Search Results

Search found 19393 results on 776 pages for 'reference count'.

Page 106/776 | < Previous Page | 102 103 104 105 106 107 108 109 110 111 112 113  | Next Page >

  • Call a dynamically generated method on a ILGenerator on the same type

    - by Thiado de Arruda
    Normally, when I want to call a dynamic method in another ILGenerator object that is writing a method on the same type I do the following : generator.Emit(OpCodes.Ldarg_0); // reference to the current object generator.Emit(OpCodes.Ldstr, "someArgument"); generator.Emit(OpCodes.Call, methodBuilder); //this methodbuilder is also defined on this dynamic type. However, I faced the following problem: I cant have a reference to the methodbuilder of the method I want to call, because it is generated by another framework(I only get a reference to the current TypeBuilder). This method is defined as protected virtual(and overriden on the methodbuilder I cant get a reference to) in the base class of the current dynamic type and I can get a reference to it by doing this : generator.Emit(OpCodes.Ldarg_0); // reference to the current object generator.Emit(OpCodes.Ldstr, "someArgument"); generator.Emit(OpCodes.Call, baseType.GetMethod("SomeMethodDefinedInBaseClassThatWasOverridenInThisDynamicType")); The problem is that this calls the method on the base type and not the overriden method. Is there any way I can get a reference to a methodbuilder only having a reference to the typebuilder that defined it? Or is there a way to call a method using ILGenerator without having to pass the 'MethodInfo' object to it?

    Read the article

  • C# - Bug in Code Logic

    - by Matthew
    I have some code which keeps track of the number of times a button has been clicked. As a matter of fact, when the page first loads, a counter is set to 0. On every postback, the counter is incremented by 1. I have only one button on the page. The main idea behind this is to allow the user to enter some details 4 times. If he enters invalid details for 4 times, he is redirected to an error page. Otherwise, he is redirected to a confirmation page. This is my code: if (!this.IsPostBack) { Session["Count"] = 0; } else { if (Session["Count"] == null) { Session.Abandon(); Response.Redirect("CheckOutErrorPage.htm"); } else { int count = (int)Session["Count"]; if (count == 3) { Session.Abandon(); Response.Redirect("CheckOutFailure.aspx"); } else { count++; Session["Count"] = count; } } } Everything works as it should except that if the user enter invalid details for 3 times and then he enters VALID details on the 4th time, the user is redirected to the Error Page (because he has tried 4 times) instead of the confirmation page. How can I solve this please?

    Read the article

  • java oracle syntax error?

    - by murali
    hi, i am using the following code for the uploading keywords & count to the excel file. i am having the keyword_id as primary key for that one i had written sentence...i am having the twocolumns in the excel file..1.keyword 2.count my code is: while (rs.next()) { System.out.println("inside "); String keyword = rs.getString(1); int count = rs.getInt(2); System.out.println("insert into SEARCHABLE_KEYWORDS values ('"+ keyword+"','"+count+"')"); stmtdb.execute("insert into SEARCHABLE_KEYWORDS (keyword_id,keyword,count) values ('"+ "select Searchable_Keywords_sequence.nextval from dual"+ "','"+keyword+"','"+count+"')"); System.out.println(keyword + " " + keyword+" count "+count); } but I am getting the following error: java.sql.SQLException: [Microsoft][ODBC Excel Driver] Too few parameters. Expected 1. at sun.jdbc.odbc.JdbcOdbc.createSQLException(JdbcOdbc.java:6998) at sun.jdbc.odbc.JdbcOdbc.standardError(JdbcOdbc.java:7155) at sun.jdbc.odbc.JdbcOdbc.SQLExecDirect(JdbcOdbc.java:3151) at sun.jdbc.odbc.JdbcOdbcStatement.execute(JdbcOdbcStatement.java:378) at sun.jdbc.odbc.JdbcOdbcStatement.executeQuery(JdbcOdbcStatement.java:284) at keywordsreader.main(keywordsreader.java:42) please help to slove this problem...

    Read the article

  • Java Recursion Triangle Standing on Tip

    - by user1629075
    I was wondering how to create triangle out of asterisks on its tip rather than on its base. I have the code for making it stand on its base: public static String printTriangle (int count) { if( count <= 0 ) return ""; String p = printTriangle(count - 1); p = p + "*"; System.out.print(p); System.out.print("\n"); return p; } But then I'm stuck on how to have the greatest number of stars on the top, and then the next least, and so on. I was thinking something along the terms of having (count - p) to have the input of rows be subtracted from the amount of decrease, but then i was confused by this idea because p is string. EDIT: I tried changing the position of printTriangle(count - 1) using my original method without iterations and got 1 star per each line; how can I fix this? public class triangles { public static void main(String[] args) { printTriangle(5); } public static String printTriangle (int count) { if( count <= 0 ) return ""; String p = ""; p = p + "*"; System.out.print(p); System.out.print("\n"); p = printTriangle(count - 1); return p; } }

    Read the article

  • lock statement not working when there is a loop inside it?

    - by Ngu Soon Hui
    See this code: public class multiply { public Thread myThread; public int Counter { get; private set; } public string name { get; private set; } public void RunConsolePrint() { lock(this) { RunLockCode("lock"); } } private void RunLockCode(string lockCode) { Console.WriteLine("Now thread "+lockCode+" " + name + " has started"); for (int i = 1; i <= Counter; i++) { Console.WriteLine(lockCode+" "+name + ": count has reached " + i + ": total count is " + Counter); } Console.WriteLine("Thread " + lockCode + " " + name + " has finished"); } public multiply(string pname, int pCounter) { name = pname; Counter = pCounter; myThread = new Thread(new ThreadStart(RunConsolePrint)); } } And this is the test run code: static void Main(string[] args) { int counter = 50; multiply m2 = new multiply("Second", counter); multiply m1 = new multiply("First", counter); m1.myThread.Start(); m2.myThread.Start(); Console.ReadLine(); } I would expect that m2 must execute from start to finish before m1 starts executing, or vice versa, because of the lock statement. But the result I found was the call to lock first and lock second was intermingled together, i.e., something like this Now thread lock First has started Now thread lock Second has started lock First: Count has reached 1: total count is 50 lock First: Count has reached 2: total count is 50 lock Second: Count has reached 1: total count is 50 What did I do wrong?

