Search Results

Search found 44747 results on 1790 pages for 'breadth first'.

Page 105/1790 | < Previous Page | 101 102 103 104 105 106 107 108 109 110 111 112  | Next Page >

  • How to override 'where' in rails 3

    - by Zakwan Alhajjar
    I have upgraded my application from rails 2.3.8 to 3.0.3 . But I'm facing a problem. I was using 'find' but the overriding doesn't work in rails 3: # override activerecord's find to allow us to find by name or id transparently def self.find(*args) if args.is_a?(Array) and args.first.is_a?(String) and (args.first.index(/[a-zA-Z\-_]+/) or args.first.to_i.eql?(0) ) find_by_login_slug(args) else super end end I'm wondering if there is a way to make this work in rails 3 or even by using where instead. thanks

    Read the article

  • A free standing ASP.NET Pager Web Control

    - by Rick Strahl
    Paging in ASP.NET has been relatively easy with stock controls supporting basic paging functionality. However, recently I built an MVC application and one of the things I ran into was that I HAD TO build manual paging support into a few of my pages. Dealing with list controls and rendering markup is easy enough, but doing paging is a little more involved. I ended up with a small but flexible component that can be dropped anywhere. As it turns out the task of creating a semi-generic Pager control for MVC was fairly easily. Now I’m back to working in Web Forms and thought to myself that the way I created the pager in MVC actually would also work in ASP.NET – in fact quite a bit easier since the whole thing can be conveniently wrapped up into an easily reusable control. A standalone pager would provider easier reuse in various pages and a more consistent pager display regardless of what kind of 'control’ the pager is associated with. Why a Pager Control? At first blush it might sound silly to create a new pager control – after all Web Forms has pretty decent paging support, doesn’t it? Well, sort of. Yes the GridView control has automatic paging built in and the ListView control has the related DataPager control. The built in ASP.NET paging has several issues though: Postback and JavaScript requirements If you look at paging links in ASP.NET they are always postback links with javascript:__doPostback() calls that go back to the server. While that works fine and actually has some benefit like the fact that paging saves changes to the page and post them back, it’s not very SEO friendly. Basically if you use javascript based navigation nosearch engine will follow the paging links which effectively cuts off list content on the first page. The DataPager control does support GET based links via the QueryStringParameter property, but the control is effectively tied to the ListView control (which is the only control that implements IPageableItemContainer). DataSource Controls required for Efficient Data Paging Retrieval The only way you can get paging to work efficiently where only the few records you display on the page are queried for and retrieved from the database you have to use a DataSource control - only the Linq and Entity DataSource controls  support this natively. While you can retrieve this data yourself manually, there’s no way to just assign the page number and render the pager based on this custom subset. Other than that default paging requires a full resultset for ASP.NET to filter the data and display only a subset which can be very resource intensive and wasteful if you’re dealing with largish resultsets (although I’m a firm believer in returning actually usable sets :-}). If you use your own business layer that doesn’t fit an ObjectDataSource you’re SOL. That’s a real shame too because with LINQ based querying it’s real easy to retrieve a subset of data that is just the data you want to display but the native Pager functionality doesn’t support just setting properties to display just the subset AFAIK. DataPager is not Free Standing The DataPager control is the closest thing to a decent Pager implementation that ASP.NET has, but alas it’s not a free standing component – it works off a related control and the only one that it effectively supports from the stock ASP.NET controls is the ListView control. This means you can’t use the same data pager formatting for a grid and a list view or vice versa and you’re always tied to the control. Paging Events In order to handle paging you have to deal with paging events. The events fire at specific time instances in the page pipeline and because of this you often have to handle data binding in a way to work around the paging events or else end up double binding your data sources based on paging. Yuk. Styling The GridView pager is a royal pain to beat into submission for styled rendering. The DataPager control has many more options and template layout and it renders somewhat cleaner, but it too is not exactly easy to get a decent display for. Not a Generic Solution The problem with the ASP.NET controls too is that it’s not generic. GridView, DataGrid use their own internal paging, ListView can use a DataPager and if you want to manually create data layout – well you’re on your own. IOW, depending on what you use you likely have very different looking Paging experiences. So, I figured I’ve struggled with this once too many and finally sat down and built a Pager control. The Pager Control My goal was to create a totally free standing control that has no dependencies on other controls and certainly no requirements for using DataSource controls. The idea is that you should be able to use this pager control without any sort of data requirements at all – you should just be able to set properties and be able to display a pager. The Pager control I ended up with has the following features: Completely free standing Pager control – no control or data dependencies Complete manual control – Pager can render without any data dependency Easy to use: Only need to set PageSize, ActivePage and TotalItems Supports optional filtering of IQueryable for efficient queries and Pager rendering Supports optional full set filtering of IEnumerable<T> and DataTable Page links are plain HTTP GET href Links Control automatically picks up Page links on the URL and assigns them (automatic page detection no page index changing events to hookup) Full CSS Styling support On the downside there’s no templating support for the control so the layout of the pager is relatively fixed. All elements however are stylable and there are options to control the text, and layout options such as whether to display first and last pages and the previous/next buttons and so on. To give you an idea what the pager looks like, here are two differently styled examples (all via CSS):   The markup for these two pagers looks like this: <ww:Pager runat="server" id="ItemPager" PageSize="5" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PagesTextCssClass="gridpagertext" CssClass="gridpager" RenderContainerDiv="true" ContainerDivCssClass="gridpagercontainer" MaxPagesToDisplay="6" PagesText="Item Pages:" NextText="next" PreviousText="previous" /> <ww:Pager runat="server" id="ItemPager2" PageSize="5" RenderContainerDiv="true" MaxPagesToDisplay="6" /> The latter example uses default style settings so it there’s not much to set. The first example on the other hand explicitly assigns custom styles and overrides a few of the formatting options. Styling The styling is based on a number of CSS classes of which the the main pager, pagerbutton and pagerbutton-selected classes are the important ones. Other styles like pagerbutton-next/prev/first/last are based on the pagerbutton style. The default styling shown for the red outlined pager looks like this: .pagercontainer { margin: 20px 0; background: whitesmoke; padding: 5px; } .pager { float: right; font-size: 10pt; text-align: left; } .pagerbutton,.pagerbutton-selected,.pagertext { display: block; float: left; text-align: center; border: solid 2px maroon; min-width: 18px; margin-left: 3px; text-decoration: none; padding: 4px; } .pagerbutton-selected { font-size: 130%; font-weight: bold; color: maroon; border-width: 0px; background: khaki; } .pagerbutton-first { margin-right: 12px; } .pagerbutton-last,.pagerbutton-prev { margin-left: 12px; } .pagertext { border: none; margin-left: 30px; font-weight: bold; } .pagerbutton a { text-decoration: none; } .pagerbutton:hover { background-color: maroon; color: cornsilk; } .pagerbutton-prev { background-image: url(images/prev.png); background-position: 2px center; background-repeat: no-repeat; width: 35px; padding-left: 20px; } .pagerbutton-next { background-image: url(images/next.png); background-position: 40px center; background-repeat: no-repeat; width: 35px; padding-right: 20px; margin-right: 0px; } Yup that’s a lot of styling settings although not all of them are required. The key ones are pagerbutton, pager and pager selection. The others (which are implicitly created by the control based on the pagerbutton style) are for custom markup of the ‘special’ buttons. In my apps I tend to have two kinds of pages: Those that are associated with typical ‘grid’ displays that display purely tabular data and those that have a more looser list like layout. The two pagers shown above represent these two views and the pager and gridpager styles in my standard style sheet reflect these two styles. Configuring the Pager with Code Finally lets look at what it takes to hook up the pager. As mentioned in the highlights the Pager control is completely independent of other controls so if you just want to display a pager on its own it’s as simple as dropping the control and assigning the PageSize, ActivePage and either TotalPages or TotalItems. So for this markup: <ww:Pager runat="server" id="ItemPagerManual" PageSize="5" MaxPagesToDisplay="6" /> I can use code as simple as: ItemPagerManual.PageSize = 3; ItemPagerManual.ActivePage = 4;ItemPagerManual.TotalItems = 20; Note that ActivePage is not required - it will automatically use any Page=x query string value and assign it, although you can override it as I did above. TotalItems can be any value that you retrieve from a result set or manually assign as I did above. A more realistic scenario based on a LINQ to SQL IQueryable result is even easier. In this example, I have a UserControl that contains a ListView control that renders IQueryable data. I use a User Control here because there are different views the user can choose from with each view being a different user control. This incidentally also highlights one of the nice features of the pager: Because the pager is independent of the control I can put the pager on the host page instead of into each of the user controls. IOW, there’s only one Pager control, but there are potentially many user controls/listviews that hold the actual display data. The following code demonstrates how to use the Pager with an IQueryable that loads only the records it displays: protected voidPage_Load(objectsender, EventArgs e) {     Category = Request.Params["Category"] ?? string.Empty;     IQueryable<wws_Item> ItemList = ItemRepository.GetItemsByCategory(Category);     // Update the page and filter the list down     ItemList = ItemPager.FilterIQueryable<wws_Item>(ItemList); // Render user control with a list view Control ulItemList = LoadControl("~/usercontrols/" + App.Configuration.ItemListType + ".ascx"); ((IInventoryItemListControl)ulItemList).InventoryItemList = ItemList; phItemList.Controls.Add(ulItemList); // placeholder } The code uses a business object to retrieve Items by category as an IQueryable which means that the result is only an expression tree that hasn’t execute SQL yet and can be further filtered. I then pass this IQueryable to the FilterIQueryable() helper method of the control which does two main things: Filters the IQueryable to retrieve only the data displayed on the active page Sets the Totaltems property and calculates TotalPages on the Pager and that’s it! When the Pager renders it uses those values, plus the PageSize and ActivePage properties to render the Pager. In addition to IQueryable there are also filter methods for IEnumerable<T> and DataTable, but these versions just filter the data by removing rows/items from the entire already retrieved data. Output Generated and Paging Links The output generated creates pager links as plain href links. Here’s what the output looks like: <div id="ItemPager" class="pagercontainer"> <div class="pager"> <span class="pagertext">Pages: </span><a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=1" class="pagerbutton" />1</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=2" class="pagerbutton" />2</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton" />3</a> <span class="pagerbutton-selected">4</span> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton" />5</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=6" class="pagerbutton" />6</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=20" class="pagerbutton pagerbutton-last" />20</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton pagerbutton-prev" />Prev</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton pagerbutton-next" />Next</a></div> <br clear="all" /> </div> </div> The links point back to the current page and simply append a Page= page link into the page. When the page gets reloaded with the new page number the pager automatically detects the page number and automatically assigns the ActivePage property which results in the appropriate page to be displayed. The code shown in the previous section is all that’s needed to handle paging. Note that HTTP GET based paging is different than the Postback paging ASP.NET uses by default. Postback paging preserves modified page content when clicking on pager buttons, but this control will simply load a new page – no page preservation at this time. The advantage of not using Postback paging is that the URLs generated are plain HTML links that a search engine can follow where __doPostback() links are not. Pager with a Grid The pager also works in combination with grid controls so it’s easy to bypass the grid control’s paging features if desired. In the following example I use a gridView control and binds it to a DataTable result which is also filterable by the Pager control. The very basic plain vanilla ASP.NET grid markup looks like this: <div style="width: 600px; margin: 0 auto;padding: 20px; "> <asp:DataGrid runat="server" AutoGenerateColumns="True" ID="gdItems" CssClass="blackborder" style="width: 600px;"> <AlternatingItemStyle CssClass="gridalternate" /> <HeaderStyle CssClass="gridheader" /> </asp:DataGrid> <ww:Pager runat="server" ID="Pager" CssClass="gridpager" ContainerDivCssClass="gridpagercontainer" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PageSize="8" RenderContainerDiv="true" MaxPagesToDisplay="6" /> </div> and looks like this when rendered: using custom set of CSS styles. The code behind for this code is also very simple: protected void Page_Load(object sender, EventArgs e) { string category = Request.Params["category"] ?? ""; busItem itemRep = WebStoreFactory.GetItem(); var items = itemRep.GetItemsByCategory(category) .Select(itm => new {Sku = itm.Sku, Description = itm.Description}); // run query into a DataTable for demonstration DataTable dt = itemRep.Converter.ToDataTable(items,"TItems"); // Remove all items not on the current page dt = Pager.FilterDataTable(dt,0); // bind and display gdItems.DataSource = dt; gdItems.DataBind(); } A little contrived I suppose since the list could already be bound from the list of elements, but this is to demonstrate that you can also bind against a DataTable if your business layer returns those. Unfortunately there’s no way to filter a DataReader as it’s a one way forward only reader and the reader is required by the DataSource to perform the bindings.  However, you can still use a DataReader as long as your business logic filters the data prior to rendering and provides a total item count (most likely as a second query). Control Creation The control itself is a pretty brute force ASP.NET control. Nothing clever about this other than some basic rendering logic and some simple calculations and update routines to determine which buttons need to be shown. You can take a look at the full code from the West Wind Web Toolkit’s Repository (note there are a few dependencies). To give you an idea how the control works here is the Render() method: /// <summary> /// overridden to handle custom pager rendering for runtime and design time /// </summary> /// <param name="writer"></param> protected override void Render(HtmlTextWriter writer) { base.Render(writer); if (TotalPages == 0 && TotalItems > 0) TotalPages = CalculateTotalPagesFromTotalItems(); if (DesignMode) TotalPages = 10; // don't render pager if there's only one page if (TotalPages < 2) return; if (RenderContainerDiv) { if (!string.IsNullOrEmpty(ContainerDivCssClass)) writer.AddAttribute("class", ContainerDivCssClass); writer.RenderBeginTag("div"); } // main pager wrapper writer.WriteBeginTag("div"); writer.AddAttribute("id", this.ClientID); if (!string.IsNullOrEmpty(CssClass)) writer.WriteAttribute("class", this.CssClass); writer.Write(HtmlTextWriter.TagRightChar + "\r\n"); // Pages Text writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(PagesTextCssClass)) writer.WriteAttribute("class", PagesTextCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(this.PagesText); writer.WriteEndTag("span"); // if the base url is empty use the current URL FixupBaseUrl(); // set _startPage and _endPage ConfigurePagesToRender(); // write out first page link if (ShowFirstAndLastPageLinks && _startPage != 1) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-first"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write("1"); writer.WriteEndTag("a"); writer.Write("&nbsp;"); } // write out all the page links for (int i = _startPage; i < _endPage + 1; i++) { if (i == ActivePage) { writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(SelectedPageCssClass)) writer.WriteAttribute("class", SelectedPageCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(i.ToString()); writer.WriteEndTag("span"); } else { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, i.ToString()).TrimEnd('&'); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(i.ToString()); writer.WriteEndTag("a"); } writer.Write("\r\n"); } // write out last page link if (ShowFirstAndLastPageLinks && _endPage < TotalPages) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, TotalPages.ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-last"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(TotalPages.ToString()); writer.WriteEndTag("a"); } // Previous link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(PreviousText) && ActivePage > 1) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage - 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-prev"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(PreviousText); writer.WriteEndTag("a"); } // Next link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(NextText) && ActivePage < TotalPages) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage + 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-next"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(NextText); writer.WriteEndTag("a"); } writer.WriteEndTag("div"); if (RenderContainerDiv) { if (RenderContainerDivBreak) writer.Write("<br clear=\"all\" />\r\n"); writer.WriteEndTag("div"); } } As I said pretty much brute force rendering based on the control’s property settings of which there are quite a few: You can also see the pager in the designer above. unfortunately the VS designer (both 2010 and 2008) fails to render the float: left CSS styles properly and starts wrapping after margins are applied in the special buttons. Not a big deal since VS does at least respect the spacing (the floated elements overlay). Then again I’m not using the designer anyway :-}. Filtering Data What makes the Pager easy to use is the filter methods built into the control. While this functionality is clearly not the most politically correct design choice as it violates separation of concerns, it’s very useful for typical pager operation. While I actually have filter methods that do something similar in my business layer, having it exposed on the control makes the control a lot more useful for typical databinding scenarios. Of course these methods are optional – if you have a business layer that can provide filtered page queries for you can use that instead and assign the TotalItems property manually. There are three filter method types available for IQueryable, IEnumerable and for DataTable which tend to be the most common use cases in my apps old and new. The IQueryable version is pretty simple as it can simply rely on on .Skip() and .Take() with LINQ: /// <summary> /// <summary> /// Queries the database for the ActivePage applied manually /// or from the Request["page"] variable. This routine /// figures out and sets TotalPages, ActivePage and /// returns a filtered subset IQueryable that contains /// only the items from the ActivePage. /// </summary> /// <param name="query"></param> /// <param name="activePage"> /// The page you want to display. Sets the ActivePage property when passed. /// Pass 0 or smaller to use ActivePage setting. /// </param> /// <returns></returns> public IQueryable<T> FilterIQueryable<T>(IQueryable<T> query, int activePage) where T : class, new() { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = query.Count(); if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return query; } int skip = ActivePage - 1; if (skip > 0) query = query.Skip(skip * PageSize); _TotalPages = CalculateTotalPagesFromTotalItems(); return query.Take(PageSize); } The IEnumerable<T> version simply  converts the IEnumerable to an IQuerable and calls back into this method for filtering. The DataTable version requires a little more work to manually parse and filter records (I didn’t want to add the Linq DataSetExtensions assembly just for this): /// <summary> /// Filters a data table for an ActivePage. /// /// Note: Modifies the data set permanently by remove DataRows /// </summary> /// <param name="dt">Full result DataTable</param> /// <param name="activePage">Page to display. 0 to use ActivePage property </param> /// <returns></returns> public DataTable FilterDataTable(DataTable dt, int activePage) { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = dt.Rows.Count; if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return dt; } int skip = ActivePage - 1; if (skip > 0) { for (int i = 0; i < skip * PageSize; i++ ) dt.Rows.RemoveAt(0); } while(dt.Rows.Count > PageSize) dt.Rows.RemoveAt(PageSize); return dt; } Using the Pager Control The pager as it is is a first cut I built a couple of weeks ago and since then have been tweaking a little as part of an internal project I’m working on. I’ve replaced a bunch of pagers on various older pages with this pager without any issues and have what now feels like a more consistent user interface where paging looks and feels the same across different controls. As a bonus I’m only loading the data from the database that I need to display a single page. With the preset class tags applied too adding a pager is now as easy as dropping the control and adding the style sheet for styling to be consistent – no fuss, no muss. Schweet. Hopefully some of you may find this as useful as I have or at least as a baseline to build ontop of… Resources The Pager is part of the West Wind Web & Ajax Toolkit Pager.cs Source Code (some toolkit dependencies) Westwind.css base stylesheet with .pager and .gridpager styles Pager Example Page © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Ada and 'The Book'

