GLint shader) { int infoLogLen = 0; int charsWritten = 0; GLchar *infoLog; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLogLen); if (infoLogLen > 0) { infoLog = new GLchar[infoLogLen]; glGetShaderInfoLog(shader, infoLogLen, &charsWritten, infoLog); cout << "Log:\n" << infoLog << endl; delete [] infoLog; } } void printProgramInfoLog(GLint program) { int infoLogLen = 0; int charsWritten = 0; GLchar *infoLog; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &infoLogLen); if (infoLogLen > 0) { infoLog = new GLchar[infoLogLen]; glGetProgramInfoLog(program, infoLogLen, &charsWritten, infoLog); cout << "Program log:\n" << infoLog << endl; delete [] infoLog; } } void initShaders() { GLuint v = glCreateShader(GL_VERTEX_SHADER); GLuint f = glCreateShader(GL_FRAGMENT_SHADER); GLint vlen = strlen(vs); GLint flen = strlen(fs); glShaderSource(v, 1, &vs, &vlen); glShaderSource(f, 1, &fs, &flen); GLint compiled; glCompileShader(v); bool succ = true; glGetShaderiv(v, GL_COMPILE_STATUS, &compiled); if (!compiled) { cout << "Vertex shader not compiled." << endl; succ = false; } printShaderInfoLog(v); glCompileShader(f); glGetShaderiv(f, GL_COMPILE_STATUS, &compiled); if (!compiled) { cout << "Fragment shader not compiled." << endl; succ = false; } printShaderInfoLog(f); GLuint p = glCreateProgram(); glAttachShader(p, v); glAttachShader(p, f); glLinkProgram(p); glUseProgram(p); printProgramInfoLog(p); if (!succ) { exit(-1); } delete [] vs; delete [] fs; } int main(int argc, char* argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA); glutInitWindowSize(600, 600); glutCreateWindow("Triangle Test"); glewInit(); GLenum err = glewInit(); if (GLEW_OK != err) { cout << "glewInit failed, aborting." << endl; exit(1); } cout << "Using GLEW " << glewGetString(GLEW_VERSION) << endl; const GLubyte* renderer = glGetString(GL_RENDERER); const GLubyte* vendor = glGetString(GL_VENDOR); const GLubyte* version = glGetString(GL_VERSION); const GLubyte* glslVersion = glGetString(GL_SHADING_LANGUAGE_VERSION); GLint major, minor; glGetIntegerv(GL_MAJOR_VERSION, &major); glGetIntegerv(GL_MINOR_VERSION, &minor); cout << "GL Vendor : " << vendor << endl; cout << "GL Renderer : " << renderer << endl; cout << "GL Version : " << version << endl; cout << "GL Version : " << major << "." << minor << endl; cout << "GLSL Version : " << glslVersion << endl; initShaders(); return 0; } On my video card it gives: Status: Using GLEW 1.7.0 GL Vendor : ATI Technologies Inc. GL Renderer : ATI Radeon HD 4250 GL Version : 3.3.11631 Compatibility Profile Context GL Version : 3.3 GLSL Version : 3.30 Vertex shader not compiled. Log: Vertex shader failed to compile with the following errors: ERROR: 0:1: error(#132) Syntax error: '5' parse error ERROR: error(#273) 1 compilation errors. No code generated Fragment shader not compiled. Log: Fragment shader failed to compile with the following errors: WARNING: 0:1: warning(#402) Implicit truncation of vector from size 3 to size 2. ERROR: 0:1: error(#174) Not enough data provided for construction constructor WARNING: 0:1: warning(#402) Implicit truncation of vector from size 1 to size 3. ERROR: 0:1: error(#132) Syntax error: '=' parse error ERROR: error(#273) 2 compilation errors. No code generated Program log: Vertex and Fragment shader(s) were not successfully compiled before glLinkProgram() was called. Link failed. Or if you like, you could give me other compiler messages than proposed by me. To summarize, the question is: What are GLSL compiler messages formats (INFOs, WARNINGs, ERRORs) for different vendors? Please give me examples or pattern explanation. EDIT: Ok, it seems that this question is too broad, then shortly: How does NVidia's and Intel's GLSL compilers present ERROR and WARNING messages? AMD/ATI uses patterns like this: ERROR: <position>:<line_number>: <message> WARNING: <position>:<line_number>: <message> (examples are above).

    Read the article

  • "CB Monitor Windows" proccess blocks XP shutdown

    - by Shiki
    I've got a home server. Simple, low-power-consumption Intel Atom based PC built by me. It runs XP since Win7 was an overkill for this poor thing. Everything was OK, always used Avast! antivirus + Spybot. However, it stopped shutting down after a while. Few days ago I noticed a "CB Monitor Windows" proccess is blocking this (didn't quit from rdp after sending the shutdown command). What is this proccess? How can I disable/remove it? Tried Malwarebytes, found ONE malware, removed it, did a reboot, no change. Avast is up-to-date, Spybot is the same. What could I do?