    Read the article

  • Trigger alert when database entries are added, not when they are removed

    - by Jeremy
    I have a jQuery script running that makes a periodic AJAX call using the following code. var a = moment(); var dayOfMonth = a.format("MMM Do"); var timeSubmitted = a.format("h:mm a"); var count_cases = -1; var count_claimed = -1; setInterval(function(){ //check if new lead was added to the db $.ajax({ type : "POST", url : "inc/new_lead_alerts_process.php", dataType: 'json', cache: false, success : function(response){ $.getJSON("inc/new_lead_alerts_process.php", function(data) { if (count_cases != -1 && count_cases != data.count) { window.location = "new_lead_alerts.php?id="+data.id; } count_cases = data.count; }); } }); This is the PHP that runs with each call: $count = mysql_fetch_array(mysql_query("SELECT count(*) as count FROM leads")); $client_id = mysql_fetch_array(mysql_query("SELECT id, client_id FROM leads ORDER BY id DESC LIMIT 1")); echo json_encode(array("count" => $count['count'], "id" => $client_id['id'], "client_id" => $client_id['client_id'])); I need to change the code so that the alert only triggers when a new entry is added to the database, not when an existing entry is removed. As it stands, the alert fires on both events. Any help is greatly appreciated.

    Read the article

  • How do you get and set a class property across multiple functions in Objective-C?

    - by editor
    Following up on this question about sharing objects between classes, I now need to figure out how to share the objects across various functions in a class. First, the setup: In my App Delegate I load menu information from JSON into a NSMutableDictionary and message that through to a view controller using a function called initWithData. I need to use this dictionary to populate a new Table View, which has methods like numberOfRowsInSection and cellForRowAtIndexPath. I'd like to use the dictionary count to return numberOfRowsInSection and info in the dictionary to populate each cell. Unfortunately, my code never gets beyond the init stage and the dictionary is empty so numberOfRowsInSection always returns zero. I thought I could create a class property, synthesize it and then set it. But it doesn't seem to want to retain the property's value. What am I doing wrong here? In the header .h: @interface FirstViewController:UIViewController <UITableViewDataSource, UITableViewDelegate, UITabBarControllerDelegate> { NSMutableDictionary *sectorDictionary; NSInteger sectorCount; } @property (nonatomic, retain) NSMutableDictionary *sectorDictionary; - (id)initWithData:(NSMutableDictionary*)data; @end in the implementation .m: - (id) testFunction:(NSMutableDictionary*)dictionary { NSLog(@"Count #1: %d", [dictionary count]); return nil; } - (id)initWithData:(NSMutableDictionary *)data { if (!(self=[super init])) { return nil; } [self testFunction:data]; // this is where I'd like to set a retained property self.sectorDictionary = data; return nil; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { NSLog(@"Count #2: %d", [self.sectorDictionary count]); return [self.sectorDictionary count]; } Output from NSLog: 2010-05-04 23:00:06.255 JSONApp[15890:207] Count #1: 9 2010-05-04 23:00:06.259 JSONApp[15890:207] Count #2: 0

    Read the article

  • Algorithm for Shortest Job First with Preemption

    - by Shray
    I want to implement a shortest job first routine using C# or C++. Priority of Jobs are based on their processing time. Jobs are processed using a binary (min) heap. There are three types of jobs. Type 1 is when jobs come in between every 4-6 seconds, with processing times between 4-6. Type 2 job comes in between 8-12 seconds, with processing times between 8-12. Type 3 job comes in between 24-26 seconds, with processing times between 14-16. So far, I have written the binary heap functionality, but Im kinda confused on how to start processing spawn and also the processor. #include <iostream> #include <stdlib.h> #include <time.h> using namespace std; int timecounting = 20; struct process{ int atime; int ptime; int type; }; class pque{ private: int count; public: process pheap[100]; process type1[100]; process type2[100]; process type3[100]; process type4[100]; pque(){ count = 0; } void swap(int a, int b){ process tempa = pheap[a]; process tempb = pheap[b]; pheap[b] = tempa; pheap[a] = tempb; } void add(process c){ int current; count++; pheap[count] = c; if(count > 0){ current = count; while(pheap[count/2].ptime > pheap[current].ptime){ swap(current/2, current); current = current/2; } } } void remove(){ process temp = pheap[1]; // saves process to temporary pheap[1] = pheap[count]; //takes last process in heap, and puts it at the root int n = 1; int leftchild = 2*n; int rightchild = 2*n + 1; while(leftchild < count && rightchild < count) { if(pheap[leftchild].ptime > pheap[rightchild].ptime) { if(pheap[leftchild].ptime > pheap[n].ptime) { swap(leftchild, n); n = leftchild; int leftchild = 2*n; int rightchild = 2*n + 1; } } else { if(pheap[rightchild].ptime > pheap[n].ptime) { swap(rightchild, n); n = rightchild; int leftchild = 2*n; int rightchild = 2*n + 1; } } } } void spawn1(){ process p; process p1; p1.atime = 0; int i = 0; srand(time(NULL)); while(i < timecounting) { p.atime = rand()%3 + 4 + p1.atime; p.ptime = rand()%5 + 1; p1.atime = p.atime; p.type = 1; type1[i+1] = p; i++; } } void spawn2(){ process p; process p1; p1.atime = 0; srand(time(NULL)); int i = 0; while(i < timecounting) { p.atime = rand()%3 + 9 + p1.atime; p.ptime = rand()%5 + 6; p1.atime = p.atime; p.type = 2; type2[i+1] = p; i++; } } void spawn3(){ process p; process p1; p1.atime = 0; srand(time(NULL)); int i = 0; while(i < timecounting) { p.atime = rand()%3 + 25 + p1.atime; p.ptime = rand()%5 + 11; p1.atime = p.atime; p.type = 3; type3[i+1] = p; i++; } } void spawn4(){ process p; process p1; p1.atime = 0; srand(time(NULL)); int i = 0; while(i < timecounting) { p.atime = rand()%6 + 30 + p1.atime; p.ptime = rand()%5 + 8; p1.atime = p.atime; p.type = 4; type4[i+1] = p; i++; } } void processor() { process p; process p1; p1.atime = 0; int n = 1; int n1 = 1; int n2 = 1; for(int i = 0; i<timecounting;i++) { if(type1[n].atime == i) { add(type1[n]); n++; } if(type2[n1].atime == i) { add(type1[n1]); n1++; } if(type3[n2].atime == i) { add(type1[n2]); n2++; } /* if(pheap[1].atime <= i) { while(pheap[1].atime != 0){ pheap[1].atime--; i++; } remove(); }*/ } } };