    - by Phil Factor
    The long friendship between Charles Babbage and Ada Lovelace created one of the most exciting and mysterious of collaborations ever to have resulted in a technological breakthrough. The fireworks that created by the collision of two prodigious mathematical and creative talents resulted in an invention, the Analytical Engine, which went on to change society fundamentally. However, beyond that, we just don't know what the bulk of their collaborative work was about:;  it was done in strictest secrecy. Even the known outcome of their friendship, the first programmable computer, was shrouded in mystery. At the time, nobody, except close friends and family, had any idea of Ada Byron's contribution to the invention of the ‘Engine’, and how to program it. Her great insight was published in August 1843, under the initials AAL, standing for Ada Augusta Lovelace, her title then being the Countess of Lovelace. It was contained in a lengthy ‘note’ to her translation of a publication that remains the best description of Babbage's amazing Analytical Engine. The secret identity of the person behind those enigmatic initials was finally revealed by Prince de Polignac who, seventy years later, wrote to Ada's daughter to seek confirmation that her mother had, indeed, been the author of the brilliant sentences that described so accurately how Babbage's mechanical computer could be programmed with punch-cards. L.F. Menabrea's paper on the Analytical Engine first appeared in the 'Bibliotheque Universelle de Geneve' in October 1842, and Ada translated it anonymously for Taylor's 'Scientific Memoirs'. Charles Babbage was surprised that she had not written an original paper as she already knew a surprising amount about the way the machine worked. He persuaded her to at least write some explanatory notes. These notes ended up extending to four times the length of the original article and represented the first published account of how a machine could be programmed to perform any calculation. Her example of programming the Bernoulli sequence would have worked on the Analytical engine had the device’s construction been completed, and gave Ada an unassailable claim to have invented the art of programming. What was the reason for Ada's secrecy? She was the only legitimate child of Lord Byron, who was probably the best known celebrity of the age, so she was already famous. She was a senior aristocrat, with titles, a fortune in money and vast estates in the Midlands. She had political influence, and was the cousin of Lord Melbourne, who was the Prime Minister at that time. She was friendly with the young Queen Victoria. Her mathematical activities were a pastime, and not one that would be considered by others to be in keeping with her roles and responsibilities. You wouldn't dare to dream up a fictional heroine like Ada. She was dazzlingly beautiful and talented. She could speak several languages fluently, and play some musical instruments with professional skill. Contemporary accounts refer to her being 'accomplished in science, art and literature'. On top of that, she was a brilliant mathematician, a talent inherited from her mother, Annabella Milbanke. In her mother's circle of literary and scientific friends was Charles Babbage, and Ada's friendship with him dates from her teenage zest for Mathematics. She was one of the first people he'd ever met who understood what he had attempted to achieve with the 'Difference Engine', and with whom he could converse as intellectual equals. He arranged for her to have an education from the most talented academics in the country. Ada melted the heart of the cantankerous genius to the point that he became a faithful and loyal father-figure to her. She was one of the very few who could grasp the principles of the later, and very different, ‘Analytical Engine’ which was designed from the start to tackle a variety of tasks. Sadly, Ada Byron's life ended less than a decade after completing the work that assured her long-term fame, in November 1852. She was dying of cancer, her gambling habits had caused her to run up huge debts, she'd had more than one affairs, and she was being blackmailed. Her brilliant but unempathic mother was nursing her in her final illness, destroying her personal letters and records, and repaying her debts. Her husband was distraught but helpless. Charles Babbage, however, maintained his steadfast paternalistic friendship to the end. She appointed her loyal friend to be her executor. For years, she and Babbage had been working together on a secret project, known only as 'The Book'. We have a clue to what it was in a letter written by her nine years earlier, on 11th August 1843. It was a joint project by herself and Lord Lovelace, her husband, and was intended to involve Babbage's 'undivided energies'. It involved 'consulting your Engine' (it required Babbage’s computer). The letter gives no hint about the project except for the high-minded nature of its purpose, and its highly mathematical nature.  From then on, the surviving correspondence between the two gives only veiled references to 'The Book'. There isn't much, since Babbage later destroyed any letters that could have damaged her reputation within the Establishment. 'I cannot spare the book today, which I am very sorry for. At the moment I want it for constant reference, but I think you can have it tomorrow' (Oct 1844)  And 'I will send you the book directly, and you can say, when you receive it, how long you will want to keep it'. (Nov 1844)  The two of them were obviously intent on the work: She writes, four years later, 'I have an engagement for Wednesday which will prevent me from attending to your wishes about the book' (Dec 1848). This was something that they both needed to work on, but could not do in parallel: 'I will send the book on Tuesday, and it can be left with you till Friday' (11 Feb 1849). After six years work, it had been so well-handled that it was beginning to fall apart: 'Don't forget the new cover you promised for the book. The poor book is very shabby and wants one' (20 Sept 1849). So what was going on? The word 'book' was not a code-word: it was a real book, probably a 'printer's blank', plain paper, but properly bound so printers and publishers could show off how the published work might look. The hints from the correspondence are of advanced mathematics. It is obvious that the book was travelling between them, back and forth, each one working on it for less than a week before passing it back. Ada and her husband were certainly involved in gambling large sums of money on the horses, and so most biographers have concluded that the three of them were trying to calculate the mathematical odds on the horses. This theory has three large problems. Firstly, Ada's original letter proposing the project refers to its high-minded nature. Babbage was temperamentally opposed to gambling and would scarcely have given so much time to the project, even though he was devoted to Ada. Secondly, Babbage would have very soon have realized the hopelessness of trying to beat the bookies. This sort of betting never attracts his type of intellectual background. The third problem is that any work on calculating the odds on horses would not need a well-thumbed book to pass back and forth between them; they would have not had to work in series. The original project was instigated by Ada, along with her husband, William King-Noel, 1st Earl of Lovelace. Charles Babbage was invited to join the project after the couple had come up with the idea. What could William have contributed? One might assume that William was a Bertie Wooster character, addicted only to the joys of the turf, but this was far from the truth. He was a scientist, a Cambridge graduate who was later elected to be a Fellow of the Royal Society. After Eton, he went to Trinity College, Cambridge. On graduation, he entered the diplomatic service and acted as secretary under Lord Nugent, who was Lord Commissioner of the Ionian Islands. William was very friendly with Babbage too, able to discuss scientific matters on equal terms. He was a capable engineer who invented a process for bending large timbers by the application of steam heat. He delivered a paper to the Institution of Civil Engineers in 1849, and received praise from the great engineer, Isambard Kingdom Brunel. As well as being Lord Lieutenant of the County of Surrey for most of Victoria's reign, he had time for a string of scientific and engineering achievements. Whatever the project was, it is unlikely that William was a junior partner. After Ada's death, the project disappeared. Then, two years later, Babbage, through one of his occasional outbursts of temper, demonstrated that he was able to decrypt one of the most powerful of secret codes, Vigenère's autokey cipher.  All contemporary diplomatic and military messages used a variant of this cipher. Babbage had made three important discoveries, namely, the mathematical law of this cipher, the principle of the key periodicity, and the technique of the symmetry of position. The technique is now known as the Kasiski examination, also called the Kasiski test, but Babbage got there first. At one time, he listed amongst his future projects, the writing of a book 'The Philosophy of Decyphering', but it never came to anything. This discovery was going to change the course of history, since it was used to decipher the Russians’ military dispatches in the Crimean war. Babbage himself played a role during the Crimean War as a cryptographical adviser to his friend, Rear-Admiral Sir Francis Beaufort of the Admiralty. This is as much as we can be certain about in trying to make sense of the bulk of the time that Charles Babbage and Ada Lovelace worked together. Nine years of intensive work, involving the 'Engine' and a great deal of mathematics and research seems to have been lost: or has it? I've argued in the past http://www.simple-talk.com/community/blogs/philfactor/archive/2008/06/13/59614.aspx that the cracking of the Vigenère autokey cipher, was a fundamental motive behind the British Government's support and funding of the 'Difference Engine'. The Duke of Wellington, whose understanding of the military significance of being able to read enemy dispatches, was the most steadfast advocate of the project. If the three friends were actually doing the work of cracking codes by mathematical techniques that used the techniques of key periodicity, and symmetry of position (the use of a book being passed quickly to and fro is very suggestive), intending to then use the 'Engine' to do the routine cracking of each dispatch, then this is a rather different story. The project was Ada and William's idea. (William had served in the diplomatic service and would be familiar with the use of codes). This makes Ada Lovelace the initiator of a project which, by giving both Britain, and probably the USA, a diplomatic and military advantage in the second part of the Nineteenth century, changed world history. Ada would never have wanted any credit for cracking the cipher, and developing the method that rendered all contemporary military and diplomatic ciphering techniques nugatory; quite the reverse. And it is clear from the gaps in the record of the letters between the collaborators that the evidence was destroyed, probably on her request by her irascible but intensely honorable executor, Charles Babbage. Charles Babbage toyed with the idea of going public, but the Crimean war put an end to that. The British Government had a valuable secret, and intended to keep it that way. Ada and Charles had quite often discussed possible moneymaking projects that would fund the development of the Analytic Engine, the first programmable computer, but their secret work was never in the running as a potential cash cow. I suspect that the British Government was, even then, working on the concealment of a discovery whose value to the nation depended on it remaining so. The success of code-breaking in the Crimean war, and the American Civil war, led to the British and Americans  subsequently giving much more weight and funding to the science of decryption. Paradoxically, this makes Ada's contribution even closer to the creation of Colossus, the first digital computer, at Bletchley Park, specifically to crack the Nazi’s secret codes.

