Search Results

Search found 9492 results on 380 pages for 'logic unit'.

Page 104/380 | < Previous Page | 100 101 102 103 104 105 106 107 108 109 110 111  | Next Page >

  • How to start doing TDD in a django project?

    - by Satoru.Logic
    Hi, all. I have read a lot of essays talking about benifits TDD can bring to a project, but I have never practiced TDD in my own project before. Now I'm starting an experimental project with Django, and I think maybe I can have a try of TDD. But what I find now is that I don't even know how to answer the question "what should I put in my test cases?". Please tell me how should I plan TDD in a project, in this case, a web project based on Django. Thanks.

    Read the article

  • Javascript form validation only works in firefox

    - by Logic Artist
    Hello, I am relatively new to Javascript so I'm hoping this is a simple mistake. I building a generic form validation function that is called on the form's onSubmit. The function loops through all the form's child elements, looks for certain classes, and analyzes the contents of the appropriate fields. If it finds something missing or erroneous, it displays the appropriate error message div and returns false, thus preventing the form from being submitted to the php page. It works well in firefox 3.6.3, but in every other browser I've tested (Safari 4.0.4, Chrome 4.1, IE8) it seems to ignore the onSubmit and jump straight to the php processing page. HTML CODE: <form name='myForm' id='myForm' action='process_form.php' method='post' onSubmit="return validateRequired('myForm')"> <fieldset class="required radioset"> <label for='selection1'> <input type='radio' name='selection' id='selection1' value='1'/> Option 1 </label> <label for='selection2'> <input type='radio' name='selection' id='selection2' value='2'/> Option 2 </label> <label for='selection3'> <input type='radio' name='selection' id='selection3' value='3'/> Option 3 </label> <label for='selection4'> <input type='radio' name='selection' id='selection4' value='4'/> Option 4 </label> <div class='errorBox' style='visibility:hidden'> Please make a selection </div> </fieldset> <fieldset class="required checkset"> <label> Choice 1 <input type='checkbox' name='choices' id='choice1' value='1'/> </label> <label> Choice 2 <input type='checkbox' name='choices' id='choice2' value='2'/> </label> <label> Choice 3 <input type='checkbox' name='choices' id='choice3' value='3'/> </label> <label> Choice 4 <input type='checkbox' name='choices' id='choice4' value='4'/> </label> <div class='errorBox' style='visibility:hidden'> Please choose at least one </div> </fieldset> <fieldset class="required textfield" > <label for='textinput1'> Required Text: <input type='text' name='textinput1' id='textinput1' size='40'/> </label> <div class='errorBox' style='visibility:hidden'> Please enter some text </div> </fieldset> <fieldset class="required email textfield"> <label for='email'> Required Email: <input type='text' name='email' id='email' size='40'/> </label> <div class='errorBox' style='visibility:hidden'> The email address you have entered is invalid </div> </fieldset> <div> <input type='submit' value='submit'> <input type='reset' value='reset'> </div> </form> JAVASCRIPT CODE: function validateRequired(id){ var form = document.getElementById(id); var errors = 0; var returnVal = true; for(i = 0; i < form.elements.length; i++){ var elem = form.elements[i]; if(hasClass(elem,"required")){ /*RADIO BUTTON or CHECK BOX SET*/ if(hasClass(elem,"radioset") || hasClass(elem,"checkset")){ var inputs = elem.getElementsByTagName("input"); var check = false; for(j = 0; j < inputs.length; j++){ if(inputs[j].checked){ check = true; } } if(check == false){ errors += 1; showError(elem); } else { hideError(elem); } } /*TEXT FIELD*/ else if(hasClass(elem,"textfield")){ var input = elem.getElementsByTagName("input"); if(input[0].value == ""){ errors += 1; showError(elem); } else { hideError(elem); /*EMAIL ADDRESS*/ if(hasClass(elem,"email")){ if(isValidEmail(input[0].value) == false){ errors += 1; showError(elem); } else { hideError(elem); } } } } } } if(errors > 0){ returnVal = false; } else { returnVal = true; } return returnVal;} I know this is a lot of code to look at, but any help would be appreciated. Since it works fine in one browser, Im not sure how to start debugging. Thanks Andrew

    Read the article

  • how to select distinct rows for a column

    - by Satoru.Logic
    Hi, all. I have a table x that's like the one bellow: id | name | observed_value | 1 | a | 100 | 2 | b | 200 | 3 | b | 300 | 4 | a | 150 | 5 | c | 300 | I want to make a query so that in the result set I have exactly one record for one name: (1, a, 100) (2, b, 200) (5, c, 300) If there are multiple records corresponding to a name, say 'a' in the table above, I just pick up one of them. In my current implementation, I make a query like this: select x.* from x , (select distinct name, min(observed_value) as minimum_val from x group by name) x1 where x.name = x1.name and x.observed_value = x1.observed_value; But I think there may be some better way around, please tell me if you know, thanks in advance.