    Read the article

  • Windows update error code : 80244004

    - by Hamidreza
    I am using Windows 7 and ESET SMART SECURITY 5 . Today I wanted to update my computer using Windows Update but it does give me error : Error(s) found: Code 80244004        Windows Update encountered an unknown error. My System Info : Sony Vaio EA2gfx , Ram : 4GB DDR2 , CPU: Intel Core i 5 I checkd out this links but they didn't help : http://answers.microsoft.com/en-us/windows/forum/windows_7-windows_update/while-updating-i-am-getting-the-error-code/0b9b756c-5b6e-4571-838e-f90c48a4e00c https://www.calguns.net/calgunforum/showthread.php?t=583860 http://www.sevenforums.com/windows-updates-activation/235807-windows-update-error-80244004-a.html Please help me, thanks.

    Read the article

  • Trouble upgrading OSX, because HD doesn't use GUID Partition Table Scheme

    - by Erik Vold
    So I have a intel-based macbook with osx 10.5 and I'm trying to upgrade to 10.6, but when I run the upgrade 'install' I quickly get to a page where I am supposed to 'Select the disk where you want to install Mac OS X' and there is only the one hard drive, so it is auto selected, and below that I see a warning message and the only button available is the 'Go Back' button. The warning message says: "Macintosh HD" can't be used because it doesn't use the GUID Partition Table scheme. Use Disk Utility to change the partition scheme. Select the disk, choose the Partition tab, select the Volume Scheme and then click Options. So I followed the above instructions, and I got to the last step, where I'm supposed to click the 'Options' button, the problem is that I cannot click that button, it is disabled.. So what am I supposed to do?

    Read the article

  • HP Network Utility Error

    - by William Ricci
    Using the HP Network Utility to team 2 ports on Windows 2008 R2 Standard results in this error:----- An error occurred when making a call into the operating system. Happens on either of two cards that are installed. This happened before and after upgrading to PSP 9.10. Uninstalled the HP Network Configuration Utility and re-installed version 10.65.0.6. Updated NIC drivers. NC382i DP - HP Broadcom 1Gb Multifunction Driver 7.4.23.0 (from 6.2.9.0) NC365T - Intel E1R 11.14.80.0 (from 11.14.49.0)

    Read the article

  • Recommendation for PHP-FPM pm.max_children, PHP-FPM pm.start_servers and others

    - by jaypabs
    I have the following server: Intel® Xeon® E3-1270 v2 Single Processor - Quad Core Dedicated Server CPU Speed: 4 x 3.5 Ghz w/ 8MB Smart Cache Motherboard: SuperMicro X9SCM-F Total Cores: 4 Cores + 8 Threads RAM: 32 GB DDR3 1333 ECC Hard Drive: 120GB Smart Cache: 8MB I am using ubuntu 12.04 - nginx, php, mysql with ISPConfig 3. Under ISPConfig 3 website settings: I have this default value: PHP-FPM pm.max_children = 10 PHP-FPM pm.start_servers = 2 PHP-FPM pm.min_spare_servers = 1 PHP-FPM pm.max_spare_servers = 5 PHP-FPM pm.max_requests = 0 My question is what is the recommended settings for the above variable? Because I found some using a different settings.

    Read the article

  • How to resolve 0xc000007b error opening Adobe After Effects?

    - by user225170
    I have installed Adobe CS6 on Windows 8 and get the error "0xc000007b" every time I open open Adobe After Effects. All other Adobe software, including Photoshop and Premiere Pro, work perfectly. I have looked online extensively but have not found any solutions. What can I try/do to resolve this error? OS: Windows 8 (64 bit) - CPU: Intel Core i3-3110M 2,40GHz - RAM: 6GB DD3 - FX: AMD Radeon HD 7670M When I open Adobe After Effects CS6 with Dependency Walker, this message appears : "Error: At least one module has an unresolved import due to a missing export function in an implicitly dependent module. Error: Modules with different CPU types were found. Warning: At least one module has an unresolved import due to a missing export function in a delay-load dependent module." What can I do to resolve this error?

    Read the article

  • Windows 7 Windows XP mode cannot run - it says "Require Hardware Assisted Virtualization"

    - by Jian Lin
    After installing the 2 files for Windows 7 Windows XP mode, the Start Menu now has Windows Virtual PC Windows XP Mode but clicking on the first merely brings out a folder, and clicking on the second brings out a dialog box that says: "Require Hardware Assisted Virtualization" Does that mean the machine cannot support Windows 7 Windows XP mode? I am running Win 7 Ultimate 64 bit edition. This is the dialog box: Update: the computer is an HP TouchSmart, with American Megatrends BIOS v02.61. I looked into the BIOS set up but it is quite simple and dosen't have something for "hardware assisted virtualization". The CPU is Intel Core 2 Duo T5750.