    Read the article

  • Lightning talk: Coderetreat

    - by Michael Williamson
    In the spirit of trying to encourage more deliberate practice amongst coders in Red Gate, Lauri Pesonen had the idea of running a coderetreat in Red Gate. Lauri and I ran the first one a few weeks ago: given that neither of us hadn’t even been to a coderetreat before, let alone run one, I think it turned out quite well. The participants gave positive feedback, saying that they enjoyed the day, wrote some thought-provoking code and would do it again. Sam Blackburn was one of the attendees, and gave a lightning talk to the other developers in one of our regular lightning talk sessions: In case you can’t watch the video, I’ve transcribed the talk below, although I’d recommend watching the video if you can — I didn’t have much time to do the transcribing! So, what is a coderetreat? So it’s not just something in Red Gate, there’s a website and everything, although it’s not a very big website. It calls itself a community network. The basic ideas behind coderetreat are: you’ve got one day, and you split it into one hour sections. You spend three quarters of that coding, and do a little retrospective at the end. You’re supposed to start fresh each, we were told to delete our code after every session. We were in pairs, swapping after each session, and we did the same task every time. In fact, Conway’s Game of Life is the only task mentioned anywhere that I find for coderetreat. So I don’t know what we’ll do next time, or if we’re meant to do the same thing again. There are some guiding principles which felt to us like restrictions, that you have to code in crazy ways to encourage better code. Final thing is that it’s supposed to be free for outsiders to join. It’s meant to be a kind of networking thing, where you link up with people from other companies. We had a pilot day with Michael and Lauri. Since it was basically the first time any of us had done anything like this, everybody was from Red Gate. We didn’t chat to anybody else for the initial one. The task was Conway’s Game of Life, which most of you have probably heard of it, all but one of us knew about it when did the coderetreat. I won’t got into the details of what it is, but it felt like the right size of task, basically one or two groups actually produced something working by the end of the day, and of course that doesn’t mean it’s necessarily a day’s work to produce that because we were starting again every hour. The task really drives you more than trying to create good code, I found. It was really tempting to try and get it working rather than stick to the rules. But it’s really good to stop and try again because there are so many what-ifs when you’ve finished writing something, “what if I’d done it this way?”. You can answer all those questions at a coderetreat because it’s not about getting a product out the door, it’s about learning and playing with ideas. So we had all these different practices we were trying. I’ll try and go through most of these. Single responsibility is this idea that everything should do just one thing. It was the very first session, we were still trying to figure out how do you go about the Game of Life? So by the end of forty-five minutes hadn’t produced very much for that first session. We were still thinking, “Do we start with a board, how do we represent all these squares? It can be infinitely big, help, this is getting really difficult!”. So, most of us didn’t really get anywhere on the first one. Although it was interesting that some people started with the board, one group started with the FateDecider class that decides whether things live or die. A sort of god class, but in a good way. They managed to implement all of the rules without even defining how the squares were arranged or anything like that. Another thing we tried was TDD (test-driven development). I’m sure most of you know what TDD is: Watch a test, watch it fail for the right reason Write code to pass the test, watch it pass Refactor, check the test still passes Repeat! It basically worked, we were able to produce code, but we often found the tests defined the direction that code went, which is obviously the idea of TDD. But you tend to find that by the time you’ve even written your first assertion, which is supposed to be the very first thing you write, because you write your tests backwards from the assertions back to the initial conditions, you’ve already constrained the logic of the code in some way by the time you’ve done that. You then get to this situation of, “Well, we actually want to go in a slightly different direction. Can we do this?”. Can we write tests that don’t constrain the architecture? Wrapping up all primitives: it’s kind of turtles all the way down. We had a Size, which has a Width and Height, which both derive from Dimension. You’ve got pages of code before you’ve even done anything. No getters and setters (use tell don’t ask instead): mocks and stubs for tests are required if you want to assert that your results are what you think they should be. You can’t just check the internal state of the code. And people found that really challenging and it made them think in a different way which I think is really good. Not having mutable state: that was kind of confusing because we weren’t quite sure what fitted within that rule and what didn’t, and I think we were trying too hard to follow the rule rather than the guideline. No if-statements: supposed to use polymorphism instead, but polymorphism still requires a factory with conditional behaviour. We did something really crazy to get around this: public T If(bool condition, Func<T> left, Func<T> right) { var dict = new Dictionary<bool, Func<T>> {{true, left}, {false, right}}; return dict[condition].Invoke(); } That is not really polymorphism, is it? For-loops: you can always replace a for-loop with recursion, but it doesn’t tend to make it any more readable unless it’s the kind of task that really lends itself to that. So it was interesting, it was good practice, but it wouldn’t make it easier it’s the kind of tree-structure algorithm where that would help. Having a limit on the number of levels of indentation: again, I think it does produce very nice, clean code, but it wasn’t actually a challenge because you just extract methods. That’s quite a useful thing because you can apply that to real code and say, “Okay, should this method really be going crazy like this?” No talking: we hated that. It’s like there’s two of you at a computer, and one of you is doing the typing, what does the other guy do if they’re not allowed to talk. The answer is TDD ping-pong – one person writes the tests, and then the other person writes the code to pass the test. And that creates communication without actually having to have discussion about things which is kind of cool. No code comments: just makes no difference to anything. It’s a forty-five minute exercise, so what are you going to put comments in code for? Finally, this is my fault. I discovered an entertaining way of doing the calculation that was kind of cool (using convolutions over the state of the board). Unfortunately, it turns out to be really hard to implement in C#, so didn’t even manage to work out how to do that convolution in C#. It’s trivial in some high-level languages, but you need something matrix-orientated for it to really work. That’s most of it, really. The thoughts that people went away with: we put down our answers to questions like “What have you learnt?” and “What surprised you?”, “How are you going to do things differently?”, and most people said redoing the problem is really, really good for understanding it properly. People hate having a massive legacy codebase that they can’t change, so being able to attack something three different ways in an environment where the end-product isn’t important: that’s something people really enjoyed. Pair-programming: also people said that they wanted to do more of that, especially with TDD ping-pong, where you write the test and somebody else writes the code. Various people thought different things about immutables, but most people thought they were good, they promote functional programming. And TDD people found really hard. “Tell, don’t ask” people found really, really hard and really, really, really hard to do well. And the recursion just made things trickier to debug. But most people agreed that coderetreats are really cool, and we should do more of them.

    Read the article

  • SQL SERVER – Import CSV into Database – Transferring File Content into a Database Table using CSVexpress

    - by pinaldave
    One of the most common data integration tasks I run into is a desire to move data from a file into a database table.  Generally the user is familiar with his data, the structure of the file, and the database table, but is unfamiliar with data integration tools and therefore views this task as something that is difficult.  What these users really need is a point and click approach that minimizes the learning curve for the data integration tool.  This is what CSVexpress (www.CSVexpress.com) is all about!  It is based on expressor Studio, a data integration tool I’ve been reviewing over the last several months. With CSVexpress, moving data between data sources can be as simple as providing the database connection details, describing the structure of the incoming and outgoing data and then connecting two pre-programmed operators.   There’s no need to learn the intricacies of the data integration tool or to write code.  Let’s look at an example. Suppose I have a comma separated value data file with data similar to the following, which is a listing of terminated employees that includes their hiring and termination date, department, job description, and final salary. EMP_ID,STRT_DATE,END_DATE,JOB_ID,DEPT_ID,SALARY 102,13-JAN-93,24-JUL-98 17:00,Programmer,60,"$85,000" 101,21-SEP-89,27-OCT-93 17:00,Account Representative,110,"$65,000" 103,28-OCT-93,15-MAR-97 17:00,Account Manager,110,"$75,000" 304,17-FEB-96,19-DEC-99 17:00,Marketing,20,"$45,000" 333,24-MAR-98,31-DEC-99 17:00,Data Entry Clerk,50,"$35,000" 100,17-SEP-87,17-JUN-93 17:00,Administrative Assistant,90,"$40,000" 334,24-MAR-98,31-DEC-98 17:00,Sales Representative,80,"$40,000" 400,01-JAN-99,31-DEC-99 17:00,Sales Manager,80,"$55,000" Notice the concise format used for the date values, the fact that the termination date includes both date and time information, and that the salary is clearly identified as money by the dollar sign and digit grouping.  In moving this data to a database table I want to express the dates using a format that includes the century since it’s obvious that this listing could include employees who left the company in both the 20th and 21st centuries, and I want the salary to be stored as a decimal value without the currency symbol and grouping character.  Most data integration tools would require coding within a transformation operation to effect these changes, but not expressor Studio.  Directives for these modifications are included in the description of the incoming data. Besides starting the expressor Studio tool and opening a project, the first step is to create connection artifacts, which describe to expressor where data is stored.  For this example, two connection artifacts are required: a file connection, which encapsulates the file system location of my file; and a database connection, which encapsulates the database connection information.  With expressor Studio, I use wizards to create these artifacts. First click New Connection > File Connection in the Home tab of expressor Studio’s ribbon bar, which starts the File Connection wizard.  In the first window, I enter the path to the directory that contains the input file.  Note that the file connection artifact only specifies the file system location, not the name of the file. Then I click Next and enter a meaningful name for this connection artifact; clicking Finish closes the wizard and saves the artifact. To create the Database Connection artifact, I must know the location of, or instance name, of the target database and have the credentials of an account with sufficient privileges to write to the target table.  To use expressor Studio’s features to the fullest, this account should also have the authority to create a table. I click the New Connection > Database Connection in the Home tab of expressor Studio’s ribbon bar, which starts the Database Connection wizard.  expressor Studio includes high-performance drivers for many relational database management systems, so I can simply make a selection from the “Supplied database drivers” drop down control.  If my desired RDBMS isn’t listed, I can optionally use an existing ODBC DSN by selecting the “Existing DSN” radio button. In the following window, I enter the connection details.  With Microsoft SQL Server, I may choose to use Windows Authentication rather than rather than account credentials.  After clicking Next, I enter a meaningful name for this connection artifact and clicking Finish closes the wizard and saves the artifact. Now I create a schema artifact, which describes the structure of the file data.  When expressor reads a file, all data fields are typed as strings.  In some use cases this may be exactly what is needed and there is no need to edit the schema artifact.  But in this example, editing the schema artifact will be used to specify how the data should be transformed; that is, reformat the dates to include century designations, change the employee and job ID’s to integers, and convert the salary to a decimal value. Again a wizard is used to create the schema artifact.  I click New Schema > Delimited Schema in the Home tab of expressor Studio’s ribbon bar, which starts the Database Connection wizard.  In the first window, I click Get Data from File, which then displays a listing of the file connections in the project.  When I click on the file connection I previously created, a browse window opens to this file system location; I then select the file and click Open, which imports 10 lines from the file into the wizard. I now view the file’s content and confirm that the appropriate delimiter characters are selected in the “Field Delimiter” and “Record Delimiter” drop down controls; then I click Next. Since the input file includes a header row, I can easily indicate that fields in the file should be identified through the corresponding header value by clicking “Set All Names from Selected Row. “ Alternatively, I could enter a different identifier into the Field Details > Name text box.  I click Next and enter a meaningful name for this schema artifact; clicking Finish closes the wizard and saves the artifact. Now I open the schema artifact in the schema editor.  When I first view the schema’s content, I note that the types of all attributes in the Semantic Type (the right-hand panel) are strings and that the attribute names are the same as the field names in the data file.  To change an attribute’s name and type, I highlight the attribute and click Edit in the Attributes grouping on the Schema > Edit tab of the editor’s ribbon bar.  This opens the Edit Attribute window; I can change the attribute name and select the desired type from the “Data type” drop down control.  In this example, I change the name of each attribute to the name of the corresponding database table column (EmployeeID, StartingDate, TerminationDate, JobDescription, DepartmentID, and FinalSalary).  Then for the EmployeeID and DepartmentID attributes, I select Integer as the data type, for the StartingDate and TerminationDate attributes, I select Datetime as the data type, and for the FinalSalary attribute, I select the Decimal type. But I can do much more in the schema editor.  For the datetime attributes, I can set a constraint that ensures that the data adheres to some predetermined specifications; a starting date must be later than January 1, 1980 (the date on which the company began operations) and a termination date must be earlier than 11:59 PM on December 31, 1999.  I simply select the appropriate constraint and enter the value (1980-01-01 00:00 as the starting date and 1999-12-31 11:59 as the termination date). As a last step in setting up these datetime conversions, I edit the mapping, describing the format of each datetime type in the source file. I highlight the mapping line for the StartingDate attribute and click Edit Mapping in the Mappings grouping on the Schema > Edit tab of the editor’s ribbon bar.  This opens the Edit Mapping window in which I either enter, or select, a format that describes how the datetime values are represented in the file.  Note the use of Y01 as the syntax for the year.  This syntax is the indicator to expressor Studio to derive the century by setting any year later than 01 to the 20th century and any year before 01 to the 21st century.  As each datetime value is read from the file, the year values are transformed into century and year values. For the TerminationDate attribute, my format also indicates that the datetime value includes hours and minutes. And now to the Salary attribute. I open its mapping and in the Edit Mapping window select the Currency tab and the “Use currency” check box.  This indicates that the file data will include the dollar sign (or in Europe the Pound or Euro sign), which should be removed. And on the Grouping tab, I select the “Use grouping” checkbox and enter 3 into the “Group size” text box, a comma into the “Grouping character” text box, and a decimal point into the “Decimal separator” character text box. These entries allow the string to be properly converted into a decimal value. By making these entries into the schema that describes my input file, I’ve specified how I want the data transformed prior to writing to the database table and completely removed the requirement for coding within the data integration application itself. Assembling the data integration application is simple.  Onto the canvas I drag the Read File and Write Table operators, connecting the output of the Read File operator to the input of the Write Table operator. Next, I select the Read File operator and its Properties panel opens on the right-hand side of expressor Studio.  For each property, I can select an appropriate entry from the corresponding drop down control.  Clicking on the button to the right of the “File name” text box opens the file system location specified in the file connection artifact, allowing me to select the appropriate input file.  I indicate also that the first row in the file, the header row, should be skipped, and that any record that fails one of the datetime constraints should be skipped. I then select the Write Table operator and in its Properties panel specify the database connection, normal for the “Mode,” and the “Truncate” and “Create Missing Table” options.  If my target table does not yet exist, expressor will create the table using the information encapsulated in the schema artifact assigned to the operator. The last task needed to complete the application is to create the schema artifact used by the Write Table operator.  This is extremely easy as another wizard is capable of using the schema artifact assigned to the Read Table operator to create a schema artifact for the Write Table operator.  In the Write Table Properties panel, I click the drop down control to the right of the “Schema” property and select “New Table Schema from Upstream Output…” from the drop down menu. The wizard first displays the table description and in its second screen asks me to select the database connection artifact that specifies the RDBMS in which the target table will exist.  The wizard then connects to the RDBMS and retrieves a list of database schemas from which I make a selection.  The fourth screen gives me the opportunity to fine tune the table’s description.  In this example, I set the width of the JobDescription column to a maximum of 40 characters and select money as the type of the LastSalary column.  I also provide the name for the table. This completes development of the application.  The entire application was created through the use of wizards and the required data transformations specified through simple constraints and specifications rather than through coding.  To develop this application, I only needed a basic understanding of expressor Studio, a level of expertise that can be gained by working through a few introductory tutorials.  expressor Studio is as close to a point and click data integration tool as one could want and I urge you to try this product if you have a need to move data between files or from files to database tables. Check out CSVexpress in more detail.  It offers a few basic video tutorials and a preview of expressor Studio 3.5, which will support the reading and writing of data into Salesforce.com. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Matrix Multiplication with C++ AMP