    Read the article

  • Where is Prolog used for traffic control systems?

    - by Masi
    The user Laurent had an interesting reply to the question [Why hasn’t logic programming caught on?]: If you look at the influence logic-programming has had in the field of -- air traffic control -- I don't think it can be said logic-programming has not caught on. A question arises: Where is prolog used for traffic control systems on the roads? Why is it used instead of languages, such as C or Python, in such environments?

    Read the article

  • would there be such case of jumping, if yes how?

    - by Pooria
    I have an issue in the mind and that is since the jump instruction changes EIP register by adding signed offsets to it(if I'm not making a mistake here), on IA-32 architecture how would going upward in memory from location 0x7FFFFFFF(biggest positive number in signed logic) to 0x80000000(least negative number in signed logic) be possible? or maybe there shouldn't be such jump due to the nature of signed logic?

    Read the article

  • When do you need to use a view controller?

    - by BeachRunnerJoe
    I'm diving into iPhone development and one of the core concepts im trying to get my head around is view controllers. If you look at the GLPaint example on the apple dev site, you'll see a project that has... An app delegate class A uiwindow subclass And a uiview subclass And the uiview subclass implements all the core graphics painting logic and handles the touch events. My questions are, why is there no view controller implemented to handle that view logic? Could you use a view controller to implement that logic or does it have to be implemented in the uiview subclass? And last, when should you use a view controller to implement the view logic code? Thanks so much in advance for your help!

    Read the article

  • delphi finalizalization code in a DLL

    - by PA
    I am moving some functions to a shared DLL (I want to have some called as a Windows hook). The actual functions are currently in a unit, and it happens to have some initialization and some finalization code. I was initially thinking on doing a direct transformation from a unit to a library. So I moved the initialization code in between the main begin and end.. But then I realized I had no place to move the finalization code. I should create and register an special DLL entry point, instead. My question is. Can I leave the unit with all the functions and the initialization and finalization codes and just create a library stub that uses the unit? will the finalizationit be called?

    Read the article

  • CGRect and utesting

    - by killdash10
    I am trying to add unit tests to my iPhone project in Xcode. Everything works, its great. Except when I am adding a class.m that uses CGRect (or other structs, CGPoint etc) to the unit test target (under "Compile Sources") - I am getting a compilation error: "'CGRect' undeclared (first use in this function)". I tried messing with my unit test target in various ways, but so far I haven't been able to get past this. What am I missing?

    Read the article

  • How to assure applying order of function decorators in Python?

    - by Satoru.Logic
    Some decorators should only be used in the outermost layer. A decorator that augments the original function and add a configure parameter is one example. from functools import wraps def special_case(f): @wraps(f) def _(a, b, config_x=False): if config_x: print "Special case here" return return f(a, b) How can I avoid decorators like this getting decorated by another decorator? EDIT It is really disgusting to let everyone trying to apply a new decorator worry about the application order. So, is it possible to avoid this kind of situation? Is it possible to add a config option without introducing a new parameter?

    Read the article

  • Automatic conversion between methods and functions in Scala

    - by fikovnik
    I would like to understand the rules when can Scala automatically convert methods into functions. For example, if I have following two methods: def d1(a: Int, b: Int) {} def r[A, B](delegate: (A, B) ? Unit) {} I can do this: r(d1) But, when overloading r it will no longer work: def r[A, B, C](delegate: (A, B, C) ? Unit) {} r(d1) // no longer compiles and I have to explicitly convert method into partially applied function: r(d1 _) Is there any way to accomplish following with the explicit conversion? def r[A, B](delegate: (A, B) ? Unit) {} def r[A, B, C](delegate: (A, B, C) ? Unit) {} def d1(a: Int, b: Int) {} def d2(a: Int, b: Int, c: Int) {} r(d1) // only compiles with r(d1 _) r(d2) // only compiles with r(d2 _) There is somewhat similar question, but it is not fully explained.