    Read the article

  • xfx 680i motherboard failure?

    - by Ian
    At some point last night we must have had a blip in our power, as the stove clock was blinking like it would had their been... a blip in the power. When I came into my office this morning, my desktop computer was powered down and would not turn on. Cracking the case, I can see a small blue blinking light on the front right corner of the motherboard. Unplugging the power from the PSU causes the blinking to stop. Plugging in the power causes the blinking to resume. Pressing the power button does nothing. Does anyone know what this blinking blue light means? I'm mostly curious now if it's the motherboard that has gone bad, or the power supply. I don't have any other desktop parts to use to troubleshoot these components. Any ideas? My motherboard is an XFX NFORCE 680I SLI INTEL SOCKET 775 DDR2 ( Model #: MB-N680-ISH9 )

    Read the article

  • "No bootable device - insert boot disk" after restart on Ubuntu 10.04 b1 update

    - by anjanesh
    I was making an update on my Ubuntu 10.04 beta1 64-bit PC when, after reboot I get PXE-E61: Mediaa test failure, check cable PXE-M0F: Exiting Intel Boot Agent. No bootable device - insert boot disk and press any key How did my boot record disappear ? BIOS Boot Boot Menu Type : Normal Boot Device Priority : <CD/DVD-ROM Drive> <Hard Disk Drive> <Floppy Drive> <Ethernet> Hard Driver Order : No Hard Disk Drive CD/DVD ROM Drive Order : <PT-TSSTcorp CDDV> Removable Drive Order : No Removable Drive Boot to Optical Devices : <Enable> Boot to Removable Devices : <Enable> Boot to Network : <Enable> USB Boot : <Enable>

    Read the article

  • Does this laptop have high enough specifications for gaming? [closed]

    - by Grant
    Here's the laptop It wouldn't be hardcore gaming, mostly things like the new Deus Ex game, Mirror's Edge, Portal 2, etc... I need to replace my current, broken, laptop and I thought this would be a good opportunity to get to play some of these games. My current laptop is really only lacking in its graphics card. (Intel series 4 chipset) If this laptop isn't good enough, I would really appreciate suggestions. I won't be able to get a desktop, otherwise I would, and I can't spend more than $1000 dollars on my new laptop.

    Read the article

  • Enable VT-x in HP 8300 elite

    - by lang2
    I have a HP 8300 elite (Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz). I'm trying to run a virtual machine via VirtualBox. But every time I start the VM, it says: VT-x is disabled in the BIOS. (VERR_VMX_MSR_VMXON_DISABLED). My lscpu output is like this: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 58 Stepping: 9 CPU MHz: 1600.000 BogoMIPS: 6784.74 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 8192K NUMA node0 CPU(s): 0-7 I went into the BIOS but the things the can be tweaked is very limited and I couldn't find the VT-x setting. Anybody know how to do this in this setup?

    Read the article

  • Cannot install Windows 7 on new PC (BSOD during installation)

    - by andronz
    Yesterday I had received new hardware and tried to assemble all of it. But when I was installing Windows 7 x64 for two times I got a BSOD, and a error message like this: Your PC has rebooted unexpectly, installation will continue after reboot. I have checked everything and tried to install once more time. It was almost successful, Windows had installed, but I cannot format my disk, open cmd or control panel, boot from DVD etc. It's the first time I have assembled a PC, and I don't know where the problem is, in my hardware or in Windows. My components: MSI z77a-g43 Intel i5 3570k Seagate Barracuda (plug into sata3 slot 6 Gb, there I have also sata 3 Gb slot) Corsair XMS3 (4x4Gb) HIS IceQ Also in the BIOS, I have changed RAM frequency to DDR3 1600 and voltage to 1.65v