    - by Daniel Moth
    As part of our API tour of C++ AMP, we looked recently at parallel_for_each. I ended that post by saying we would revisit parallel_for_each after introducing array and array_view. Now is the time, so this is part 2 of parallel_for_each, and also a post that brings together everything we've seen until now. The code for serial and accelerated Consider a naïve (or brute force) serial implementation of matrix multiplication  0: void MatrixMultiplySerial(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 1: { 2: for (int row = 0; row < M; row++) 3: { 4: for (int col = 0; col < N; col++) 5: { 6: float sum = 0.0f; 7: for(int i = 0; i < W; i++) 8: sum += vA[row * W + i] * vB[i * N + col]; 9: vC[row * N + col] = sum; 10: } 11: } 12: } We notice that each loop iteration is independent from each other and so can be parallelized. If in addition we have really large amounts of data, then this is a good candidate to offload to an accelerator. First, I'll just show you an example of what that code may look like with C++ AMP, and then we'll analyze it. It is assumed that you included at the top of your file #include <amp.h> 13: void MatrixMultiplySimple(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 14: { 15: concurrency::array_view<const float,2> a(M, W, vA); 16: concurrency::array_view<const float,2> b(W, N, vB); 17: concurrency::array_view<concurrency::writeonly<float>,2> c(M, N, vC); 18: concurrency::parallel_for_each(c.grid, 19: [=](concurrency::index<2> idx) restrict(direct3d) { 20: int row = idx[0]; int col = idx[1]; 21: float sum = 0.0f; 22: for(int i = 0; i < W; i++) 23: sum += a(row, i) * b(i, col); 24: c[idx] = sum; 25: }); 26: } First a visual comparison, just for fun: The beginning and end is the same, i.e. lines 0,1,12 are identical to lines 13,14,26. The double nested loop (lines 2,3,4,5 and 10,11) has been transformed into a parallel_for_each call (18,19,20 and 25). The core algorithm (lines 6,7,8,9) is essentially the same (lines 21,22,23,24). We have extra lines in the C++ AMP version (15,16,17). Now let's dig in deeper. Using array_view and extent When we decided to convert this function to run on an accelerator, we knew we couldn't use the std::vector objects in the restrict(direct3d) function. So we had a choice of copying the data to the the concurrency::array<T,N> object, or wrapping the vector container (and hence its data) with a concurrency::array_view<T,N> object from amp.h – here we used the latter (lines 15,16,17). Now we can access the same data through the array_view objects (a and b) instead of the vector objects (vA and vB), and the added benefit is that we can capture the array_view objects in the lambda (lines 19-25) that we pass to the parallel_for_each call (line 18) and the data will get copied on demand for us to the accelerator. Note that line 15 (and ditto for 16 and 17) could have been written as two lines instead of one: extent<2> e(M, W); array_view<const float, 2> a(e, vA); In other words, we could have explicitly created the extent object instead of letting the array_view create it for us under the covers through the constructor overload we chose. The benefit of the extent object in this instance is that we can express that the data is indeed two dimensional, i.e a matrix. When we were using a vector object we could not do that, and instead we had to track via additional unrelated variables the dimensions of the matrix (i.e. with the integers M and W) – aren't you loving C++ AMP already? Note that the const before the float when creating a and b, will result in the underling data only being copied to the accelerator and not be copied back – a nice optimization. A similar thing is happening on line 17 when creating array_view c, where we have indicated that we do not need to copy the data to the accelerator, only copy it back. The kernel dispatch On line 18 we make the call to the C++ AMP entry point (parallel_for_each) to invoke our parallel loop or, as some may say, dispatch our kernel. The first argument we need to pass describes how many threads we want for this computation. For this algorithm we decided that we want exactly the same number of threads as the number of elements in the output matrix, i.e. in array_view c which will eventually update the vector vC. So each thread will compute exactly one result. Since the elements in c are organized in a 2-dimensional manner we can organize our threads in a two-dimensional manner too. We don't have to think too much about how to create the first argument (a grid) since the array_view object helpfully exposes that as a property. Note that instead of c.grid we could have written grid<2>(c.extent) or grid<2>(extent<2>(M, N)) – the result is the same in that we have specified M*N threads to execute our lambda. The second argument is a restrict(direct3d) lambda that accepts an index object. Since we elected to use a two-dimensional extent as the first argument of parallel_for_each, the index will also be two-dimensional and as covered in the previous posts it represents the thread ID, which in our case maps perfectly to the index of each element in the resulting array_view. The kernel itself The lambda body (lines 20-24), or as some may say, the kernel, is the code that will actually execute on the accelerator. It will be called by M*N threads and we can use those threads to index into the two input array_views (a,b) and write results into the output array_view ( c ). The four lines (21-24) are essentially identical to the four lines of the serial algorithm (6-9). The only difference is how we index into a,b,c versus how we index into vA,vB,vC. The code we wrote with C++ AMP is much nicer in its indexing, because the dimensionality is a first class concept, so you don't have to do funny arithmetic calculating the index of where the next row starts, which you have to do when working with vectors directly (since they store all the data in a flat manner). I skipped over describing line 20. Note that we didn't really need to read the two components of the index into temporary local variables. This mostly reflects my personal choice, in some algorithms to break down the index into local variables with names that make sense for the algorithm, i.e. in this case row and col. In other cases it may i,j,k or x,y,z, or M,N or whatever. Also note that we could have written line 24 as: c(idx[0], idx[1])=sum  or  c(row, col)=sum instead of the simpler c[idx]=sum Targeting a specific accelerator Imagine that we had more than one hardware accelerator on a system and we wanted to pick a specific one to execute this parallel loop on. So there would be some code like this anywhere before line 18: vector<accelerator> accs = MyFunctionThatChoosesSuitableAccelerators(); accelerator acc = accs[0]; …and then we would modify line 18 so we would be calling another overload of parallel_for_each that accepts an accelerator_view as the first argument, so it would become: concurrency::parallel_for_each(acc.default_view, c.grid, ...and the rest of your code remains the same… how simple is that? Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Working with Timelines with LINQ to Twitter

    - by Joe Mayo
    When first working with the Twitter API, I thought that using SinceID would be an effective way to page through timelines. In practice it doesn’t work well for various reasons. To explain why, Twitter published an excellent document that is a must-read for anyone working with timelines: Twitter Documentation: Working with Timelines This post shows how to implement the recommended strategies in that document by using LINQ to Twitter. You should read the document in it’s entirety before moving on because my explanation will start at the bottom and work back up to the top in relation to the Twitter document. What follows is an explanation of SinceID, MaxID, and how they come together to help you efficiently work with Twitter timelines. The Role of SinceID Specifying SinceID says to Twitter, “Don’t return tweets earlier than this”. What you want to do is store this value after every timeline query set so that it can be reused on the next set of queries.  The next section will explain what I mean by query set, but a quick explanation is that it’s a loop that gets all new tweets. The SinceID is a backstop to avoid retrieving tweets that you already have. Here’s some initialization code that includes a variable named sinceID that will be used to populate the SinceID property in subsequent queries: // last tweet processed on previous query set ulong sinceID = 210024053698867204; ulong maxID; const int Count = 10; var statusList = new List<status>(); Here, I’ve hard-coded the sinceID variable, but this is where you would initialize sinceID from whatever storage you choose (i.e. a database). The first time you ever run this code, you won’t have a value from a previous query set. Initially setting it to 0 might sound like a good idea, but what if you’re querying a timeline with lots of tweets? Because of the number of tweets and rate limits, your query set might take a very long time to run. A caveat might be that Twitter won’t return an entire timeline back to Tweet #0, but rather only go back a certain period of time, the limits of which are documented for individual Twitter timeline API resources. So, to initialize SinceID at too low of a number can result in a lot of initial tweets, yet there is a limit to how far you can go back. What you’re trying to accomplish in your application should guide you in how to initially set SinceID. I have more to say about SinceID later in this post. The other variables initialized above include the declaration for MaxID, Count, and statusList. The statusList variable is a holder for all the timeline tweets collected during this query set. You can set Count to any value you want as the largest number of tweets to retrieve, as defined by individual Twitter timeline API resources. To effectively page results, you’ll use the maxID variable to set the MaxID property in queries, which I’ll discuss next. Initializing MaxID On your first query of a query set, MaxID will be whatever the most recent tweet is that you get back. Further, you don’t know what MaxID is until after the initial query. The technique used in this post is to do an initial query and then use the results to figure out what the next MaxID will be.  Here’s the code for the initial query: var userStatusResponse = (from tweet in twitterCtx.Status where tweet.Type == StatusType.User && tweet.ScreenName == "JoeMayo" && tweet.SinceID == sinceID && tweet.Count == Count select tweet) .ToList(); statusList.AddRange(userStatusResponse); // first tweet processed on current query maxID = userStatusResponse.Min( status => ulong.Parse(status.StatusID)) - 1; The query above sets both SinceID and Count properties. As explained earlier, Count is the largest number of tweets to return, but the number can be less. A couple reasons why the number of tweets that are returned could be less than Count include the fact that the user, specified by ScreenName, might not have tweeted Count times yet or might not have tweeted at least Count times within the maximum number of tweets that can be returned by the Twitter timeline API resource. Another reason could be because there aren’t Count tweets between now and the tweet ID specified by sinceID. Setting SinceID constrains the results to only those tweets that occurred after the specified Tweet ID, assigned via the sinceID variable in the query above. The statusList is an accumulator of all tweets receive during this query set. To simplify the code, I left out some logic to check whether there were no tweets returned. If  the query above doesn’t return any tweets, you’ll receive an exception when trying to perform operations on an empty list. Yeah, I cheated again. Besides querying initial tweets, what’s important about this code is the final line that sets maxID. It retrieves the lowest numbered status ID in the results. Since the lowest numbered status ID is for a tweet we already have, the code decrements the result by one to keep from asking for that tweet again. Remember, SinceID is not inclusive, but MaxID is. The maxID variable is now set to the highest possible tweet ID that can be returned in the next query. The next section explains how to use MaxID to help get the remaining tweets in the query set. Retrieving Remaining Tweets Earlier in this post, I defined a term that I called a query set. Essentially, this is a group of requests to Twitter that you perform to get all new tweets. A single query might not be enough to get all new tweets, so you’ll have to start at the top of the list that Twitter returns and keep making requests until you have all new tweets. The previous section showed the first query of the query set. The code below is a loop that completes the query set: do { // now add sinceID and maxID userStatusResponse = (from tweet in twitterCtx.Status where tweet.Type == StatusType.User && tweet.ScreenName == "JoeMayo" && tweet.Count == Count && tweet.SinceID == sinceID && tweet.MaxID == maxID select tweet) .ToList(); if (userStatusResponse.Count > 0) { // first tweet processed on current query maxID = userStatusResponse.Min( status => ulong.Parse(status.StatusID)) - 1; statusList.AddRange(userStatusResponse); } } while (userStatusResponse.Count != 0 && statusList.Count < 30); Here we have another query, but this time it includes the MaxID property. The SinceID property prevents reading tweets that we’ve already read and Count specifies the largest number of tweets to return. Earlier, I mentioned how it was important to check how many tweets were returned because failing to do so will result in an exception when subsequent code runs on an empty list. The code above protects against this problem by only working with the results if Twitter actually returns tweets. Reasons why there wouldn’t be results include: if the first query got all the new tweets there wouldn’t be more to get and there might not have been any new tweets between the SinceID and MaxID settings of the most recent query. The code for loading the returned tweets into statusList and getting the maxID are the same as previously explained. The important point here is that MaxID is being reset, not SinceID. As explained in the Twitter documentation, paging occurs from the newest tweets to oldest, so setting MaxID lets us move from the most recent tweets down to the oldest as specified by SinceID. The two loop conditions cause the loop to continue as long as tweets are being read or a max number of tweets have been read.  Logically, you want to stop reading when you’ve read all the tweets and that’s indicated by the fact that the most recent query did not return results. I put the check to stop after 30 tweets are reached to keep the demo from running too long – in the console the response scrolls past available buffer and I wanted you to be able to see the complete output. Yet, there’s another point to be made about constraining the number of items you return at one time. The Twitter API has rate limits and making too many queries per minute will result in an error from twitter that LINQ to Twitter raises as an exception. To use the API properly, you’ll have to ensure you don’t exceed this threshold. Looking at the statusList.Count as done above is rather primitive, but you can implement your own logic to properly manage your rate limit. Yeah, I cheated again. Summary Now you know how to use LINQ to Twitter to work with Twitter timelines. After reading this post, you have a better idea of the role of SinceID - the oldest tweet already received. You also know that MaxID is the largest tweet ID to retrieve in a query. Together, these settings allow you to page through results via one or more queries. You also understand what factors affect the number of tweets returned and considerations for potential error handling logic. The full example of the code for this post is included in the downloadable source code for LINQ to Twitter.   @JoeMayo

    Read the article

  • Stumbling Through: Visual Studio 2010 (Part IV)

    So finally we get to the fun part the fruits of all of our middle-tier/back end labors of generating classes to interface with an XML data source that the previous posts were about can now be presented quickly and easily to an end user.  I think.  Well see.  Well be using a WPF window to display all of our various MFL information that weve collected in the two XML files, and well provide a means of adding, updating and deleting each of these entities using as little code as possible.  Additionally, I would like to dig into the performance of this solution as well as the flexibility of it if were were to modify the underlying XML schema.  So first things first, lets create a WPF project and include our xml data in a data folder within.  On the main window, well drag out the following controls: A combo box to contain all of the teams A list box to show the players of the selected team, along with add/delete player buttons A text box tied to the selected players name, with a save button to save any changes made to the player name A combo box of all the available positions, tied to the currently selected players position A data grid tied to the statistics of the currently selected player, with add/delete statistic buttons This monstrosity of a form and its associated project will look like this (dont forget to reference the DataFoundation project from the Presentation project): To get to the visual data binding, as we learned in a previous post, you have to first make sure the project containing your bindable classes is compiled.  Do so, and then open the Data Sources pane to add a reference to the Teams and Positions classes in the DataFoundation project: Why only Team and Position?  Well, we will get to Players from Teams, and Statistics from Players so no need to make an interface for them as well see in a second.  As for Positions, well need a way to bind the dropdown to ALL positions they dont appear underneath any of the other classes so we need to reference it directly.  After adding these guys, expand every node in your Data Sources pane and see how the Team node allows you to drill into Players and then Statistics.  This is why there was no need to bring in a reference to those classes for the UI we are designing: Now for the seriously hard work of binding all of our controls to the correct data sources.  Drag the following items from the Data Sources pane to the specified control on the window design canvas: Team.Name > Teams combo box Team.Players.Name > Players list box Team.Players.Name > Player name text box Team.Players.Statistics > Statistics data grid Position.Name > Positions combo box That is it!  Really?  Well, no, not really there is one caveat here in that the Positions combo box is not bound the selected players position.  To do so, we will apply a binding to the position combo boxs SelectedValue to point to the current players PositionId value: That should do the trick now, all we need to worry about is loading the actual data.  Sadly, it appears as if we will need to drop to code in order to invoke our IO methods to load all teams and positions.  At least Visual Studio kindly created the stubs for us to do so, ultimately the code should look like this: Note the weirdness with the InitializeDataFiles call that is my current means of telling an IO where to load the data for each of the entities.  I havent thought of a more intuitive way than that yet, but do note that all data is loaded from Teams.xml besides for positions, which is loaded from Lookups.xml.   I think that may be all we need to do to at least load all of the data, lets run it and see: Yay!  All of our glorious data is being displayed!  Er, wait, whats up with the position dropdown?  Why is it red?  Lets select the RB and see if everything updates: Crap, the position didnt update to reflect the selected player, but everything else did.  Where did we go wrong in binding the position to the selected player?  Thinking about it a bit and comparing it to how traditional data binding works, I realize that we never set the value member (or some similar property) to tell the control to join the Id of the source (positions) to the position Id of the player.  I dont see a similar property to that on the combo box control, but I do see a property named SelectedValuePath that might be it, so I set it to Id and run the app again: Hey, all right!  No red box around the positions combo box.  Unfortunately, selecting the RB does not update the dropdown to point to Runningback.  Hmmm.  Now what could it be?  Maybe the problem is that we are loading teams before we are loading positions, so when it binds position Id, all of the positions arent loaded yet.  I went to the code behind and switched things so position loads first and no dice.  Same result when I run.  Why?  WHY?  Ok, ok, calm down, take a deep breath.  Get something with caffeine or sugar (preferably both) and think rationally. Ok, gigantic chocolate chip cookie and a mountain dew chaser have never let me down in the past, so dont fail me now!  Ah ha!  of course!  I didnt even have to finish the mountain dew and I think Ive got it:  Data Context.  By default, when setting on the selected value binding for the dropdown, the data context was list_team.  I dont even know what the heck list_team is, we want it to be bound to our team players view source resource instead, like this: Running it now and selecting the various players: Done and done.  Everything read and bound, thank you caffeine and sugar!  Oh, and thank you Visual Studio 2010.  Lets wire up some of those buttons now There has got to be a better way to do this, but it works for now.  What the add player button does is add a new player object to the currently selected team.  Unfortunately, I couldnt get the new object to automatically show up in the players list (something about not using an observable collection gotta look into this) so I just save the change immediately and reload the screen.  Terrible, but it works: Lets go after something easier:  The save button.  By default, as we type in new text for the players name, it is showing up in the list box as updated.  Cool!  Why couldnt my add new player logic do that?  Anyway, the save button should be as simple as invoking MFL.IO.Save for the selected player, like this: MFL.IO.Save((MFL.Player)lbTeamPlayers.SelectedItem, true); Surprisingly, that worked on the first try.  Lets see if we get as lucky with the Delete player button: MFL.IO.Delete((MFL.Player)lbTeamPlayers.SelectedItem); Refresh(); Note the use of the Refresh method again I cant seem to figure out why updates to the underlying data source are immediately reflected, but adds and deletes are not.  That is a problem for another day, and again my hunch is that I should be binding to something more complex than IEnumerable (like observable collection). Now that an example of the basic CRUD methods are wired up, I want to quickly investigate the performance of this beast.  Im going to make a special button to add 30 teams, each with 50 players and 10 seasons worth of stats.  If my math is right, that will end up with 15000 rows of data, a pretty hefty amount for an XML file.  The save of all this new data took a little over a minute, but that is acceptable because we wouldnt typically be saving batches of 15k records, and the resulting XML file size is a little over a megabyte.  Not huge, but big enough to see some read performance numbers or so I thought.  It reads this file and renders the first team in under a second.  That is unbelievable, but we are lazy loading and the file really wasnt that big.  I will increase it to 50 teams with 100 players and 20 seasons each - 100,000 rows.  It took a year and a half to save all of that data, and resulted in an 8 megabyte file.  Seriously, if you are loading XML files this large, get a freaking database!  Despite this, it STILL takes under a second to load and render the first team, which is interesting mostly because I thought that it was loading that entire 8 MB XML file behind the scenes.  I have to say that I am quite impressed with the performance of the LINQ to XML approach, particularly since I took no efforts to optimize any of this code and was fairly new to the concept from the start.  There might be some merit to this little project after all Look out SQL Server and Oracle, use XML files instead!  Next up, I am going to completely pull the rug out from under the UI and change a number of entities in our model.  How well will the code be regenerated?  How much effort will be required to tie things back together in the UI?Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Installing XP through USB-flash disc