    Read the article

  • asp.net Can I force every page to inherit from a base page? Also should some of this logic be in my master page?

    - by Bex
    Hi! I have a web app that has a base page. Each page needs to inherit from this base page as it contains properties they all need as well as dealing with the login rights. My base page has some properties, eg: IsRole1, IsRole2, currentUserID, Role1Allowed, Role2Allowed. On the init of each page I set the properties "Role1Allowed" and "Role2Allowed" Private Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Init Role1Allowed = True Role2Allowed= False End Sub The basepage then decides if the user needs redirecting. 'Sample code so not exactly what is going to be, bug gives the idea Protected Overridable Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) If Role1Allowed And Not Role1 Then 'Redirect somewhere End If End Sub The page then must override this pageload if they need anything else in it, but making sure they call the base pageload first. Protected Overrides Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load MyBase.Page_Load(sender, e) If Not IsPostBack Then BindGrid() End If End Sub The other properties (IsRole1, IsRole, currentUserID) are also accessible by the page so it can be decided if certain things need doing based on the user. (I hope this makes sense) Ok so I have 2 questions Should this functionality be in the base page or should it somehow be in the master, and if so how would I get access to all the properties if it was? As there are multiple people working on this project and creating pages some are forgetting to inherit from this basepage, or call the base pageload when overriding it. Is there any way to force them to do this? Thanks for any help. bex

    Read the article

  • EFMVC Migrated to .NET 4.5, Visual Studio 2012, ASP.NET MVC 4 and EF 5 Code First

    - by shiju
    I have just migrated my EFMVC app from .NET 4.0 and ASP.NET MVC 4 RC to .NET 4.5, ASP.NET MVC 4 RTM and Entity Framework 5 Code First. In this release, the EFMVC solution is built with Visual Studio 2012 RTM. The migration process was very smooth and did not made any major changes other than adding simple unit tests with NUnit and Moq. I will add more unit tests on later and will also modify the existing solution. Source Code You can download the source code from http://efmvc.codeplex.com/

    Read the article

  • Subterranean IL: Filter exception handlers

    - by Simon Cooper
    Filter handlers are the second type of exception handler that aren't accessible from C#. Unlike the other handler types, which have defined conditions for when the handlers execute, filter lets you use custom logic to determine whether the handler should be run. However, similar to a catch block, the filter block does not get run if control flow exits the block without throwing an exception. Introducing filter blocks An example of a filter block in IL is the following: .try { // try block } filter { // filter block endfilter }{ // filter handler } or, in v1 syntax, TryStart: // try block TryEnd: FilterStart: // filter block HandlerStart: // filter handler HandlerEnd: .try TryStart to TryEnd filter FilterStart handler HandlerStart to HandlerEnd In the v1 syntax there is no end label specified for the filter block. This is because the filter block must come immediately before the filter handler; the end of the filter block is the start of the filter handler. The filter block indicates to the CLR whether the filter handler should be executed using a boolean value on the stack when the endfilter instruction is run; true/non-zero if it is to be executed, false/zero if it isn't. At the start of the filter block, and the corresponding filter handler, a reference to the exception thrown is pushed onto the stack as a raw object (you have to manually cast to System.Exception). The allowed IL inside a filter block is tightly controlled; you aren't allowed branches outside the block, rethrow instructions, and other exception handling clauses. You can, however, use call and callvirt instructions to call other methods. Filter block logic To demonstrate filter block logic, in this example I'm filtering on whether there's a particular key in the Data dictionary of the thrown exception: .try { // try block } filter { // Filter starts with exception object on stack // C# code: ((Exception)e).Data.Contains("MyExceptionDataKey") // only execute handler if Contains returns true castclass [mscorlib]System.Exception callvirt instance class [mscorlib]System.Collections.IDictionary [mscorlib]System.Exception::get_Data() ldstr "MyExceptionDataKey" callvirt instance bool [mscorlib]System.Collections.IDictionary::Contains(object) endfilter }{ // filter handler // Also starts off with exception object on stack callvirt instance string [mscorlib]System.Object::ToString() call void [mscorlib]System.Console::WriteLine(string) } Conclusion Filter exception handlers are another exception handler type that isn't accessible from C#, however, just like fault handlers, the behaviour can be replicated using a normal catch block: try { // try block } catch (Exception e) { if (!FilterLogic(e)) throw; // handler logic } So, it's not that great a loss, but it's still annoying that this functionality isn't directly accessible. Well, every feature starts off with minus 100 points, so it's understandable why something like this didn't make it into the C# compiler ahead of a different feature.