    Read the article

  • Mac 10.6 Universal Binary scipy: cephes/specfun "_aswfa_" symbol not found

    - by Markus
    Hi folks, I can't get scipy to function in 32 bit mode when compiled as a i386/x86_64 universal binary, and executed on my 64 bit 10.6.2 MacPro1,1. My python setup With the help of this answer, I built a 32/64 bit intel universal binary of python 2.6.4 with the intention of using the arch command to select between the architectures. (I managed to make some universal binaries of a few libraries I wanted using lipo.) That all works. I then installed scipy according to the instructions on hyperjeff's article, only with more up-to-date numpy (1.4.0) and skipping the bit about moving numpy aside briefly during the installation of scipy. Now, everything except scipy seems to be working as far as I can tell, and I can indeed select between 32 and 64 bit mode using arch -i386 python and arch -x86_64 python. The error Scipy complains in 32 bit mode: $ arch -x86_64 python -c "import scipy.interpolate; print 'success'" success $ arch -i386 python -c "import scipy.interpolate; print 'success'" Traceback (most recent call last): File "<string>", line 1, in <module> File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/interpolate/__init__.py", line 7, in <module> from interpolate import * File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/interpolate/interpolate.py", line 13, in <module> import scipy.special as spec File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/special/__init__.py", line 8, in <module> from basic import * File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/special/basic.py", line 8, in <module> from _cephes import * ImportError: dlopen(/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/special/_cephes.so, 2): Symbol not found: _aswfa_ Referenced from: /Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/special/_cephes.so Expected in: flat namespace in /Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/special/_cephes.so Attempt at tracking down the problem It looks like scipy.interpolate imports something called _cephes, which looks for a symbol called _aswfa_ but can't find it in 32 bit mode. Browsing through scipy's source, I find an ASWFA subroutine in specfun.f. The only scipy product file with a similar name is specfun.so, but both that and _cephes.so appear to be universal binaries: $ cd /Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/special/ $ file _cephes.so specfun.so _cephes.so: Mach-O universal binary with 2 architectures _cephes.so (for architecture i386): Mach-O bundle i386 _cephes.so (for architecture x86_64): Mach-O 64-bit bundle x86_64 specfun.so: Mach-O universal binary with 2 architectures specfun.so (for architecture i386): Mach-O bundle i386 specfun.so (for architecture x86_64): Mach-O 64-bit bundle x86_64 Ho hum. I'm stuck. Things I may try but haven't figured out how yet include compiling specfun.so myself manually, somehow. I would imagine that scipy isn't broken for all 32 bit machines, so I guess something is wrong with the way I've installed it, but I can't figure out what. I don't really expect a full answer given my fairly unique (?) setup, but if anyone has any clues that might point me in the right direction, they'd be greatly appreciated. (edit) More details to address questions: I'm using gfortran (GNU Fortran from GCC 4.2.1 Apple Inc. build 5646). Python 2.6.4 was installed more-or-less like so: cd /tmp curl -O http://www.python.org/ftp/python/2.6.4/Python-2.6.4.tar.bz2 tar xf Python-2.6.4.tar.bz2 cd Python-2.6.4 # Now replace buggy pythonw.c file with one that supports the "arch" command: curl http://bugs.python.org/file14949/pythonw.c | sed s/2.7/2.6/ > Mac/Tools/pythonw.c ./configure --enable-framework=/Library/Frameworks --enable-universalsdk=/ --with-universal-archs=intel make -j4 sudo make frameworkinstall Scipy 0.7.1 was installed pretty much as described as here, but it boils down to a simple sudo python setup.py install. It would indeed appear that the symbol is undefined in the i386 architecture if you look at the _cephes library with nm, as suggested by David Cournapeau: $ nm -arch x86_64 /Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/special/_cephes.so | grep _aswfa_ 00000000000d4950 T _aswfa_ 000000000011e4b0 d _oblate_aswfa_data 000000000011e510 d _oblate_aswfa_nocv_data (snip) $ nm -arch i386 /Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/scipy/special/_cephes.so | grep _aswfa_ U _aswfa_ 0002e96c d _oblate_aswfa_data 0002e99c d _oblate_aswfa_nocv_data (snip) however, I can't yet explain its absence.

    Read the article

  • low-cost RAID NAS for home use?

    - by gravyface
    Have a noisy, power-hungry Pentium 4 based Ubuntu server that I want to replace with a nice, low-power mini-ITX/Intel Atom-based machine to do my network services (DHCP, DNS, IPSec, Web/mail, FTP, etc.) and am thinking of a (hopefully) equally-low powered NAS using NFS over GbE with at least 1 TB space and a RAID 5 (preferred) or RAID 0 (likely) configuration for redundancy with a couple of spare disks I can swap in as needed down the road. Would I be better off getting a full sized ATX mobo/case and configuring the RAID internally? I really want to keep power consumption down as much as possible as I leave my home server up 24/7.

    Read the article

  • low-cost RAID NAS for home use?

    - by gravyface
    Have a noisy, power-hungry Pentium 4 based Ubuntu server that I want to replace with a nice, low-power mini-ITX/Intel Atom-based machine to do my network services (DHCP, DNS, IPSec, Web/mail, FTP, etc.) and am thinking of a (hopefully) equally-low powered NAS using NFS over GbE with at least 1 TB space and a RAID 5 (preferred) or RAID 0 (likely) configuration for redundancy with a couple of spare disks I can swap in as needed down the road. Would I be better off getting a full sized ATX mobo/case and configuring the RAID internally? I really want to keep power consumption down as much as possible as I leave my home server up 24/7.

    Read the article

< Previous Page | 99 100 101 102 103 104 105 106 107 108 109 110  | Next Page >