    - by Crazy Buddy
    I don't know whether this could be asked here... So, Pardon me for this. Probably, this is based on My laptop and a contradiction to this question asked already here... I tried to format my "government-provided" laptop (No CD-drive). I thought those IT guys are proving that they're too smart..! I have the Windows XP CD right now. I didn't like to stick with some home-made OS from our Government. So, I used another laptop to format the govt. thing and tried to install XP (As I didn't have enough bills to invest on Windows 7 or 8). Case 1: First, I allowed WinSetupFromUSB 1.0 beta 8 to deal with the flash disk. I wondered for the first time that XP text-screen appeared. Using the first part, I formatted my laptop. It started to copy files, entered into the next part, and completed the installation. I started my PC for the first time. XP splash screen appeared. Suddenly, a blue screen flashed and disappeared (I can't even read what it says). Rebooted and arrived at the screen, "Start Windows Normally". It happens and happens still - like an infinite loop :-) Case 2: Next, I used Rufus 1.2.0 to transfer files to my Flash and it screwed everything out. Even if I used Flash to boot, it arrives to the same screen "Start Windows normally". It doesn't show any response of Flash being inserted. Then I recognized that, It's simply copies everything to the flash disk. Case 3: Then, I started with Novicorp WinToFlash (giving utmost priority to this site). I booted with the disk. I entered into the first part - "Text mode". Some lines started running like that "Press F6 if you..." like that. The last thing I saw was, "Setup is starting Windows..." Suddenly a blue screen appeared like this captured one. I've a suspicion that the same screen appears again & again in first case. Man, I'm dead. Case 4: For the sake of my last hope, I used WinSetupFromUSB 0.1.1. I was shocked on arriving at a screen which says something "GRUB4DOS" like that and some commands like {command line, reboot, halt, \find menu.lst} and when I go inside those "find" options, I see "Error:15 - File not found". Googling provided some commands to mount SETUPLDR.BIN file in the "grub" thing which also proved unsuccessful... Some sites say that Factory reset uses only some function keys. A guy said that it's F11 for lenovo. Screw him. It's all a waste-of-time. But, I think SE would help me out. Is our government IT guys doin' this to me? Are they Soooo smart to spark some blue screen in front of me to freak me out? Any suggestions or new (useful) USB transferring things would be appreciated. It's very urgent. So, It'd be better if you guys pay some attention in debugging and help me out..? Thanks for your time guys :-)

    Read the article

  • BIND9 / DNS Zone / Dedicated Server / Unique Reverse DNS

    - by user2832131
    I locate a dedicated server in a datacenter with no DNS Zone setup. Datacenter panel have 1 textfield only you can fill one Reverse DNS only. According with datacenter instructions here... [instructions]: http://www.wiki.hetzner.de/index.php/DNS-Reverse-DNS/en#How_can_I_assign_several_names_to_my_IP_address.2C_if_different_domains_are_hosted_on_my_server.3F How_can_I_assign_several_names_to_my_IP_address ...I need to install BIND9 in order to configure other records like CNAME and MX. Ok, I've installed BIND9, created a Master Zone. And following this example, I put it in the Zone File: [example]: http://wiki.hetzner.de/index.php/DNS_Zonendatei/en example $ttl 86400 @ IN SOA ns1.first-ns.de. postmaster.robot.first-ns.de. ( 1383411730 14400 1800 604800 86400 ) @ IN NS ns1.first-ns.de. @ IN NS robotns2.second-ns.de. @ IN NS robotns3.second-ns.com. localhost IN A 127.0.0.1 @ IN A 144.86.786.651 www IN A 144.86.786.651 loopback IN CNAME localhost But when I point my domain to ns1.first-ns.de, DNS Register says "time out". Am I missing something? I created a Master zone. Should it be a Slave zone? named.conf: include "/etc/bind/named.conf.options"; include "/etc/bind/named.conf.local"; include "/etc/bind/named.conf.default-zones"; named.conf.options: options { directory "/var/cache/bind"; dnssec-validation auto; auth-nxdomain no; # conform to RFC1035 listen-on-v6 { any; }; }; named.conf.local: zone "mydomain.com" { type master; file "/var/lib/bind/mydomain.com.hosts"; allow-update {any;}; allow-transfer {any;}; allow-query {any;}; }; named.conf.default-zones: zone "." { type hint; file "/etc/bind/db.root"; }; zone "localhost" { type master; file "/etc/bind/db.local"; }; zone "127.in-addr.arpa" { type master; file "/etc/bind/db.127"; }; zone "0.in-addr.arpa" { type master; file "/etc/bind/db.0"; }; zone "255.in-addr.arpa" { type master; file "/etc/bind/db.255"; }; Problem is that I'm moving my site, and can't update the new NS server due to a 'timeout' message when filling new datacenter NS. I'm filling: MASTER: ns1.first-ns.de SLAVE1: robotns2.second-ns.de SLAVE2: robotns3.second-ns.com

    Read the article

  • Problem installing Cardbus/PCMCIA drivers (USB 2.0 2-port)

    - by Carl
    I obtained the drivers from the manufacturer for my HT-Link NEC USB 2.0 2-port Cardbus card. When I plugged in the card before I got the drivers, 3 new entries showed up in the Device Manager - two "NEC PCI to USB Open Host Controller" and one "Standard Enhanced PCI to USB Host controller." With the card plugged in, I uninstalled those two drivers. I then removed the card. I copied the new drivers to c:\windows\system32\drivers and the .inf file to c:\windows\inf. I also copied the drivers & inf to a new directory called c:\windows\drivers\ousb2. I reinserted the card. Windows automatically installed the same drivers as before. I selected 'update driver' on the "NEC PCI to USB..." entry and didn't see any other options. I then selected 'have disk' and pointed to c:\windows\drivers\ousb2 and got a message "The specified location does not contain information about your hardware." I then selected 'update driver' on the "Standard Enhanced PCI to USB...," and manually selected "USB 2.0 Enhanced Host Controller" (OWC 4/15/2003 2.1.3.1). Windows then automatically found a USB root hub, and I manually selected "USB 2.0 Root Hub Device" (OWC 4/15/2003 2.1.3.1). Now there are two sections in the Device Manager titled "Universal Serial Bus controllers." I plugged in my external USB hard disk adapter, and "USB Mass Storage Device" was added to the first set. Here's how it looks (w/drivers from the properties): [Universal Serial Bus controllers] Intel(R) 82801DB/DBM USB 2.0 Enhanced Host Controller - 24CD (6/1/2002 5.1.2600.0) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C2 (7/1/2001 5.1.2600.5512) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C4 (7/1/2001 5.1.2600.5512) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C7 (7/1/2001 5.1.2600.5512) NEC PCI to USB Open Host Controller (7/1/2001 5.1.2600.5512) NEC PCI to USB Open Host Controller (7/1/2001 5.1.2600.5512) USB Mass Storage Device USB Root Hub (7/1/2001 5.1.2600.5512) (5 more USB Root Hubs - same driver) [Universal Serial Bus controllers] USB 2.0 Enhanced Host Controller (OWC 4/15/2003 2.1.3.1) USB 2.0 Root Hub Device (OWC 4/15/2003 2.1.3.1) When I unplug the card the two "NEC PCI to USB..." entries in the first set disappear, and the whole second set disappears. (I unplugged the hard disk adapter first...) The hard disk adapter still doesn't work in that Cardbus card with the new drivers. I don't think the above looks right - a second set of USB controllers listed in the Device Manager, and the NEC entries still in the first set, and the the USB mass storage device still in the first set. Any help appreciated. (Windows XP PRO SP3 w/all current updates.)

    Read the article

  • Device Manager - does USB listing look right?

    - by Carl
    I obtained the drivers from the manufacturer for my HT-Link NEC USB 2.0 2-port Cardbus card. When I plugged in the card before I got the drivers, 3 new entries showed up in the Device Manager - two "NEC PCI to USB Open Host Controller" and one "Standard Enhanced PCI to USB Host controller." With the card plugged in, I uninstalled those two drivers. I then removed the card. I copied the new drivers to c:\windows\system32\drivers and the .inf file to c:\windows\inf. I also copied the drivers & inf to a new directory called c:\windows\drivers\ousb2. I reinserted the card. Windows automatically installed the same drivers as before. I selected 'update driver' on the "NEC PCI to USB..." entry and didn't see any other options. I then selected 'have disk' and pointed to c:\windows\drivers\ousb2 and got a message "The specified location does not contain information about your hardware." I then selected 'update driver' on the "Standard Enhanced PCI to USB...," and manually selected "USB 2.0 Enhanced Host Controller" (OWC 4/15/2003 2.1.3.1). Windows then automatically found a USB root hub, and I manually selected "USB 2.0 Root Hub Device" (OWC 4/15/2003 2.1.3.1). Now there are two sections in the Device Manager titled "Universal Serial Bus controllers." I plugged in my external USB hard disk adapter, and "USB Mass Storage Device" was added to the first set. Here's how it looks (w/drivers from the properties): [Universal Serial Bus controllers] Intel(R) 82801DB/DBM USB 2.0 Enhanced Host Controller - 24CD (6/1/2002 5.1.2600.0) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C2 (7/1/2001 5.1.2600.5512) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C4 (7/1/2001 5.1.2600.5512) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C7 (7/1/2001 5.1.2600.5512) NEC PCI to USB Open Host Controller (7/1/2001 5.1.2600.5512) NEC PCI to USB Open Host Controller (7/1/2001 5.1.2600.5512) USB Mass Storage Device USB Root Hub (7/1/2001 5.1.2600.5512) (5 more USB Root Hubs - same driver) [Universal Serial Bus controllers] USB 2.0 Enhanced Host Controller (OWC 4/15/2003 2.1.3.1) USB 2.0 Root Hub Device (OWC 4/15/2003 2.1.3.1) When I unplug the card the two "NEC PCI to USB..." entries in the first set disappear, and the whole second set disappears. (I unplugged the hard disk adapter first...) The hard disk adapter still doesn't work in that Cardbus card with the new drivers. I don't think the above looks right - a second set of USB controllers listed in the Device Manager, and the NEC entries still in the first set, and the the USB mass storage device still in the first set. Any help appreciated. (Windows XP PRO SP3 w/all current updates.)

    Read the article

  • Problem with USB drivers (Windows-XP)

    - by Carl
    I obtained the drivers from the manufacturer for my HT-Link NEC USB 2.0 2-port Cardbus card. When I plugged in the card before I got the drivers, 3 new entries showed up in the Device Manager - two "NEC PCI to USB Open Host Controller" and one "Standard Enhanced PCI to USB Host controller." With the card plugged in, I uninstalled those two drivers. I then removed the card. I copied the new drivers to c:\windows\system32\drivers and the .inf file to c:\windows\inf. I also copied the drivers & inf to a new directory called c:\windows\drivers\ousb2. I reinserted the card. Windows automatically installed the same drivers as before. I selected 'update driver' on the "NEC PCI to USB..." entry and didn't see any other options. I then selected 'have disk' and pointed to c:\windows\drivers\ousb2 and got a message "The specified location does not contain information about your hardware." I then selected 'update driver' on the "Standard Enhanced PCI to USB...," and manually selected "USB 2.0 Enhanced Host Controller" (OWC 4/15/2003 2.1.3.1). Windows then automatically found a USB root hub, and I manually selected "USB 2.0 Root Hub Device" (OWC 4/15/2003 2.1.3.1). Now there are two sections in the Device Manager titled "Universal Serial Bus controllers." I plugged in my external USB hard disk adapter, and "USB Mass Storage Device" was added to the first set. Here's how it looks (w/drivers from the properties): [Universal Serial Bus controllers] Intel(R) 82801DB/DBM USB 2.0 Enhanced Host Controller - 24CD (6/1/2002 5.1.2600.0) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C2 (7/1/2001 5.1.2600.5512) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C4 (7/1/2001 5.1.2600.5512) Intel(R) 82801DB/DBM USB Universal Host Controller - 24C7 (7/1/2001 5.1.2600.5512) NEC PCI to USB Open Host Controller (7/1/2001 5.1.2600.5512) NEC PCI to USB Open Host Controller (7/1/2001 5.1.2600.5512) USB Mass Storage Device USB Root Hub (7/1/2001 5.1.2600.5512) (5 more USB Root Hubs - same driver) [Universal Serial Bus controllers] USB 2.0 Enhanced Host Controller (OWC 4/15/2003 2.1.3.1) USB 2.0 Root Hub Device (OWC 4/15/2003 2.1.3.1) When I unplug the card the two "NEC PCI to USB..." entries in the first set disappear, and the whole second set disappears. (I unplugged the hard disk adapter first...) The hard disk adapter still doesn't work in that Cardbus card with the new drivers. I don't think the above looks right - a second set of USB controllers listed in the Device Manager, and the NEC entries still in the first set, and the the USB mass storage device still in the first set. Any help appreciated. (Windows XP PRO SP3 w/all current updates.)