    Read the article

  • What I like about WIF&rsquo;s Claims-based Authorization

    - by Your DisplayName here!
    In “traditional” .NET with its IPrincipal interface and IsInRole method, developers were encouraged to write code like this: public void AddCustomer(Customer customer) {     if (Thread.CurrentPrincipal.IsInRole("Sales"))     {         // add customer     } } In code reviews I’ve seen tons of code like this. What I don’t like about this is, that two concerns in your application get tightly coupled: business and security logic. But what happens when the security requirements change – and they will (e.g. members of the sales role and some other people from different roles need to create customers)? Well – since your security logic is sprinkled across your project you need to change the security checks in all relevant places (and make sure you don’t forget one) and you need to re-test, re-stage and re-deploy the complete app. This is clearly not what we want. WIF’s claims-based authorization encourages developers to separate business code and authorization policy evaluation. This is a good thing. So the same security check with WIF’s out-of-the box APIs would look like this: public void AddCustomer(Customer customer) {     try     {         ClaimsPrincipalPermission.CheckAccess("Customer", "Add");           // add customer     }     catch (SecurityException ex)     {         // access denied     } } You notice the fundamental difference? The security check only describes what the code is doing (represented by a resource/action pair) – and does not state who is allowed to invoke the code. As I mentioned earlier – the who is most probably changing over time – the what most probably not. The call to ClaimsPrincipalPermission hands off to another class called the ClaimsAuthorizationManager. This class handles the evaluation of your security policy and is ideally in a separate assembly to allow updating the security logic independently from the application logic (and vice versa). The claims authorization manager features a method called CheckAccess that retrieves three values (wrapped inside an AuthorizationContext instance) – action (“add”), resource (“customer”) and the principal (including its claims) in question. CheckAccess then evaluates those three values and returns true/false. I really like the separation of concerns part here. Unfortunately there is not much support from Microsoft beyond that point. And without further tooling and abstractions the CheckAccess method quickly becomes *very* complex. But still I think that is the way to go. In the next post I will tell you what I don’t like about it (and how to fix it).