    Read the article

  • Real World Nuget

    - by JoshReuben
    Why Nuget A higher level of granularity for managing references When you have solutions of many projects that depend on solutions of many projects etc à escape from Solution Hell. Links · Using A GUI (Package Explorer) to build packages - http://docs.nuget.org/docs/creating-packages/using-a-gui-to-build-packages · Creating a Nuspec File - http://msdn.microsoft.com/en-us/vs2010trainingcourse_aspnetmvcnuget_topic2.aspx · consuming a Nuget Package - http://msdn.microsoft.com/en-us/vs2010trainingcourse_aspnetmvcnuget_topic3 · Nuspec reference - http://docs.nuget.org/docs/reference/nuspec-reference · updating packages - http://nuget.codeplex.com/wikipage?title=Updating%20All%20Packages · versioning - http://docs.nuget.org/docs/reference/versioning POC Folder Structure POC Setup Steps · Install package explorer · Source o Create a source solution – configure output directory for projects (Project > Properties > Build > Output Path) · Package o Add assemblies to package from output directory (D&D)- add net folder o File > Export – save .nuspec files and lib contents <?xml version="1.0" encoding="utf-16"?> <package > <metadata> <id>MyPackage</id> <version>1.0.0.3</version> <title /> <authors>josh-r</authors> <owners /> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>My package description.</description> <summary /> </metadata> </package> o File > Save – saves .nupkg file · Create Target Solution o In Tools > Options: Configure package source & Add package Select projects: Output from package manager (powershell console) ------- Installing...MyPackage 1.0.0 ------- Added file 'NugetSource.AssemblyA.dll' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyA.pdb' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyB.dll' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyB.pdb' to folder 'MyPackage.1.0.0\lib'. Added file 'MyPackage.1.0.0.nupkg' to folder 'MyPackage.1.0.0'. Successfully installed 'MyPackage 1.0.0'. Added reference 'NugetSource.AssemblyA' to project 'AssemblyX' Added reference 'NugetSource.AssemblyB' to project 'AssemblyX' Added file 'packages.config'. Added file 'packages.config' to project 'AssemblyX' Added file 'repositories.config'. Successfully added 'MyPackage 1.0.0' to AssemblyX. ============================== o Packages folder created at solution level o Packages.config file generated in each project: <?xml version="1.0" encoding="utf-8"?> <packages>   <package id="MyPackage" version="1.0.0" targetFramework="net40" /> </packages> A local Packages folder is created for package versions installed: Each folder contains the downloaded .nupkg file and its unpacked contents – eg of dlls that the project references Note: this folder is not checked in UpdatePackages o Configure Package Manager to automatically check for updates o Browse packages - It automatically picked up the updates Update Procedure · Modify source · Change source version in assembly info · Build source · Open last package in package explorer · Increment package version number and re-add assemblies · Save package with new version number and export its definition · In target solution – Tools > Manage Nuget Packages – click on All to trigger refresh , then click on recent packages to see updates · If problematic, delete packages folder Versioning uninstall-package mypackage install-package mypackage –version 1.0.0.3 uninstall-package mypackage install-package mypackage –version 1.0.0.4 Dependencies · <?xml version="1.0" encoding="utf-16"?> <package xmlns="http://schemas.microsoft.com/packaging/2012/06/nuspec.xsd"> <metadata> <id>MyDependentPackage</id> <version>1.0.0</version> <title /> <authors>josh-r</authors> <owners /> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>My package description.</description> <dependencies> <group targetFramework=".NETFramework4.0"> <dependency id="MyPackage" version="1.0.0.4" /> </group> </dependencies> </metadata> </package> Using NuGet without committing packages to source control http://docs.nuget.org/docs/workflows/using-nuget-without-committing-packages Right click on the Solution node in Solution Explorer and select Enable NuGet Package Restore. — Recall that packages folder is not part of solution If you get downloading package ‘Nuget.build’ failed, config proxy to support certificate for https://nuget.org/api/v2/ & allow unrestricted access to packages.nuget.org To test connectivity: get-package –listavailable To test Nuget Package Restore – delete packages folder and open vs as admin. In nugget msbuild: <Import Project="$(SolutionDir)\.nuget\nuget.targets" /> TFSBuild Integration Modify Nuget.Targets file <RestorePackages Condition="  '$(RestorePackages)' == '' "> True </RestorePackages> … <PackageSource Include="\\IL-CV-004-W7D\Packages" /> Add System Environment variable EnableNuGetPackageRestore=true & restart the “visual studio team foundation build service host” service. Important: Ensure Network Service has access to Packages folder Nugetter TFS Build integration Add Nugetter build process templates to TFS source control For Build Controller - Specify location of custom assemblies Generate .nuspec file from Package Explorer: File > Export Edit the file elements – remove path info from src and target attributes <?xml version="1.0" encoding="utf-16"?> <package xmlns="http://schemas.microsoft.com/packaging/2012/06/nuspec.xsd">     <metadata>         <id>Common</id>         <version>1.0.0</version>         <title />         <authors>josh-r</authors>         <owners />         <requireLicenseAcceptance>false</requireLicenseAcceptance>         <description>My package description.</description>         <dependencies>             <group targetFramework=".NETFramework3.5" />         </dependencies>     </metadata>     <files>         <file src="CommonTypes.dll" target="CommonTypes.dll" />         <file src="CommonTypes.pdb" target="CommonTypes.pdb" /> … Add .nuspec file to solution so that it is available for build: Dev\NovaNuget\Common\NuSpec\common.1.0.0.nuspec Add a Build Process Definition based on the Nugetter build process template: Configure the build process – specify: · .sln to build · Base path (output directory) · Nuget.exe file path · .nuspec file path Copy DLLs to a binary folder 1) Set copy local for an assembly reference to false 2)  MSBuild Copy Task – modify .csproj file: http://msdn.microsoft.com/en-us/library/3e54c37h.aspx <ItemGroup>     <MySourceFiles Include="$(MSBuildProjectDirectory)\..\SourceAssemblies\**\*.*" />   </ItemGroup>     <Target Name="BeforeBuild">     <Copy SourceFiles="@(MySourceFiles)" DestinationFolder="bin\debug\SourceAssemblies" />   </Target> 3) Set Probing assembly search path from app.config - http://msdn.microsoft.com/en-us/library/823z9h8w(v=vs.80).aspx -                 <?xml version="1.0" encoding="utf-8" ?> <configuration>   <runtime>     <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">       <probing privatePath="SourceAssemblies"/>     </assemblyBinding>   </runtime> </configuration> Forcing 'copy local = false' The following generic powershell script was added to the packages install.ps1: param($installPath, $toolsPath, $package, $project) if( $project.Object.Project.Name -ne "CopyPackages") { $asms = $package.AssemblyReferences | %{$_.Name} foreach ($reference in $project.Object.References) { if ($asms -contains $reference.Name + ".dll") { $reference.CopyLocal = $false; } } } An empty project named "CopyPackages" was added to the solution - it references all the packages and is the only one set to CopyLocal="true". No MSBuild knowledge required.