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Metro: Declarative Data Binding

    - by Stephen.Walther
    The goal of this blog post is to describe how declarative data binding works in the WinJS library. In particular, you learn how to use both the data-win-bind and data-win-bindsource attributes. You also learn how to use calculated properties and converters to format the value of a property automatically when performing data binding. By taking advantage of WinJS data binding, you can use the Model-View-ViewModel (MVVM) pattern when building Metro style applications with JavaScript. By using the MVVM pattern, you can prevent your JavaScript code from spinning into chaos. The MVVM pattern provides you with a standard pattern for organizing your JavaScript code which results in a more maintainable application. Using Declarative Bindings You can use the data-win-bind attribute with any HTML element in a page. The data-win-bind attribute enables you to bind (associate) an attribute of an HTML element to the value of a property. Imagine, for example, that you want to create a product details page. You want to show a product object in a page. In that case, you can create the following HTML page to display the product details: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Product Details</h1> <div class="field"> Product Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Product Price: <span data-win-bind="innerText:price"></span> </div> <div class="field"> Product Picture: <br /> <img data-win-bind="src:photo;alt:name" /> </div> </body> </html> The HTML page above contains three data-win-bind attributes – one attribute for each product property displayed. You use the data-win-bind attribute to set properties of the HTML element associated with the data-win-attribute. The data-win-bind attribute takes a semicolon delimited list of element property names and data source property names: data-win-bind=”elementPropertyName:datasourcePropertyName; elementPropertyName:datasourcePropertyName;…” In the HTML page above, the first two data-win-bind attributes are used to set the values of the innerText property of the SPAN elements. The last data-win-bind attribute is used to set the values of the IMG element’s src and alt attributes. By the way, using data-win-bind attributes is perfectly valid HTML5. The HTML5 standard enables you to add custom attributes to an HTML document just as long as the custom attributes start with the prefix data-. So you can add custom attributes to an HTML5 document with names like data-stephen, data-funky, or data-rover-dog-is-hungry and your document will validate. The product object displayed in the page above with the data-win-bind attributes is created in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000, photo: "/images/TeslaPhoto.png" }; WinJS.Binding.processAll(null, product); } }; app.start(); })(); In the code above, a product object is created with a name, price, and photo property. The WinJS.Binding.processAll() method is called to perform the actual binding (Don’t confuse WinJS.Binding.processAll() and WinJS.UI.processAll() – these are different methods). The first parameter passed to the processAll() method represents the root element for the binding. In other words, binding happens on this element and its child elements. If you provide the value null, then binding happens on the entire body of the document (document.body). The second parameter represents the data context. This is the object that has the properties which are displayed with the data-win-bind attributes. In the code above, the product object is passed as the data context parameter. Another word for data context is view model.  Creating Complex View Models In the previous section, we used the data-win-bind attribute to display the properties of a simple object: a single product. However, you can use binding with more complex view models including view models which represent multiple objects. For example, the view model in the following default.js file represents both a customer and a product object. Furthermore, the customer object has a nested address object: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone", address: { street: "1 Rocky Way", city: "Bedrock", country: "USA" } }, product: { name: "Bowling Ball", price: 34.55 } }; WinJS.Binding.processAll(null, viewModel); } }; app.start(); })(); The following page displays the customer (including the customer address) and the product. Notice that you can use dot notation to refer to child objects in a view model such as customer.address.street. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:customer.firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:customer.lastName"></span> </div> <div class="field"> Address: <address> <span data-win-bind="innerText:customer.address.street"></span> <br /> <span data-win-bind="innerText:customer.address.city"></span> <br /> <span data-win-bind="innerText:customer.address.country"></span> </address> </div> <h1>Product</h1> <div class="field"> Name: <span data-win-bind="innerText:product.name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:product.price"></span> </div> </body> </html> A view model can be as complicated as you need and you can bind the view model to a view (an HTML document) by using declarative bindings. Creating Calculated Properties You might want to modify a property before displaying the property. For example, you might want to format the product price property before displaying the property. You don’t want to display the raw product price “80000”. Instead, you want to display the formatted price “$80,000”. You also might need to combine multiple properties. For example, you might need to display the customer full name by combining the values of the customer first and last name properties. In these situations, it is tempting to call a function when performing binding. For example, you could create a function named fullName() which concatenates the customer first and last name. Unfortunately, the WinJS library does not support the following syntax: <span data-win-bind=”innerText:fullName()”></span> Instead, in these situations, you should create a new property in your view model that has a getter. For example, the customer object in the following default.js file includes a property named fullName which combines the values of the firstName and lastName properties: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", get fullName() { return this.firstName + " " + this.lastName; } }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); The customer object has a firstName, lastName, and fullName property. Notice that the fullName property is defined with a getter function. When you read the fullName property, the values of the firstName and lastName properties are concatenated and returned. The following HTML page displays the fullName property in an H1 element. You can use the fullName property in a data-win-bind attribute in exactly the same way as any other property. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1 data-win-bind="innerText:fullName"></h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </body> </html> Creating a Converter In the previous section, you learned how to format the value of a property by creating a property with a getter. This approach makes sense when the formatting logic is specific to a particular view model. If, on the other hand, you need to perform the same type of formatting for multiple view models then it makes more sense to create a converter function. A converter function is a function which you can apply whenever you are using the data-win-bind attribute. Imagine, for example, that you want to create a general function for displaying dates. You always want to display dates using a short format such as 12/25/1988. The following JavaScript file – named converters.js – contains a shortDate() converter: (function (WinJS) { var shortDate = WinJS.Binding.converter(function (date) { return date.getMonth() + 1 + "/" + date.getDate() + "/" + date.getFullYear(); }); // Export shortDate WinJS.Namespace.define("MyApp.Converters", { shortDate: shortDate }); })(WinJS); The file above uses the Module Pattern, a pattern which is used through the WinJS library. To learn more about the Module Pattern, see my blog entry on namespaces and modules: http://stephenwalther.com/blog/archive/2012/02/22/windows-web-applications-namespaces-and-modules.aspx The file contains the definition for a converter function named shortDate(). This function converts a JavaScript date object into a short date string such as 12/1/1988. The converter function is created with the help of the WinJS.Binding.converter() method. This method takes a normal function and converts it into a converter function. Finally, the shortDate() converter is added to the MyApp.Converters namespace. You can call the shortDate() function by calling MyApp.Converters.shortDate(). The default.js file contains the customer object that we want to bind. Notice that the customer object has a firstName, lastName, and birthday property. We will use our new shortDate() converter when displaying the customer birthday property: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", birthday: new Date("12/1/1988") }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); We actually use our shortDate converter in the HTML document. The following HTML document displays all of the customer properties: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/converters.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> <div class="field"> Birthday: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> </div> </body> </html> Notice the data-win-bind attribute used to display the birthday property. It looks like this: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> The shortDate converter is applied to the birthday property when the birthday property is bound to the SPAN element’s innerText property. Using data-win-bindsource Normally, you pass the view model (the data context) which you want to use with the data-win-bind attributes in a page by passing the view model to the WinJS.Binding.processAll() method like this: WinJS.Binding.processAll(null, viewModel); As an alternative, you can specify the view model declaratively in your markup by using the data-win-datasource attribute. For example, the following default.js script exposes a view model with the fully-qualified name of MyWinWebApp.viewModel: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { // Create view model var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone" }, product: { name: "Bowling Ball", price: 12.99 } }; // Export view model to be seen by universe WinJS.Namespace.define("MyWinWebApp", { viewModel: viewModel }); // Process data-win-bind attributes WinJS.Binding.processAll(); } }; app.start(); })(); In the code above, a view model which represents a customer and a product is exposed as MyWinWebApp.viewModel. The following HTML page illustrates how you can use the data-win-bindsource attribute to bind to this view model: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div data-win-bindsource="MyWinWebApp.viewModel.customer"> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </div> <h1>Product</h1> <div data-win-bindsource="MyWinWebApp.viewModel.product"> <div class="field"> Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> The data-win-bindsource attribute is used twice in the page above: it is used with the DIV element which contains the customer details and it is used with the DIV element which contains the product details. If an element has a data-win-bindsource attribute then all of the child elements of that element are affected. The data-win-bind attributes of all of the child elements are bound to the data source represented by the data-win-bindsource attribute. Summary The focus of this blog entry was data binding using the WinJS library. You learned how to use the data-win-bind attribute to bind the properties of an HTML element to a view model. We also discussed several advanced features of data binding. We examined how to create calculated properties by including a property with a getter in your view model. We also discussed how you can create a converter function to format the value of a view model property when binding the property. Finally, you learned how to use the data-win-bindsource attribute to specify a view model declaratively.

    Read the article

  • Android - creating a custom preferences activity screen

    - by Bill Osuch
    Android applications can maintain their own internal preferences (and allow them to be modified by users) with very little coding. In fact, you don't even need to write an code to explicitly save these preferences, it's all handled automatically! Create a new Android project, with an intial activity title Main. Create two more activities: ShowPrefs, which extends Activity Set Prefs, which extends PreferenceActivity Add these two to your AndroidManifest.xml file: <activity android:name=".SetPrefs"></activity> <activity android:name=".ShowPrefs"></activity> Now we'll work on fleshing out each activity. First, open up the main.xml layout file and add a couple of buttons to it: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"    android:orientation="vertical"    android:layout_width="fill_parent"    android:layout_height="fill_parent"> <Button android:text="Edit Preferences"    android:id="@+id/prefButton"    android:layout_width="wrap_content"    android:layout_height="wrap_content"    android:layout_gravity="center_horizontal"/> <Button android:text="Show Preferences"    android:id="@+id/showButton"    android:layout_width="wrap_content"    android:layout_height="wrap_content"    android:layout_gravity="center_horizontal"/> </LinearLayout> Next, create a couple button listeners in Main.java to handle the clicks and start the other activities: Button editPrefs = (Button) findViewById(R.id.prefButton);       editPrefs.setOnClickListener(new View.OnClickListener() {              public void onClick(View view) {                  Intent myIntent = new Intent(view.getContext(), SetPrefs.class);                  startActivityForResult(myIntent, 0);              }      });           Button showPrefs = (Button) findViewById(R.id.showButton);      showPrefs.setOnClickListener(new View.OnClickListener() {              public void onClick(View view) {                  Intent myIntent = new Intent(view.getContext(), ShowPrefs.class);                  startActivityForResult(myIntent, 0);              }      }); Now, we'll create the actual preferences layout. You'll need to create a file called preferences.xml inside res/xml, and you'll likely have to create the xml directory as well. Add the following xml: <?xml version="1.0" encoding="utf-8"?> <PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"> </PreferenceScreen> First we'll add a category, which is just a way to group similar preferences... sort of a horizontal bar. Add this inside the PreferenceScreen tags: <PreferenceCategory android:title="First Category"> </PreferenceCategory> Now add a Checkbox and an Edittext box (inside the PreferenceCategory tags): <CheckBoxPreference    android:key="checkboxPref"    android:title="Checkbox Preference"    android:summary="This preference can be true or false"    android:defaultValue="false"/> <EditTextPreference    android:key="editTextPref"    android:title="EditText Preference"    android:summary="This allows you to enter a string"    android:defaultValue="Nothing"/> The key is how you will refer to the preference in code, the title is the large text that will be displayed, and the summary is the smaller text (this will make sense when you see it). Let's say we've got a second group of preferences that apply to a different part of the app. Add a new category just below the first one: <PreferenceCategory android:title="Second Category"> </PreferenceCategory> In there we'll a list with radio buttons, so add: <ListPreference    android:key="listPref"    android:title="List Preference"    android:summary="This preference lets you select an item in a array"    android:entries="@array/listArray"    android:entryValues="@array/listValues" /> When complete, your full xml file should look like this: <?xml version="1.0" encoding="utf-8"?> <PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">  <PreferenceCategory android:title="First Category"> <CheckBoxPreference    android:key="checkboxPref"    android:title="Checkbox Preference"    android:summary="This preference can be true or false"    android:defaultValue="false"/> <EditTextPreference    android:key="editTextPref"    android:title="EditText Preference"    android:summary="This allows you to enter a string"    android:defaultValue="Nothing"/>  </PreferenceCategory>  <PreferenceCategory android:title="Second Category">   <ListPreference    android:key="listPref"    android:title="List Preference"    android:summary="This preference lets you select an item in a array"    android:entries="@array/listArray"    android:entryValues="@array/listValues" />  </PreferenceCategory> </PreferenceScreen> However, when you try to save it, you'll get an error because you're missing your array definition. To fix this, add a file called arrays.xml in res/values, and paste in the following: <?xml version="1.0" encoding="utf-8"?> <resources>  <string-array name="listArray">      <item>Value 1</item>      <item>Value 2</item>      <item>Value 3</item>  </string-array>  <string-array name="listValues">      <item>1</item>      <item>2</item>      <item>3</item>  </string-array> </resources> Finally (for the preferences screen at least...) add the code that will display the preferences layout to the SetPrefs.java file:  @Override     public void onCreate(Bundle savedInstanceState) {      super.onCreate(savedInstanceState);      addPreferencesFromResource(R.xml.preferences);      } OK, so now we've got an activity that will set preferences, and save them without the need to write custom save code. Let's throw together an activity to work with the saved preferences. Create a new layout called showpreferences.xml and give it three Textviews: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"     android:orientation="vertical"     android:layout_width="fill_parent"     android:layout_height="fill_parent"> <TextView   android:id="@+id/textview1"     android:layout_width="fill_parent"     android:layout_height="wrap_content"     android:text="textview1"/> <TextView   android:id="@+id/textview2"     android:layout_width="fill_parent"     android:layout_height="wrap_content"     android:text="textview2"/> <TextView   android:id="@+id/textview3"     android:layout_width="fill_parent"     android:layout_height="wrap_content"     android:text="textview3"/> </LinearLayout> Open up the ShowPrefs.java file and have it use that layout: setContentView(R.layout.showpreferences); Then add the following code to load the DefaultSharedPreferences and display them: SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(this);    TextView text1 = (TextView)findViewById(R.id.textview1); TextView text2 = (TextView)findViewById(R.id.textview2); TextView text3 = (TextView)findViewById(R.id.textview3);    text1.setText(new Boolean(prefs.getBoolean("checkboxPref", false)).toString()); text2.setText(prefs.getString("editTextPref", "<unset>"));; text3.setText(prefs.getString("listPref", "<unset>")); Fire up the application in the emulator and click the Edit Preferences button. Set various things, click the back button, then the Edit Preferences button again. Notice that your choices have been saved.   Now click the Show Preferences button, and you should see the results of what you set:   There are two more preference types that I did not include here: RingtonePreference - shows a radioGroup that lists your ringtones PreferenceScreen - allows you to embed a second preference screen inside the first - it opens up a new set of preferences when clicked

    Read the article

  • Reporting Services - It's a Wrap!