    Read the article

  • Disk errors on tty and syslog/dmesg

    - by Shoaibi
    Recently I have started to get a lot of these errors: Jun 18 08:57:42 abacus kernel: [ 401.554292] ata5: SError: { HostInt 10B8B } Jun 18 08:57:42 abacus kernel: [ 401.559346] sr 4:0:0:0: CDB: Test Unit Ready: 00 00 00 00 00 00 Jun 18 08:57:42 abacus kernel: [ 401.560191] ata5.00: cmd a0/00:00:00:00:00/00:00:00:00:00/a0 tag 0 Jun 18 08:57:42 abacus kernel: [ 401.560231] res 51/20:03:00:00:00/00:00:00:00:00/a0 Emask 0x40 (internal error) Jun 18 08:57:42 abacus kernel: [ 401.575310] ata5.00: status: { DRDY ERR } Jun 18 08:57:42 abacus kernel: [ 401.579801] ata5: hard resetting link Jun 18 08:57:42 abacus kernel: [ 401.929320] ata5: SATA link up 1.5 Gbps (SStatus 113 SControl 300) Jun 18 08:57:42 abacus kernel: [ 401.941936] ata5.00: configured for UDMA/100 Jun 18 08:57:42 abacus kernel: [ 401.969426] ata5: EH complete Jun 18 08:57:54 abacus kernel: [ 413.527699] ata5.00: exception Emask 0x40 SAct 0x0 SErr 0x80800 action 0x6 Jun 18 08:57:54 abacus kernel: [ 413.527779] ata5.00: irq_stat 0x40000001 Jun 18 08:57:54 abacus kernel: [ 413.527822] ata5: SError: { HostInt 10B8B } Jun 18 08:57:54 abacus kernel: [ 413.527901] sr 4:0:0:0: CDB: Test Unit Ready: 00 00 00 00 00 00 Jun 18 08:57:54 abacus kernel: [ 413.528103] ata5.00: cmd a0/00:00:00:00:00/00:00:00:00:00/a0 tag 0 Jun 18 08:57:54 abacus kernel: [ 413.528142] res 51/20:03:00:00:00/00:00:00:00:00/a0 Emask 0x40 (internal error) Jun 18 08:57:54 abacus kernel: [ 413.528184] ata5.00: status: { DRDY ERR } Jun 18 08:57:54 abacus kernel: [ 413.528303] ata5: hard resetting link Jun 18 08:57:54 abacus kernel: [ 413.875894] ata5: SATA link up 1.5 Gbps (SStatus 113 SControl 300) Jun 18 08:57:54 abacus kernel: [ 413.888267] ata5.00: configured for UDMA/100 Jun 18 08:57:54 abacus kernel: [ 413.916365] ata5: EH complete Jun 18 08:57:56 abacus kernel: [ 415.537834] ata5.00: exception Emask 0x40 SAct 0x0 SErr 0x80800 action 0x6 Jun 18 08:57:56 abacus kernel: [ 415.545253] ata5.00: irq_stat 0x40000001 Jun 18 08:57:56 abacus kernel: [ 415.549788] ata5: SError: { HostInt 10B8B } Jun 18 08:57:56 abacus kernel: [ 415.554840] sr 4:0:0:0: CDB: Test Unit Ready: 00 00 00 00 00 00 Jun 18 08:57:56 abacus kernel: [ 415.555201] ata5.00: cmd a0/00:00:00:00:00/00:00:00:00:00/a0 tag 0 Jun 18 08:57:56 abacus kernel: [ 415.555242] res 51/20:03:00:00:00/00:00:00:00:00/a0 Emask 0x40 (internal error) Jun 18 08:57:56 abacus kernel: [ 415.570483] ata5.00: status: { DRDY ERR } Jun 18 08:57:56 abacus kernel: [ 415.574695] ata5: hard resetting link Jun 18 08:57:56 abacus kernel: [ 415.924954] ata5: SATA link up 1.5 Gbps (SStatus 113 SControl 300) Jun 18 08:57:56 abacus kernel: [ 415.936831] ata5.00: configured for UDMA/100 Jun 18 08:57:56 abacus kernel: [ 415.965001] ata5: EH complete Jun 18 08:58:02 abacus kernel: [ 421.529784] ata5.00: exception Emask 0x40 SAct 0x0 SErr 0x80800 action 0x6 Jun 18 08:58:02 abacus kernel: [ 421.529904] ata5.00: irq_stat 0x40000001 Jun 18 08:58:02 abacus kernel: [ 421.530023] ata5: SError: { HostInt 10B8B } Jun 18 08:58:02 abacus kernel: [ 421.530104] sr 4:0:0:0: CDB: Test Unit Ready: 00 00 00 00 00 00 Jun 18 08:58:02 abacus kernel: [ 421.530425] ata5.00: cmd a0/00:00:00:00:00/00:00:00:00:00/a0 tag 0 Jun 18 08:58:02 abacus kernel: [ 421.530466] res 51/20:03:00:00:00/00:00:00:00:00/a0 Emask 0x40 (internal error) Jun 18 08:58:02 abacus kernel: [ 421.530583] ata5.00: status: { DRDY ERR } Jun 18 08:58:02 abacus kernel: [ 421.530705] ata5: hard resetting link Jun 18 08:58:02 abacus kernel: [ 421.873218] ata5: SATA link up 1.5 Gbps (SStatus 113 SControl 300) Jun 18 08:58:02 abacus kernel: [ 421.885040] ata5.00: configured for UDMA/100 Jun 18 08:58:02 abacus kernel: [ 421.913404] ata5: EH complete Are these critical error messages? What would be the cause and remedy?