    Read the article

  • Gone With the Wind?

    - by antony.reynolds
    Where Have All the Composites Gone? I was just asked to help out with an interesting problem at a customer.  All their composites had disappeared from the EM console, none of them showed as loading in the log files and there was an ominous error message in the logs. Symptoms After a server restart the customer noticed that none of his composites were available, they didn’t show in the EM console and in the log files they saw this error message: SEVERE: WLSFabricKernelInitializer.getCompositeList Error during parsing and processing of deployed-composites.xml file This indicates some sort of problem when parsing the deployed-composites.xml file.  This is very bad because the deployed-composites.xml file is basically the table of contents that tells SOA Infrastructure what composites to load and where to find them in MDS.  If you can’t read this file you can’t load any composites and your SOA Server now has all the utility of a chocolate teapot. Verification We can look at the deployed-composites.xml file from MDS either by connecting JDeveloper to MDS, exporting the file using WLST or exporting the whole soa-infra MDS partition by using EM->SOA->soa-infra->Administration->MDS Configuration.  Exporting via EM is probably the easiest because it then prepares you to fix the problem later.  After exporting the partition to local storage on the SOA Server I then ran an XSLT transform across the file deployed-composites/deployed-composites.xml. <?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.w3.org/1999/xhtml">     <xsl:output indent="yes"/>     <xsl:template match="/">         <testResult>             <composite-series>                 <xsl:attribute name="elementCount"><xsl:value-of select="count(deployed-composites/composite-series)"/></xsl:attribute>                 <xsl:attribute name="nameAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series[@name])"/></xsl:attribute>                 <xsl:attribute name="defaultAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series[@default])"/></xsl:attribute>                 <composite-revision>                     <xsl:attribute name="elementCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision)"/></xsl:attribute>                     <xsl:attribute name="dnAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision[@dn])"/></xsl:attribute>                     <xsl:attribute name="stateAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision[@state])"/></xsl:attribute>                     <xsl:attribute name="modeAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision[@mode])"/></xsl:attribute>                     <xsl:attribute name="locationAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision[@location])"/></xsl:attribute>                     <composite>                         <xsl:attribute name="elementCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision/composite)"/></xsl:attribute>                         <xsl:attribute name="dnAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision/composite[@dn])"/></xsl:attribute>                         <xsl:attribute name="deployedTimeAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision/composite[@deployedTime])"/></xsl:attribute>                     </composite>                 </composite-revision>                 <xsl:apply-templates select="deployed-composites/composite-series"/>             </composite-series>         </testResult>     </xsl:template>     <xsl:template match="composite-series">             <xsl:if test="not(@name) or not(@default) or composite-revision[not(@dn) or not(@state) or not(@mode) or not(@location)]">                 <ErrorNode>                     <xsl:attribute name="elementPos"><xsl:value-of select="position()"/></xsl:attribute>                     <xsl:copy-of select="."/>                 </ErrorNode>             </xsl:if>     </xsl:template> </xsl:stylesheet> The output from this is not pretty but it shows any <composite-series> tags that are missing expected attributes (name and default).  It also shows how many composites are in the file (111) and how many revisions of those composites (115). <?xml version="1.0" encoding="UTF-8"?> <testResult xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.w3.org/1999/xhtml">    <composite-series elementCount="111" nameAttributeCount="110" defaultAttributeCount="110">       <composite-revision elementCount="115" dnAttributeCount="114" stateAttributeCount="115"                           modeAttributeCount="115"                           locationAttributeCount="114">          <composite elementCount="115" dnAttributeCount="114" deployedTimeAttributeCount="115"/>       </composite-revision>       <ErrorNode elementPos="82">          <composite-series xmlns="">             <composite-revision state="on" mode="active">                <composite deployedTime="2010-12-15T11:50:16.067+01:00"/>             </composite-revision>          </composite-series>       </ErrorNode>    </composite-series> </testResult> From this I could see that one of the <composite-series> elements (number 82 of 111) seemed to be corrupt. Having found the problem I now needed to fix it. Fixing the Problem The solution was really quite easy.  First for safeties sake I took a backup of the exported MDS partition.  I then edited the deployed-composites/deployed-composites.xml file to remove the offending <composite-series> tag. Finally I restarted the SOA domain and was rewarded by seeing that the deployed composites were now visible. Summary One possible cause of not being able to see deployed composites after a SOA 11g system restart is a corrupt deployed-composites.xml file.  Retrieving this file from MDS, repairing it, and replacing it back into MDS can solve the problem.  This still leaves the problem of how did this file become corrupt!