    - by smisner
    If you have any experience at all with Reporting Services, you have probably developed a report using the matrix data region. It's handy when you want to generate columns dynamically based on data. If users view a matrix report online, they can scroll horizontally to view all columns and all is well. But if they want to print the report, the experience is completely different and you'll have to decide how you want to handle dynamic columns. By default, when a user prints a matrix report for which the number of columns exceeds the width of the page, Reporting Services determines how many columns can fit on the page and renders one or more separate pages for the additional columns. In this post, I'll explain two techniques for managing dynamic columns. First, I'll show how to use the RepeatRowHeaders property to make it easier to read a report when columns span multiple pages, and then I'll show you how to "wrap" columns so that you can avoid the horizontal page break. Included with this post are the sample RDLs for download. First, let's look at the default behavior of a matrix. A matrix that has too many columns for one printed page (or output to page-based renderer like PDF or Word) will be rendered such that the first page with the row group headers and the inital set of columns, as shown in Figure 1. The second page continues by rendering the next set of columns that can fit on the page, as shown in Figure 2.This pattern continues until all columns are rendered. The problem with the default behavior is that you've lost the context of employee and sales order - the row headers - on the second page. That makes it hard for users to read this report because the layout requires them to flip back and forth between the current page and the first page of the report. You can fix this behavior by finding the RepeatRowHeaders of the tablix report item and changing its value to True. The second (and subsequent pages) of the matrix now look like the image shown in Figure 3. The problem with this approach is that the number of printed pages to flip through is unpredictable when you have a large number of potential columns. What if you want to include all columns on the same page? You can take advantage of the repeating behavior of a tablix and get repeating columns by embedding one tablix inside of another. For this example, I'm using SQL Server 2008 R2 Reporting Services. You can get similar results with SQL Server 2008. (In fact, you could probably do something similar in SQL Server 2005, but I haven't tested it. The steps would be slightly different because you would be working with the old-style matrix as compared to the new-style tablix discussed in this post.) I created a dataset that queries AdventureWorksDW2008 tables: SELECT TOP (100) e.LastName + ', ' + e.FirstName AS EmployeeName, d.FullDateAlternateKey, f.SalesOrderNumber, p.EnglishProductName, sum(SalesAmount) as SalesAmount FROM FactResellerSales AS f INNER JOIN DimProduct AS p ON p.ProductKey = f.ProductKey INNER JOIN DimDate AS d ON d.DateKey = f.OrderDateKey INNER JOIN DimEmployee AS e ON e.EmployeeKey = f.EmployeeKey GROUP BY p.EnglishProductName, d.FullDateAlternateKey, e.LastName + ', ' + e.FirstName, f.SalesOrderNumber ORDER BY EmployeeName, f.SalesOrderNumber, p.EnglishProductName To start the report: Add a matrix to the report body and drag Employee Name to the row header, which also creates a group. Next drag SalesOrderNumber below Employee Name in the Row Groups panel, which creates a second group and a second column in the row header section of the matrix, as shown in Figure 4. Now for some trickiness. Add another column to the row headers. This new column will be associated with the existing EmployeeName group rather than causing BIDS to create a new group. To do this, right-click on the EmployeeName textbox in the bottom row, point to Insert Column, and then click Inside Group-Right. Then add the SalesOrderNumber field to this new column. By doing this, you're creating a report that repeats a set of columns for each EmployeeName/SalesOrderNumber combination that appears in the data. Next, modify the first row group's expression to group on both EmployeeName and SalesOrderNumber. In the Row Groups section, right-click EmployeeName, click Group Properties, click the Add button, and select [SalesOrderNumber]. Now you need to configure the columns to repeat. Rather than use the Columns group of the matrix like you might expect, you're going to use the textbox that belongs to the second group of the tablix as a location for embedding other report items. First, clear out the text that's currently in the third column - SalesOrderNumber - because it's already added as a separate textbox in this report design. Then drag and drop a matrix into that textbox, as shown in Figure 5. Again, you need to do some tricks here to get the appearance and behavior right. We don't really want repeating rows in the embedded matrix, so follow these steps: Click on the Rows label which then displays RowGroup in the Row Groups pane below the report body. Right-click on RowGroup,click Delete Group, and select the option to delete associated rows and columns. As a result, you get a modified matrix which has only a ColumnGroup in it, with a row above a double-dashed line for the column group and a row below the line for the aggregated data. Let's continue: Drag EnglishProductName to the data textbox (below the line). Add a second data row by right-clicking EnglishProductName, pointing to Insert Row, and clicking Below. Add the SalesAmount field to the new data textbox. Now eliminate the column group row without eliminating the group. To do this, right-click the row above the double-dashed line, click Delete Rows, and then select Delete Rows Only in the message box. Now you're ready for the fit and finish phase: Resize the column containing the embedded matrix so that it fits completely. Also, the final column in the matrix is for the column group. You can't delete this column, but you can make it as small as possible. Just click on the matrix to display the row and column handles, and then drag the right edge of the rightmost column to the left to make the column virtually disappear. Next, configure the groups so that the columns of the embedded matrix will wrap. In the Column Groups pane, right-click ColumnGroup1 and click on the expression button (labeled fx) to the right of Group On [EnglishProductName]. Replace the expression with the following: =RowNumber("SalesOrderNumber" ). We use SalesOrderNumber here because that is the name of the group that "contains" the embedded matrix. The next step is to configure the number of columns to display before wrapping. Click any cell in the matrix that is not inside the embedded matrix, and then double-click the second group in the Row Groups pane - SalesOrderNumber. Change the group expression to the following expression: =Ceiling(RowNumber("EmployeeName")/3) The last step is to apply formatting. In my example, I set the SalesAmount textbox's Format property to C2 and also right-aligned the text in both the EnglishProductName and the SalesAmount textboxes. And voila - Figure 6 shows a matrix report with wrapping columns. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Soapi.CS : A fully relational fluent .NET Stack Exchange API client library

    - by Sky Sanders
    Soapi.CS for .Net / Silverlight / Windows Phone 7 / Mono as easy as breathing...: var context = new ApiContext(apiKey).Initialize(false); Question thisPost = context.Official .StackApps .Questions.ById(386) .WithComments(true) .First(); Console.WriteLine(thisPost.Title); thisPost .Owner .Questions .PageSize(5) .Sort(PostSort.Votes) .ToList() .ForEach(q=> { Console.WriteLine("\t" + q.Score + "\t" + q.Title); q.Timeline.ToList().ForEach(t=> Console.WriteLine("\t\t" + t.TimelineType + "\t" + t.Owner.DisplayName)); Console.WriteLine(); }); // if you can think it, you can get it. Output Soapi.CS : A fully relational fluent .NET Stack Exchange API client library 21 Soapi.CS : A fully relational fluent .NET Stack Exchange API client library Revision code poet Revision code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Answer code poet Revision code poet Revision code poet 14 SOAPI-WATCH: A realtime service that notifies subscribers via twitter when the API changes in any way. Votes code poet Revision code poet Votes code poet Comment code poet Comment code poet Comment code poet Votes lfoust Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Revision code poet Comment lfoust Votes code poet Revision code poet Votes code poet Votes lfoust Votes code poet Revision code poet Comment Dave DeLong Revision code poet Revision code poet Votes code poet Comment lfoust Comment Dave DeLong Comment lfoust Comment lfoust Comment Dave DeLong Revision code poet 11 SOAPI-EXPLORE: Self-updating single page JavaSript API test harness Votes code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Comment code poet Revision code poet Votes code poet Comment code poet Question code poet Votes code poet 11 Soapi.JS V1.0: fluent JavaScript wrapper for the StackOverflow API Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Answer George Edison Votes code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Answer code poet Comment code poet Revision code poet Comment code poet Comment code poet Comment code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Comment code poet 9 SOAPI-DIFF: Your app broke? Check SOAPI-DIFF to find out what changed in the API Votes code poet Revision code poet Comment Dennis Williamson Answer Dennis Williamson Votes code poet Votes Dennis Williamson Comment code poet Question code poet Votes code poet About A robust, fully relational, easy to use, strongly typed, end-to-end StackOverflow API Client Library. Out of the box, Soapi provides you with a robust client library that abstracts away most all of the messy details of consuming the API and lets you concentrate on implementing your ideas. A few features include: A fully relational model of the API data set exposed via a fully 'dot navigable' IEnumerable (LINQ) implementation. Simply tell Soapi what you want and it will get it for you. e.g. "On my first question, from the author of the first comment, get the first page of comments by that person on any post" my.Questions.First().Comments.First().Owner.Comments.ToList(); (yes this is a real expression that returns the data as expressed!) Full coverage of the API, all routes and all parameters with an intuitive syntax. Strongly typed Domain Data Objects for all API data structures. Eager and Lazy Loading of 'stub' objects. Eager\Lazy loading may be disabled. When finer grained control of requests is desired, the core RouteMap objects may be leveraged to request data from any of the API paths using all available parameters as documented on the help pages. A rich Asynchronous implementation. A configurable request cache to reduce unnecessary network traffic and to simplify your usage logic. There is no need to go out of your way to be frugal. You may set a distinct cache duration for any particular route. A configurable request throttle to ensure compliance with the api terms of usage and to simplify your code in that you do not have to worry about and respond to 50X errors. The RequestCache and Throttled Queue are thread-safe, so can make as many requests as you like from as many threads as you like as fast as you like and not worry about abusing the api or having to write reams of management/compensation code. Configurable retry threshold that will, by default, make up to 3 attempts to retrieve a request before failing. Every request made by Soapi is properly formed and directed so most any http error will be the result of a timeout or other network infrastructure. A retry buffer provides a level of fault tolerance that you can rely on. An almost identical javascript library, Soapi.JS, and it's full figured big brother, Soapi.JS2, that will enable you to leverage your server cycles and bandwidth for only those tasks that require it and offload things like status updates to the client's browser. License Licensed GPL Version 2 license. Why is Soapi.CS GPL? Can I get an LGPL license for Soapi.CS? (hint: probably) Platforms .NET 3.5 .NET 4.0 Silverlight 3 Silverlight 4 Windows Phone 7 Mono Download Source code lives @ http://soapics.codeplex.com. Binary releases are forthcoming. codeplex is acting up again. get the source and binaries @ http://bitbucket.org/bitpusher/soapi.cs/downloads The source is C# 3.5. and includes projects and solutions for the following IDEs Visual Studio 2008 Visual Studio 2010 ModoDevelop 2.4 Documentation Full documentation is available at http://soapi.info/help/cs/index.aspx Sample Code / Usage Examples Sample code and usage examples will be added as answers to this question. Full API Coverage all API routes are covered Full Parameter Parity If the API exposes it, Soapi giftwraps it for you. Building a simple app with Soapi.CS - a simple app that gathers all traces of a user in the whole stackiverse. Fluent Configuration - Setting up a Soapi.ApiContext could not be easier Bulk Data Import - A tiny app that quickly loads a SQLite data file with all users in the stackiverse. Paged Results - Soapi.CS transparently handles multi-page operations. Asynchronous Requests - Soapi.CS provides a rich asynchronous model that is especially useful when writing api apps in Silverlight or Windows Phone 7. Caching and Throttling - how and why Apps that use Soapi.CS Soapi.FindUser - .net utility for locating a user anywhere in the stackiverse Soapi.Explore - The entire API at your command Soapi.LastSeen - List users by last access time Add your app/site here - I know you are out there ;-) if you are not comfortable editing this post, simply add a comment and I will add it. The CS/SL/WP7/MONO libraries all compile the same code and with the exception of environmental considerations of Silverlight, the code samples are valid for all libraries. You may also find guidance in the test suites. More information on the SOAPI eco-system. Contact This library is currently the effort of me, Sky Sanders (code poet) and can be reached at gmail - sky.sanders Any who are interested in improving this library are welcome. Support Soapi You can help support this project by voting for Soapi's Open Source Ad post For more information about the origins of Soapi.CS and the rest of the Soapi eco-system see What is Soapi and why should I care?

    Read the article

  • Solaris 11 Launch Blog Carnival Roundup

    - by constant
    Solaris 11 is here! And together with the official launch activities, a lot of Oracle and non-Oracle bloggers contributed helpful and informative blog articles to help your datacenter go to eleven. Here are some notable blog postings, sorted by category for your Solaris 11 blog-reading pleasure: Getting Started/Overview A lot of people speculated that the official launch of Solaris 11 would be on 11/11 (whatever way you want to turn it), but it actually happened two days earlier. Larry Wake himself offers 11 Reasons Why Oracle Solaris 11 11/11 Isn't Being Released on 11/11/11. Then, Larry goes on with a summary: Oracle Solaris 11: The First Cloud OS gives you a short and sweet rundown of what the major new features of Solaris 11 are. Jeff Victor has his own list of What's New in Oracle Solaris 11. A popular Solaris 11 meme is to write a blog post about 11 favourite features: Jim Laurent's 11 Reasons to Love Solaris 11, Darren Moffat's 11 Favourite Solaris 11 Features, Mike Gerdt's 11 of My Favourite Things! are just three examples of "11 Favourite Things..." type blog posts, I'm sure many more will follow... More official overview content for Solaris 11 is available from the Oracle Tech Network Solaris 11 Portal. Also, check out Rick Ramsey's blog post Solaris 11 Resources for System Administrators on the OTN Blog and his secret 5 Commands That Make Solaris Administration Easier post from the OTN Garage. (Automatic) Installation and the Image Packaging System (IPS) The brand new Image Packaging System (IPS) and the Automatic Installer (IPS), together with numerous other install/packaging/boot/patching features are among the most significant improvements in Solaris 11. But before installing, you may wonder whether Solaris 11 will support your particular set of hardware devices. Again, the OTN Garage comes to the rescue with Rick Ramsey's post How to Find Out Which Devices Are Supported By Solaris 11. Included is a useful guide to all the first steps to get your Solaris 11 system up and running. Tim Foster had a whole handful of blog posts lined up for the launch, teaching you everything you need to know about IPS but didn't dare to ask: The IPS System Repository, IPS Self-assembly - Part 1: Overlays and Part 2: Multiple Packages Delivering Configuration. Watch out for more IPS posts from Tim! If installing packages or upgrading your system from the net makes you uneasy, then you're not alone: Jim Laurent will tech you how Building a Solaris 11 Repository Without Network Connection will make your life easier. Many of you have already peeked into the future by installing Solaris 11 Express. If you're now wondering whether you can upgrade or whether a fresh install is necessary, then check out Alan Hargreaves's post Upgrading Solaris 11 Express b151a with support to Solaris 11. The trick is in upgrading your pkg(1M) first. Networking One of the first things to do after installing Solaris 11 (or any operating system for that matter), is to set it up for networking. Solaris 11 comes with the brand new "Network Auto-Magic" feature which can figure out everything by itself. For those cases where you want to exercise a little more control, Solaris 11 left a few people scratching their heads. Fortunately, Tschokko wrote up this cool blog post: Solaris 11 manual IPv4 & IPv6 configuration right after the launch ceremony. Thanks, Tschokko! And Milek points out a long awaited networking feature in Solaris 11 called Solaris 11 - hostmodel, which I know for a fact that many customers have looked forward to: How to "bind" a Solaris 11 system to a specific gateway for specific IP address it is using. Steffen Weiberle teaches us how to tune the Solaris 11 networking stack the proper way: ipadm(1M). No more fiddling with ndd(1M)! Check out his tutorial on Solaris 11 Network Tunables. And if you want to get even deeper into the networking stack, there's nothing better than DTrace. Alan Maguire teaches you in: DTracing TCP Congestion Control how to probe deeply into the Solaris 11 TCP/IP stack, the TCP congestion control part in particular. Don't miss his other DTrace and TCP related blog posts! DTrace And there we are: DTrace, the king of all observability tools. Long time DTrace veteran and co-author of The DTrace book*, Brendan Gregg blogged about Solaris 11 DTrace syscall provider changes. BTW, after you install Solaris 11, check out the DTrace toolkit which is installed by default in /usr/dtrace/DTT. It is chock full of handy DTrace scripts, many of which contributed by Brendan himself! Security Another big theme in Solaris 11, and one that is crucial for the success of any operating system in the Cloud is Security. Here are some notable posts in this category: Darren Moffat starts by showing us how to completely get rid of root: Completely Disabling Root Logins on Solaris 11. With no root user, there's one major entry point less to worry about. But that's only the start. In Immutable Zones on Encrypted ZFS, Darren shows us how to double the security of your services: First by locking them into the new Immutable Zones feature, then by encrypting their data using the new ZFS encryption feature. And if you're still missing sudo from your Linux days, Darren again has a solution: Password (PAM) caching for Solaris su - "a la sudo". If you're wondering how much compute power all this encryption will cost you, you're in luck: The Solaris X86 AESNI OpenSSL Engine will make sure you'll use your Intel's embedded crypto support to its fullest. And if you own a brand new SPARC T4 machine you're even luckier: It comes with its own SPARC T4 OpenSSL Engine. Dan Anderson's posts show how there really is now excuse not to encrypt any more... Developers Solaris 11 has a lot to offer to developers as well. Ali Bahrami has a series of blog posts that cover diverse developer topics: elffile: ELF Specific File Identification Utility, Using Stub Objects and The Stub Proto: Not Just For Stub Objects Anymore to name a few. BTW, if you're a developer and want to shape the future of Solaris 11, then Vijay Tatkar has a hint for you: Oracle (Sun Systems Group) is hiring! Desktop and Graphics Yes, Solaris 11 is a 100% server OS, but it can also offer a decent desktop environment, especially if you are a developer. Alan Coopersmith starts by discussing S11 X11: ye olde window system in today's new operating system, then Calum Benson shows us around What's new on the Solaris 11 Desktop. Even accessibility is a first-class citizen in the Solaris 11 user interface. Peter Korn celebrates: Accessible Oracle Solaris 11 - released! Performance Gone are the days of "Slowaris", when Solaris was among the few OSes that "did the right thing" while others cut corners just to win benchmarks. Today, Solaris continues doing the right thing, and it delivers the right performance at the same time. Need proof? Check out Brian's BestPerf blog with continuous updates from the benchmarking lab, including Recent Benchmarks Using Oracle Solaris 11! Send Me More Solaris 11 Launch Articles! These are just a few of the more interesting blog articles that came out around the Solaris 11 launch, I'm sure there are many more! Feel free to post a comment below if you find a particularly interesting blog post that hasn't been listed so far and share your enthusiasm for Solaris 11! *Affiliate link: Buy cool stuff and support this blog at no extra cost. We both win! var flattr_uid = '26528'; var flattr_tle = 'Solaris 11 Launch Blog Carnival Roundup'; var flattr_dsc = '<strong>Solaris 11 is here!</strong>And together with the official launch activities, a lot of Oracle and non-Oracle bloggers contributed helpful and informative blog articles to help your datacenter <a href="http://en.wikipedia.org/wiki/Up_to_eleven">go to eleven</a>.Here are some notable blog postings, sorted by category for your Solaris 11 blog-reading pleasure:'; var flattr_tag = 'blogging,digest,Oracle,Solaris,solaris,solaris 11'; var flattr_cat = 'text'; var flattr_url = 'http://constantin.glez.de/blog/2011/11/solaris-11-launch-blog-carnival-roundup'; var flattr_lng = 'en_GB'