    Read the article

  • Subterranean IL: Exception handler semantics

    - by Simon Cooper
    In my blog posts on fault and filter exception handlers, I said that the same behaviour could be replicated using normal catch blocks. Well, that isn't entirely true... Changing the handler semantics Consider the following: .try { .try { .try { newobj instance void [mscorlib]System.Exception::.ctor() // IL for: // e.Data.Add("DictKey", true) throw } fault { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } } filter { ldstr "2a: Filter logic" call void [mscorlib]System.Console::WriteLine(string) // IL for: // (bool)((Exception)e).Data["DictKey"] endfilter }{ ldstr "2b: Filter handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } } catch object { ldstr "3: Catch handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } Return: // rest of method If the filter handler is engaged (true is inserted into the exception dictionary) then the filter handler gets engaged, and the following gets printed to the console: 2a: Filter logic 1: Fault handler 2b: Filter handler and if the filter handler isn't engaged, then the following is printed: 2a:Filter logic 1: Fault handler 3: Catch handler Filter handler execution The filter handler is executed first. Hmm, ok. Well, what happens if we replaced the fault block with the C# equivalent (with the exception dictionary value set to false)? .try { // throw exception } catch object { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) rethrow } we get this: 1: Fault handler 2a: Filter logic 3: Catch handler The fault handler is executed first, instead of the filter block. Eh? This change in behaviour is due to the way the CLR searches for exception handlers. When an exception is thrown, the CLR stops execution of the thread, and searches up the stack for an exception handler that can handle the exception and stop it propagating further - catch or filter handlers. It checks the type clause of catch clauses, and executes the code in filter blocks to see if the filter can handle the exception. When the CLR finds a valid handler, it saves the handler's location, then goes back to where the exception was thrown and executes fault and finally blocks between there and the handler location, discarding stack frames in the process, until it reaches the handler. So? By replacing a fault with a catch, we have changed the semantics of when the filter code is executed; by using a rethrow instruction, we've split up the exception handler search into two - one search to find the first catch, then a second when the rethrow instruction is encountered. This is only really obvious when mixing C# exception handlers with fault or filter handlers, so this doesn't affect code written only in C#. However it could cause some subtle and hard-to-debug effects with object initialization and ordering when using and calling code written in a language that can compile fault and filter handlers.

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • SQL University: What and why of database refactoring

    - by Mladen Prajdic
    This is a post for a great idea called SQL University started by Jorge Segarra also famously known as SqlChicken on Twitter. It’s a collection of blog posts on different database related topics contributed by several smart people all over the world. So this week is mine and we’ll be talking about database testing and refactoring. In 3 posts we’ll cover: SQLU part 1 - What and why of database testing SQLU part 2 - What and why of database refactoring SQLU part 3 - Tools of the trade This is a second part of the series and in it we’ll take a look at what database refactoring is and why do it. Why refactor a database To know why refactor we first have to know what refactoring actually is. Code refactoring is a process where we change module internals in a way that does not change that module’s input/output behavior. For successful refactoring there is one crucial thing we absolutely must have: Tests. Automated unit tests are the only guarantee we have that we haven’t broken the input/output behavior before refactoring. If you haven’t go back ad read my post on the matter. Then start writing them. Next thing you need is a code module. Those are views, UDFs and stored procedures. By having direct table access we can kiss fast and sweet refactoring good bye. One more point to have a database abstraction layer. And no, ORM’s don’t fall into that category. But also know that refactoring is NOT adding new functionality to your code. Many have fallen into this trap. Don’t be one of them and resist the lure of the dark side. And it’s a strong lure. We developers