    Read the article

  • Linker error when compiling boost.asio example

    - by Alon
    Hi, I'm trying to learn a little bit C++ and Boost.Asio. I'm trying to compile the following code example: #include <iostream> #include <boost/array.hpp> #include <boost/asio.hpp> using boost::asio::ip::tcp; int main(int argc, char* argv[]) { try { if (argc != 2) { std::cerr << "Usage: client <host>" << std::endl; return 1; } boost::asio::io_service io_service; tcp::resolver resolver(io_service); tcp::resolver::query query(argv[1], "daytime"); tcp::resolver::iterator endpoint_iterator = resolver.resolve(query); tcp::resolver::iterator end; tcp::socket socket(io_service); boost::system::error_code error = boost::asio::error::host_not_found; while (error && endpoint_iterator != end) { socket.close(); socket.connect(*endpoint_iterator++, error); } if (error) throw boost::system::system_error(error); for (;;) { boost::array<char, 128> buf; boost::system::error_code error; size_t len = socket.read_some(boost::asio::buffer(buf), error); if (error == boost::asio::error::eof) break; // Connection closed cleanly by peer. else if (error) throw boost::system::system_error(error); // Some other error. std::cout.write(buf.data(), len); } } catch (std::exception& e) { std::cerr << e.what() << std::endl; } return 0; } With the following command line: g++ -I /usr/local/boost_1_42_0 a.cpp and it throws an unclear error: /tmp/ccCv9ZJA.o: In function `__static_initialization_and_destruction_0(int, int)': a.cpp:(.text+0x654): undefined reference to `boost::system::get_system_category()' a.cpp:(.text+0x65e): undefined reference to `boost::system::get_generic_category()' a.cpp:(.text+0x668): undefined reference to `boost::system::get_generic_category()' a.cpp:(.text+0x672): undefined reference to `boost::system::get_generic_category()' a.cpp:(.text+0x67c): undefined reference to `boost::system::get_system_category()' /tmp/ccCv9ZJA.o: In function `boost::system::error_code::error_code()': a.cpp:(.text._ZN5boost6system10error_codeC2Ev[_ZN5boost6system10error_codeC5Ev]+0x10): undefined reference to `boost::system::get_system_category()' /tmp/ccCv9ZJA.o: In function `boost::asio::error::get_system_category()': a.cpp:(.text._ZN5boost4asio5error19get_system_categoryEv[boost::asio::error::get_system_category()]+0x7): undefined reference to `boost::system::get_system_category()' /tmp/ccCv9ZJA.o: In function `boost::asio::detail::posix_thread::~posix_thread()': a.cpp:(.text._ZN5boost4asio6detail12posix_threadD2Ev[_ZN5boost4asio6detail12posix_threadD5Ev]+0x1d): undefined reference to `pthread_detach' /tmp/ccCv9ZJA.o: In function `boost::asio::detail::posix_thread::join()': a.cpp:(.text._ZN5boost4asio6detail12posix_thread4joinEv[boost::asio::detail::posix_thread::join()]+0x25): undefined reference to `pthread_join' /tmp/ccCv9ZJA.o: In function `boost::asio::detail::posix_tss_ptr<boost::asio::detail::call_stack<boost::asio::detail::task_io_service<boost::asio::detail::epoll_reactor<false> > >::context>::~posix_tss_ptr()': a.cpp:(.text._ZN5boost4asio6detail13posix_tss_ptrINS1_10call_stackINS1_15task_io_serviceINS1_13epoll_reactorILb0EEEEEE7contextEED2Ev[_ZN5boost4asio6detail13posix_tss_ptrINS1_10call_stackINS1_15task_io_serviceINS1_13epoll_reactorILb0EEEEEE7contextEED5Ev]+0xf): undefined reference to `pthread_key_delete' /tmp/ccCv9ZJA.o: In function `boost::asio::detail::posix_tss_ptr<boost::asio::detail::call_stack<boost::asio::detail::task_io_service<boost::asio::detail::epoll_reactor<false> > >::context>::posix_tss_ptr()': a.cpp:(.text._ZN5boost4asio6detail13posix_tss_ptrINS1_10call_stackINS1_15task_io_serviceINS1_13epoll_reactorILb0EEEEEE7contextEEC2Ev[_ZN5boost4asio6detail13posix_tss_ptrINS1_10call_stackINS1_15task_io_serviceINS1_13epoll_reactorILb0EEEEEE7contextEEC5Ev]+0x22): undefined reference to `pthread_key_create' collect2: ld returned 1 exit status How can I fix it? Thank you.