    Read the article

  • What does it mean when a User-Agent has another User-Agent inside it?

    - by Erx_VB.NExT.Coder
    Basically, sometimes the user-agent will have its normal user-agent displayed, then at the end it will have teh "User-Agent: " tag displayed, and right after it another user-agent is shown. Sometimes, the second user-agent is just appended to the first one without the "User-Agent: " tag. Here are some samples I've seen: The first few contain the "User-Agent: " tag in the middle somewhere, and I've changed its font to make it easier to to see. Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Trident/4.0; GTB6; User-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1); SLCC1; .NET CLR 2.0.50727; .NET CLR 3.0.04506) Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB6; MRA 5.10 (build 5339); User-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1); .NET CLR 1.1.4322; .NET CLR 2.0.50727) Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; User-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1); .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729) Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; User-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1); .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152) Here are some without the "User-Agent: " tag in the middle, but just two user agents that seem stiched together. Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1); .NET CLR 3.5.30729) Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB6; IPMS/6568080A-04A5AD839A9; TCO_20090713170733; Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1); InfoPath.2) Now, just to add a few notes to this. I understand that the "User-Agent: " tag is normally a header, and what follows a typical "User-Agent: " string sequence is the actual user agent that is sent to servers etc, but normally the "User-Agent: " string should not be part of the actual user agent, that is more like the pre-fix or a tag indicating that what follows will be the actual user agent. Additionally, I may have thought, hey, these are just two user agents pasted together, but on closer inspection, you realize that they are not. On all of these dual user agent listings, if you look at the opening bracket "(" just before the "compatible" keyword, you realize the pair to that bracket ")" is actually at the very end, the end of the second user agent. So, the first user agents closing bracket ")" never occurs before the second user agent begins, it's always right at the end, and therefore, the second user agent is more like one of the features of the first user agent, like: "Trident/4.0" or "GTB6" etc etc... The other thing to note that the second user agent is always MSIE 6.0 (Internet Explorer 6.0), interesting. What I had initially thought was it's some sort of Virtual Machine displaying the browser in use & the browser that is installed, but then I thought, what'd be the point in that? Finally, right now, I am thinking, it's probably soem sort of "Compatibility View" type thing, where even if MSIE 7.0 or 8.0 is installed, when my hypothetical the "Display In Internet Explorer 6.0" mode is turned on, the user agent changes to something like this. That being, IE 8.0 is installed, but is rendering everything as IE 6.0 would. Is there or was there such a feature in Internet Explorer? Am I on to something here? What are your thoughts on this? If you have any other ideas, please feel free to let us know. At the moment, I'm just trying to understand if these are valid User Agents, or if they are invalid. In a list of about 44,000 User Agents, I've seen this type of Dual User Agent about 400 times. I've closely inspected 40 of them, and every single one had MSIE 6.0 as the "second" user agent (and the first user agent a higher version of MSIE, such as 7 or 8). This was true for all except one, where both user agents were MSIE 8.0, here it is: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; Mozilla/4.0 (compatible; MSIE 8.0; Win32; GMX); GTB0.0) This occured once in my 40 "close" inspections. I've estimated the 400 in 44,000 by taking a sample of the first 4,400 user agents, and finding 40 of these in the MSIE/Windows user agents, and extrapolated that to estimate 40. There were also similar things occuring for non MSIE user agents where there were two Mozilla's in one user agent, the non MSIE ones would probably add another 30% on top of the ones I've noted. I can show you samples of them if anyone would like. There we have it, this is where I'm at, what do you guys think?

    Read the article

  • Transparency and AlphaBlending

    - by TechTwaddle
    In this post we'll look at the AlphaBlend() api and how it can be used for semi-transparent blitting. AlphaBlend() takes a source device context and a destination device context (DC) and combines the bits in such a way that it gives a transparent effect. Follow the links for the msdn documentation. So lets take a image like, and AlphaBlend() it on our window. The code to do so is below, (under the WM_PAINT message of WndProc) HBITMAP hBitmap=NULL, hBitmapOld=NULL; HDC hMemDC=NULL; BLENDFUNCTION bf; hdc = BeginPaint(hWnd, &ps); hMemDC = CreateCompatibleDC(hdc); hBitmap = LoadBitmap(g_hInst, MAKEINTRESOURCE(IDB_BITMAP1)); hBitmapOld = SelectObject(hMemDC, hBitmap); bf.BlendOp = AC_SRC_OVER; bf.BlendFlags = 0; bf.SourceConstantAlpha = 80; //transparency value between 0-255 bf.AlphaFormat = 0;    AlphaBlend(hdc, 0, 25, 240, 100, hMemDC, 0, 0, 240, 100, bf); SelectObject(hMemDC, hBitmapOld); DeleteDC(hMemDC); DeleteObject(hBitmap); EndPaint(hWnd, &ps);   The code above creates a memory DC (hMemDC) using CreateCompatibleDC(), loads a bitmap onto the memory DC and AlphaBlends it on the device DC (hdc), with a transparency value of 80. The result is: Pretty simple till now. Now lets try to do something a little more exciting. Lets get two images involved, each overlapping the other, giving a better demonstration of transparency. I am also going to add a few buttons so that the user can increase or decrease the transparency by clicking on the buttons. Since this is the first time I played around with GDI apis, I ran into something that everybody runs into sometime or the other, flickering. When clicking the buttons the images would flicker a lot, I figured out why and used something called double buffering to avoid flickering. We will look at both my first implementation and the second implementation just to give the concept a little more depth and perspective. A few pre-conditions before I dive into the code: - hBitmap and hBitmap2 are handles to the two images obtained using LoadBitmap(), these variables are global and are initialized under WM_CREATE - The two buttons in the application are labeled Opaque++ (make more opaque, less transparent) and Opaque-- (make less opaque, more transparent) - DrawPics(HWND hWnd, int step=0); is the function called to draw the images on the screen. This is called from under WM_PAINT and also when the buttons are clicked. When Opaque++ is clicked the 'step' value passed to DrawPics() is +20 and when Opaque-- is clicked the 'step' value is -20. The default value of 'step' is 0 Now lets take a look at my first implementation: //this funciton causes flicker, cos it draws directly to screen several times void DrawPics(HWND hWnd, int step) {     HDC hdc=NULL, hMemDC=NULL;     BLENDFUNCTION bf;     static UINT32 transparency = 100;     //no point in drawing when transparency is 0 and user clicks Opaque--     if (transparency == 0 && step < 0)         return;     //no point in drawing when transparency is 240 (opaque) and user clicks Opaque++     if (transparency == 240 && step > 0)         return;         hdc = GetDC(hWnd);     if (!hdc)         return;     //create a memory DC     hMemDC = CreateCompatibleDC(hdc);     if (!hMemDC)     {         ReleaseDC(hWnd, hdc);         return;     }     //while increasing transparency, clear the contents of screen     if (step < 0)     {         RECT rect = {0, 0, 240, 200};         FillRect(hdc, &rect, (HBRUSH)GetStockObject(WHITE_BRUSH));     }     SelectObject(hMemDC, hBitmap2);     BitBlt(hdc, 0, 25, 240, 100, hMemDC, 0, 0, SRCCOPY);         SelectObject(hMemDC, hBitmap);     transparency += step;     if (transparency >= 240)         transparency = 240;     if (transparency <= 0)         transparency = 0;     bf.BlendOp = AC_SRC_OVER;     bf.BlendFlags = 0;     bf.SourceConstantAlpha = transparency;     bf.AlphaFormat = 0;            AlphaBlend(hdc, 0, 75, 240, 100, hMemDC, 0, 0, 240, 100, bf);     DeleteDC(hMemDC);     ReleaseDC(hWnd, hdc); }   In the code above, we first get the window DC using GetDC() and create a memory DC using CreateCompatibleDC(). Then we select hBitmap2 onto the memory DC and Blt it on the window DC (hdc). Next, we select the other image, hBitmap, onto memory DC and AlphaBlend() it over window DC. As I told you before, this implementation causes flickering because it draws directly on the screen (hdc) several times. The video below shows what happens when the buttons were clicked rapidly: Well, the video recording tool I use captures only 15 frames per second and so the flickering is not visible in the video. So you're gonna have to trust me on this, it flickers (; To solve this problem we make sure that the drawing to the screen happens only once and to do that we create an additional memory DC, hTempDC. We perform all our drawing on this memory DC and finally when it is ready we Blt hTempDC on hdc, and the images are displayed in one go. Here is the code for our new DrawPics() function: //no flicker void DrawPics(HWND hWnd, int step) {     HDC hdc=NULL, hMemDC=NULL, hTempDC=NULL;     BLENDFUNCTION bf;     HBITMAP hBitmapTemp=NULL, hBitmapOld=NULL;     static UINT32 transparency = 100;     //no point in drawing when transparency is 0 and user clicks Opaque--     if (transparency == 0 && step < 0)         return;     //no point in drawing when transparency is 240 (opaque) and user clicks Opaque++     if (transparency == 240 && step > 0)         return;         hdc = GetDC(hWnd);     if (!hdc)         return;     hMemDC = CreateCompatibleDC(hdc);     hTempDC = CreateCompatibleDC(hdc);     hBitmapTemp = CreateCompatibleBitmap(hdc, 240, 150);     hBitmapOld = (HBITMAP)SelectObject(hTempDC, hBitmapTemp);     if (!hMemDC)     {         ReleaseDC(hWnd, hdc);         return;     }     //while increasing transparency, clear the contents     if (step < 0)     {         RECT rect = {0, 0, 240, 150};         FillRect(hTempDC, &rect, (HBRUSH)GetStockObject(WHITE_BRUSH));     }     SelectObject(hMemDC, hBitmap2);     //Blt hBitmap2 directly to hTempDC     BitBlt(hTempDC, 0, 0, 240, 100, hMemDC, 0, 0, SRCCOPY);         SelectObject(hMemDC, hBitmap);     transparency += step;     if (transparency >= 240)         transparency = 240;     if (transparency <= 0)         transparency = 0;     bf.BlendOp = AC_SRC_OVER;     bf.BlendFlags = 0;     bf.SourceConstantAlpha = transparency;     bf.AlphaFormat = 0;            AlphaBlend(hTempDC, 0, 50, 240, 100, hMemDC, 0, 0, 240, 100, bf);     //now hTempDC is ready, blt it directly on hdc     BitBlt(hdc, 0, 25, 240, 150, hTempDC, 0, 0, SRCCOPY);     SelectObject(hTempDC, hBitmapOld);     DeleteObject(hBitmapTemp);     DeleteDC(hMemDC);     DeleteDC(hTempDC);     ReleaseDC(hWnd, hdc); }   This function is very similar to the first version, except for the use of hTempDC. Another point to note is the use of CreateCompatibleBitmap(). When a memory device context is created using CreateCompatibleDC(), the context is exactly one monochrome pixel high and one monochrome pixel wide. So in order for us to draw anything onto hTempDC, we first have to set a bitmap on it. We use CreateCompatibleBitmap() to create a bitmap of required dimension (240x150 above), and then select this bitmap onto hTempDC. Think of it as utilizing an extra canvas, drawing everything on the canvas and finally transferring the contents to the display in one scoop. And with this version the flickering is gone, video follows:   If you want the entire solutions source code then leave a message, I will share the code over SkyDrive.

    Read the article

  • An XEvent a Day (1 of 31) – An Overview of Extended Events

    - by Jonathan Kehayias
    First introduced in SQL Server 2008, Extended Events provided a new mechanism for capturing information about events inside the Database Engine that was both highly performant and highly configurable. Designed from the ground up with performance as a primary focus, Extended Events may seem a bit odd at first look, especially when you compare it to SQL Trace. However, as you begin to work with Extended Events, you will most likely change how you think about tracing problems, and will find the power...(read more)

    Read the article

< Previous Page | 101 102 103 104 105 106 107 108 109 110 111 112  | Next Page >