in general love to add new stuff to our code, but hate fixing our own mistakes or changing existing code for no apparent reason. To be a good refactorer one needs discipline and focus. Now we know that refactoring is all about changing inner workings of existing code. This can be due to performance optimizations, changing internal code workflows or some other reason. This is a typical black box scenario to the outside world. If we upgrade the car engine it still has to drive on the road (preferably faster) and not fly (no matter how cool that would be). Also be aware that white box tests will break when we refactor. What to refactor in a database Refactoring databases doesn’t happen that often but when it does it can include a lot of stuff. Let us look at a few common cases. Adding or removing database schema objects Adding, removing or changing table columns in any way, adding constraints, keys, etc… All of these can be counted as internal changes not visible to the data consumer. But each of these carries a potential input/output behavior change. Dropping a column can result in views not working anymore or stored procedure logic crashing. Adding a unique constraint shows duplicated data that shouldn’t exist. Foreign keys break a truncate table command executed from an application that runs once a month. All these scenarios are very real and can happen. With the proper database abstraction layer fully covered with black box tests we can make sure something like that does not happen (hopefully at all). Changing physical structures Physical structures include heaps, indexes and partitions. We can pretty much add or remove those without changing the data returned by the database. But the performance can be affected. So here we use our performance tests. We do have them, right? Just by adding a single index we can achieve orders of magnitude performance improvement. Won’t that make users happy? But what if that index causes our write operations to crawl to a stop. again we have to test this. There are a lot of things to think about and have tests for. Without tests we can’t do successful refactoring! Fixing bad code We all have some bad code in our systems. We usually refer to that code as code smell as they violate good coding practices. Examples of such code smells are SQL injection, use of SELECT *, scalar UDFs or cursors, etc… Each of those is huge code smell and can result in major code changes. Take SELECT * from example. If we remove a column from a table the client using that SELECT * statement won’t have a clue about that until it runs. Then it will gracefully crash and burn. Not to mention the widely unknown SELECT * view refresh problem that Tomas LaRock (@SQLRockstar on Twitter) and Colin Stasiuk (@BenchmarkIT on Twitter) talk about in detail. Go read about it, it’s informative. Refactoring this includes replacing the * with column names and most likely change to application using the database. Breaking apart huge stored procedures Have you ever seen seen a stored procedure that was 2000 lines long? I have. It’s not pretty. It hurts the eyes and sucks the will to live the next 10 minutes. They are a maintenance nightmare and turn into things no one dares to touch. I’m willing to bet that 100% of time they don’t have a single test on them. Large stored procedures (and functions) are a clear sign that they contain business logic. General opinion on good database coding practices says that business logic has no business in the database. That’s the applications part. Refactoring such behemoths requires writing lots of edge case tests for the stored procedure input/output behavior and then start to refactor it. First we split the logic inside into smaller parts like new stored procedures and UDFs. Those then get called from the master stored procedure. Once we’ve successfully modularized the database code it’s best to transfer that logic into the applications consuming it. This only leaves the stored procedure with common data manipulation logic. Of course this isn’t always possible so having a plethora of performance and behavior unit tests is absolutely necessary to confirm we’ve actually improved the codebase in some way.   Refactoring is not a popular chore amongst developers or managers. The former don’t like fixing old code, the latter can’t see the financial benefit. Remember how we talked about being lousy at estimating future costs in the previous post? But there comes a time when it must be done. Hopefully I’ve given you some ideas how to get started. In the last post of the series we’ll take a look at the tools to use and an example of testing and refactoring.