    Read the article

  • How to load models in the extended MY_Router class in codeigniter

    - by askkirati
    I am not able to load models to the extended My_Router class in codeigniter. Below is my code: class MY_Router extends CI_Router { function MY_Router() { parent::CI_Router(); } function _validate_request($segments) { // Does the requested controller exist in the root folder? if (file_exists(APPPATH.'controllers/'.$segments[0].EXT)) { return $segments; } // Is the controller in a sub-folder? if (is_dir(APPPATH.'controllers/'.$segments[0])) { // Set the directory and remove it from the segment array $this->set_directory($segments[0]); $segments = array_slice($segments, 1); if (count($segments) > 0) { // Does the requested controller exist in the sub-folder? if ( ! file_exists(APPPATH.'controllers/'.$this->fetch_directory().$segments[0].EXT)) { show_404($this->fetch_directory().$segments[0]); } } else { $this->set_class($this->default_controller); $this->set_method('index'); // Does the default controller exist in the sub-folder? if ( ! file_exists(APPPATH.'controllers/'.$this->fetch_directory().$this->default_controller.EXT)) { $this->directory = ''; return array(); } } return $segments; } // Let's check if there are category segments $category_routes = $this->category_routing($segments); if($category_routes !== FALSE) { return $category_routes; } $user_routes = $this->user_routing($segments); if($user_routes != FALSE) { return $user_routes; } show_404($segments[0]); } function category_routing($segments) { $this->load->model('category_model'); if($this->category_model->category_exist($segments[0])) { //if only category if(count($segments)==1) { return array('category', 'category_browse', $segments[0]); } //category pagination if(count($segments)==2 and is_numeric($segments[1])) { return array('category','category_browse', $segments[0], $segments[1]); } //category upcoming if(count($segments)==2 and $segments[1] == 'upcoming') { return array('category','upcoming', $segments[0]); } //category upcoming pagination if(count($segments)==3 and $segments[1] == 'upcoming' and is_numeric($segments[3])) { return array('category','upcoming', $segments[0], $segments[3]); } //category top if(count($segments)==3 and $segments[1] == 'top') { return array('category','top', $segments[0], $segments[2]); } //category top pagination if(count($segments)==4 and $segments[1] == 'top' and is_numeric($segments[3])) { return array('category','top', $segments[0], $segments[3]); } } return FALSE; } function user_routing($segments) { $this->load->model('dx_auth/users', 'user_model'); if($this->user_model->check_username($segments[0])) { //only profile if(count($segments)==1) { return array('user','profile',$segments[0]); } //all friends if(count($segments)==2 and $segment[1]=='allfriends') { return array('user','allfriends',$segments[0]); } //all subscribers if(count($segments)==2 and $segment[1]=='allsubscribers') { return array('user','allsubscribers',$segments[0]); } //all subscription if(count($segments)==2 and $segment[1]=='allsubscriptions') { return array('user','allsubscriptions',$segments[0]); } } return FALSE; } } I have tried loading the models by using get_instance function provided by codeigniter but seems like it doesnot work. All i need is load the models in extended system library.