    Read the article

  • Introducing Typemock Test Lint

    We just released a new, free product -  Typemock Test Lint, click here for all the gory details. Its a just-in-time unit testing coach that looks at your code as you type and looks for common unit testing errors. Or, you can just watch this movie: ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Mutation Testing

    You may have a twinge of doubt when your code passes all its unit tests. They might say that the code is OK, but if the code is definitely incorrect, will the unit tests fail? Mutation Testing is a relatively simple, but ingenious, way of checking that your tests will spot the fact that your code is malfunctioning. It is definitely something that every developer should be aware of.

    Read the article

  • The worst anti-patterns you have came across.

    - by ?????????
    What are the worst anti-patterns you have came across in your career as a programmer? I'm mostly involved in java, although it is probably language-independent. I think the worst of it is what I call the main anti-pattern. It means program consisting of single, extremely big class (sometimes accompanied with a pair of little classes) which contains all logic. Typically with a big loop in which all business logic is contained, sometimes having tens of thousands of lines of code.

    Read the article

  • links for 2010-12-22

    - by Bob Rhubart
    @hajonormann: BPM: Top Seven Architectural Topics in 2010 Oracle ACE Director Hajo Normann offers details on how to design a BPM/SOA solution including: modeling human interaction, improving BPM models, orchestrating composed services, central task management, new approaches for business-IT alignment, solutions for non-deterministic processes, and choreography. (tags: oracle otn soasymposium infoq soa bpm) InfoQ: Simplicity, The Way of the Unusual Architect Dan North talks about the tendency developers-becoming-architects have to create bigger and more complex systems. Without trying to be simplistic, North argues for simplicity, offering strategies to extract the simple essence from complex situations. (tags: ping.fm) Fun with Sun Ray, 3D, Oracle VM x86 and SRIOV (Wim Coekaerts Blog) "One of the things I like about my job is that I get to play around with stuff and make use of the technologies we work on in my teams. Sort of my own little playground." - Wim Coekaerts (tags: oracle otn virtualization oraclevm) Oracle VM VirtualBox 4.0.0 Released! (Oracle's Virtualization Blog) And you were worried about what to get that special someone for Christmas... (tags: oracle otn virtualization virtualbox) Virtual Developer Day: Oracle WebLogic Server & Java EE (#OTNVDD) (Oracle Technology Network Blog (aka TechBlog)) "Virtual Developer Day is back with a vengeance! On Feb. 1, login to learn how Oracle WebLogic Server enables a whole new level of productivity for enterprise developers." Registration is open. (tags: oracle otn events webinar java) New Coherence 3.6 Oracle University Course (Cristóbal Soto's Blog) Cristóbal Soto shares information on the "Oracle Coherence 3.6: Share and Manage Data in Clusters" course now available through Oracle University. (tags: oracle otn grid coherence) The Aquarium: Oracle WebLogic Server & Java EE developer day "Oracle WebLogic is well on its way to contribute to the general Java EE 6 momentum and the OTN Blog has just announced a Virtual Developer Day for Oracle WebLogic." (tags: oracle otn weblogic java) Enterprise 2.0 Use Cases for Semantic Web (Reiser 2.0) "How can an enterprise improve the efficiency and effectiveness of their Knowledge and Community model leveraging semantic technologies and social networking dynamics?" - Peter Reiser (tags: oracle otn enterprise2.0 semanticweb) John Gøtze: European Interoperability Framework 2.0 "This week, the European Commission announced an updated interoperability policy in the EU. The Commission has committed itself to adopt a Communication that introduces the European Interoperability Strategy (EIS) and an update to the European Interoperability Framework (EIF)..." - John Gøtze (tags: entarch Interoperability) Andy Mulholland: Maybe Web 3.0 is quite understandable – and a natural result "The idea of Web 1.0 = content, Web 2.0 = people and Web 3.0 = services has a nice symmetrical feel to it, in fact it feels basically right as such a definition would include the two other major definitions as well. So if we put these things all together what picture do we see?" - Andy Mulholland (tags: web2.0 web3.0) Ken Downs: A Working Definition of Business Logic, with Implications for CRUD Code "The Wikipedia entry on 'Business Logic' has a wonderfully honest opening sentence stating that 'Business logic, or domain logic, is a non-technical term...'"  (tags: businesslogic crud)

    Read the article

  • Is anyone doing "real" TDD with Visual-C++, and if yes, how do they do it?

    - by Martin
    Test Driven Development implies writing the test before the code and following a certain cycle: Write Test Check Test (run) Write Production Code Check Test (run) Clean up Production Code Check test (run) As far as I'm concerned, this is only possible if your development solution allows you to very quickly switch between the production and test code, and to execute the test for a certain production code part extremely quickly. Now, while there exist lots of Unit Testing Frameworks for C++ (I'm using Bost.Test atm.) it does seem that there doesn't really exist any decent (for native C++) Visual Studio (Plugin) solution that makes the TDD cycle bearable regardless of framework used. "Bearable" means that it's a one-click action to run a test for a certain cpp file without having to manually set up a separate testing project etc. "Bearable" also means that a simple test starts (linking!) and runs very quickly. So, what tools (plugins) and techniques are out there that make the TDD cycle possible for native C++ development with Visual Studio? Note: I'm fine with free or "commercial" tools. Please: No framework recommendations. (Unless the framework has a dedicated Visual Studio plugin and you want to recommend the plugin.) Edit Note: The answers so far have provided links on how to integrate a Unit Testing framework into Visual Studio. The resources more or less describe how to get the UT framework to compile and get your first Tests running. This is not what this question is about. I'm of the opinion that to really work productively, having the Unit Tests in a manually maintained(!), separate vcproj from your production classes will add so much overhead that TDD "isn't possible". As far as I am aware, you do not add extra "projects" to a Java or C# thing to enable Unit Tests and TDD, and for a good reason. This should be possible with C++ given the right tools, but it seems (this question is about) that there are very little tools for TDD/C++/VS. Googling around, I've found one tool, VisualAssert, that seems to aim in the right direction. However, afaiks, it doesn't seem to be in widespread use (compared to CppUnit, Boost.Test etc.). Edit: I would like to add a comment to the context for this question. I think it does a good summary of outlining (part of) the problem: (comment by Billy ONeal) Visual Studio does not use "build scripts" that are reasonably editable by the user. One project produces one binary. Moreover, Java has the property that Java never builds a complete binary -- the binary you build is just a ZIP of the class files. Therefore it's possible to compile separately then JAR together manually (using e.g. 7z). C++ and C# both actually link their binaries, so generally speaking you can't write a script like that. The closest you can get is to compile everything separately and then do two linkings (one for production, one for testing).

    Read the article

< Previous Page | 100 101 102 103 104 105 106 107 108 109 110 111  | Next Page >