    Read the article

  • WPA2 authentication fails on Ubuntu 12.04 using Rosewill RNX-N1

    - by user94156
    Decided to reduce the clutter in the house and replace a wired connection with a wireless one on my wife's system using USB network device Rosewill RNX-X1. I can see and connect to unprotected network, but WPA2 authentication repeatedly fails. RNX-X1 works on other systems (including TV); also have 2 of 'em and tried each. Worth noting that I recently switched from Comcast to CenturyLink and so switched routers. The system connected successfully to previous router (Linksys EA4500) using WPA2. Would think it is the router (Actiontec C1000A) but all other devices (TV, iPad, Windows, Blackberry, and Squeezebox) connect ok. Would appreciate some diagnostic guidance and insight (phrased for a newbie!) Tests to date: sudo lshw -class network *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:03:00.0 logical name: eth0 version: 01 serial: 00:e0:4d:30:40:a1 size: 10Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm vpd msi pciexpress bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half firmware=N/A latency=0 link=no multicast=yes port=MII speed=10Mbit/s resources: irq:47 ioport:ac00(size=256) memory:fdcff000-fdcfffff memory:fdb00000-fdb1ffff *-network description: Wireless interface physical id: 1 bus info: usb@1:2 logical name: wlan1 serial: 00:02:6f:bd:30:a0 capabilities: ethernet physical wireless configuration: broadcast=yes driver=rt2800usb driverversion=3.2.0-31-generic firmware=0.29 link=no multicast=yes wireless=IEEE 802.11bgn sudo lspci -v 00:00.0 RAM memory: NVIDIA Corporation MCP67 Memory Controller (rev a2) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0 Capabilities: [44] HyperTransport: Slave or Primary Interface Capabilities: [dc] HyperTransport: MSI Mapping Enable+ Fixed- 00:01.0 ISA bridge: NVIDIA Corporation MCP67 ISA Bridge (rev a2) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0 00:01.1 SMBus: NVIDIA Corporation MCP67 SMBus (rev a2) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: 66MHz, fast devsel, IRQ 11 I/O ports at fc00 [size=64] I/O ports at 1c00 [size=64] I/O ports at 1c40 [size=64] Capabilities: [44] Power Management version 2 Kernel driver in use: nForce2_smbus Kernel modules: i2c-nforce2 00:01.2 RAM memory: NVIDIA Corporation MCP67 Memory Controller (rev a2) Flags: 66MHz, fast devsel 00:02.0 USB controller: NVIDIA Corporation MCP67 OHCI USB 1.1 Controller (rev a2) (prog-if 10 [OHCI]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 23 Memory at fe02f000 (32-bit, non-prefetchable) [size=4K] Capabilities: [44] Power Management version 2 Kernel driver in use: ohci_hcd 00:02.1 USB controller: NVIDIA Corporation MCP67 EHCI USB 2.0 Controller (rev a2) (prog-if 20 [EHCI]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 22 Memory at fe02e000 (32-bit, non-prefetchable) [size=256] Capabilities: [44] Debug port: BAR=1 offset=0098 Capabilities: [80] Power Management version 2 Kernel driver in use: ehci_hcd 00:04.0 USB controller: NVIDIA Corporation MCP67 OHCI USB 1.1 Controller (rev a2) (prog-if 10 [OHCI]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 21 Memory at fe02d000 (32-bit, non-prefetchable) [size=4K] Capabilities: [44] Power Management version 2 Kernel driver in use: ohci_hcd 00:04.1 USB controller: NVIDIA Corporation MCP67 EHCI USB 2.0 Controller (rev a2) (prog-if 20 [EHCI]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 20 Memory at fe02c000 (32-bit, non-prefetchable) [size=256] Capabilities: [44] Debug port: BAR=1 offset=0098 Capabilities: [80] Power Management version 2 Kernel driver in use: ehci_hcd 00:06.0 IDE interface: NVIDIA Corporation MCP67 IDE Controller (rev a1) (prog-if 8a [Master SecP PriP]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0 [virtual] Memory at 000001f0 (32-bit, non-prefetchable) [size=8] [virtual] Memory at 000003f0 (type 3, non-prefetchable) [size=1] [virtual] Memory at 00000170 (32-bit, non-prefetchable) [size=8] [virtual] Memory at 00000370 (type 3, non-prefetchable) [size=1] I/O ports at f000 [size=16] Capabilities: [44] Power Management version 2 Kernel driver in use: pata_amd Kernel modules: pata_amd 00:07.0 Audio device: NVIDIA Corporation MCP67 High Definition Audio (rev a1) Subsystem: Biostar Microtech Int'l Corp Device 820c Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 22 Memory at fe024000 (32-bit, non-prefetchable) [size=16K] Capabilities: [44] Power Management version 2 Capabilities: [50] MSI: Enable- Count=1/1 Maskable+ 64bit+ Capabilities: [6c] HyperTransport: MSI Mapping Enable- Fixed+ Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:08.0 PCI bridge: NVIDIA Corporation MCP67 PCI Bridge (rev a2) (prog-if 01 [Subtractive decode]) Flags: bus master, 66MHz, fast devsel, latency 0 Bus: primary=00, secondary=01, subordinate=01, sec-latency=32 I/O behind bridge: 0000c000-0000cfff Memory behind bridge: fdf00000-fdffffff Prefetchable memory behind bridge: fd000000-fd0fffff Capabilities: [b8] Subsystem: NVIDIA Corporation Device cb84 Capabilities: [8c] HyperTransport: MSI Mapping Enable- Fixed- 00:09.0 IDE interface: NVIDIA Corporation MCP67 AHCI Controller (rev a2) (prog-if 85 [Master SecO PriO]) Subsystem: Biostar Microtech Int'l Corp Device 5407 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 23 I/O ports at 09f0 [size=8] I/O ports at 0bf0 [size=4] I/O ports at 0970 [size=8] I/O ports at 0b70 [size=4] I/O ports at dc00 [size=16] Memory at fe02a000 (32-bit, non-prefetchable) [size=8K] Capabilities: [44] Power Management version 2 Capabilities: [8c] SATA HBA v1.0 Capabilities: [b0] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [cc] HyperTransport: MSI Mapping Enable- Fixed+ Kernel driver in use: ahci 00:0b.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=0 I/O behind bridge: 0000b000-0000bfff Memory behind bridge: fde00000-fdefffff Prefetchable memory behind bridge: 00000000fdd00000-00000000fddfffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:0c.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=03, subordinate=03, sec-latency=0 I/O behind bridge: 0000a000-0000afff Memory behind bridge: fdc00000-fdcfffff Prefetchable memory behind bridge: 00000000fdb00000-00000000fdbfffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:0d.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=04, subordinate=04, sec-latency=0 I/O behind bridge: 00009000-00009fff Memory behind bridge: fda00000-fdafffff Prefetchable memory behind bridge: 00000000fd900000-00000000fd9fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:0e.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=05, subordinate=05, sec-latency=0 I/O behind bridge: 00008000-00008fff Memory behind bridge: fd800000-fd8fffff Prefetchable memory behind bridge: 00000000fd700000-00000000fd7fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:0f.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=06, subordinate=06, sec-latency=0 I/O behind bridge: 00007000-00007fff Memory behind bridge: fd600000-fd6fffff Prefetchable memory behind bridge: 00000000fd500000-00000000fd5fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:10.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=07, subordinate=07, sec-latency=0 I/O behind bridge: 00006000-00006fff Memory behind bridge: fd400000-fd4fffff Prefetchable memory behind bridge: 00000000fd300000-00000000fd3fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:11.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=08, subordinate=08, sec-latency=0 I/O behind bridge: 00005000-00005fff Memory behind bridge: fd200000-fd2fffff Prefetchable memory behind bridge: 00000000fd100000-00000000fd1fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:12.0 VGA compatible controller: NVIDIA Corporation C68 [GeForce 7050 PV / nForce 630a] (rev a2) (prog-if 00 [VGA controller]) Subsystem: Biostar Microtech Int'l Corp Device 1406 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 21 Memory at fb000000 (32-bit, non-prefetchable) [size=16M] Memory at e0000000 (64-bit, prefetchable) [size=256M] Memory at fc000000 (64-bit, non-prefetchable) [size=16M] [virtual] Expansion ROM at 80000000 [disabled] [size=128K] Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable- Count=1/1 Maskable- 64bit+ Kernel driver in use: nvidia Kernel modules: nvidia_current, nouveau, nvidiafb 00:18.0 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] HyperTransport Technology Configuration Flags: fast devsel Capabilities: [80] HyperTransport: Host or Secondary Interface 00:18.1 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] Address Map Flags: fast devsel 00:18.2 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] DRAM Controller Flags: fast devsel 00:18.3 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] Miscellaneous Control Flags: fast devsel Capabilities: [f0] Secure device <?> Kernel driver in use: k8temp Kernel modules: k8temp 03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 01) Subsystem: Biostar Microtech Int'l Corp Device 2305 Flags: bus master, fast devsel, latency 0, IRQ 47 I/O ports at ac00 [size=256] Memory at fdcff000 (64-bit, non-prefetchable) [size=4K] [virtual] Expansion ROM at fdb00000 [disabled] [size=128K] Capabilities: [40] Power Management version 2 Capabilities: [48] Vital Product Data Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] Express Endpoint, MSI 00 Capabilities: [84] Vendor Specific Information: Len=4c <?> Capabilities: [100] Advanced Error Reporting Capabilities: [12c] Virtual Channel Capabilities: [148] Device Serial Number 32-00-00-00-10-ec-81-68 Capabilities: [154] Power Budgeting <?> Kernel driver in use: r8169 Kernel modules: r8169 sudo rfkill list all 2: phy2: Wireless LAN Soft blocked: no Hard blocked: no

    Read the article

  • WPA2 authentication fails using USB network devices (Linksys and Rosewill)

    - by Greg Youtz
    Decided to reduce the clutter in the house and replace a wired connection with a wireless one on my wife's system using USB network device Rosewill RNX-X1. I can see and connect to unprotected network, but WPA2 authentication repeatedly fails. Tried the same with a Linksys USB network adapter. Both failed to authenticate. Worth noting that I recently switched from Comcast to CenturyLink and so switched routers. The system connected successfully to previous router (Linksys EA4500) using WPA2. Would think it is the router (Actiontec C1000A) but all other devices (TV, iPad, Windows, Blackberry, and Squeezebox) connect ok. Would appreciate some diagnostic guidance and insight (phrased for a newbie!) Tests to date: sudo lshw -class network *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:03:00.0 logical name: eth0 version: 01 serial: 00:e0:4d:30:40:a1 size: 10Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm vpd msi pciexpress bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half firmware=N/A latency=0 link=no multicast=yes port=MII speed=10Mbit/s resources: irq:47 ioport:ac00(size=256) memory:fdcff000-fdcfffff memory:fdb00000-fdb1ffff *-network description: Wireless interface physical id: 1 bus info: usb@1:2 logical name: wlan1 serial: 00:02:6f:bd:30:a0 capabilities: ethernet physical wireless configuration: broadcast=yes driver=rt2800usb driverversion=3.2.0-31-generic firmware=0.29 link=no multicast=yes wireless=IEEE 802.11bgn sudo lspci -v 00:00.0 RAM memory: NVIDIA Corporation MCP67 Memory Controller (rev a2) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0 Capabilities: [44] HyperTransport: Slave or Primary Interface Capabilities: [dc] HyperTransport: MSI Mapping Enable+ Fixed- 00:01.0 ISA bridge: NVIDIA Corporation MCP67 ISA Bridge (rev a2) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0 00:01.1 SMBus: NVIDIA Corporation MCP67 SMBus (rev a2) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: 66MHz, fast devsel, IRQ 11 I/O ports at fc00 [size=64] I/O ports at 1c00 [size=64] I/O ports at 1c40 [size=64] Capabilities: [44] Power Management version 2 Kernel driver in use: nForce2_smbus Kernel modules: i2c-nforce2 00:01.2 RAM memory: NVIDIA Corporation MCP67 Memory Controller (rev a2) Flags: 66MHz, fast devsel 00:02.0 USB controller: NVIDIA Corporation MCP67 OHCI USB 1.1 Controller (rev a2) (prog-if 10 [OHCI]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 23 Memory at fe02f000 (32-bit, non-prefetchable) [size=4K] Capabilities: [44] Power Management version 2 Kernel driver in use: ohci_hcd 00:02.1 USB controller: NVIDIA Corporation MCP67 EHCI USB 2.0 Controller (rev a2) (prog-if 20 [EHCI]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 22 Memory at fe02e000 (32-bit, non-prefetchable) [size=256] Capabilities: [44] Debug port: BAR=1 offset=0098 Capabilities: [80] Power Management version 2 Kernel driver in use: ehci_hcd 00:04.0 USB controller: NVIDIA Corporation MCP67 OHCI USB 1.1 Controller (rev a2) (prog-if 10 [OHCI]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 21 Memory at fe02d000 (32-bit, non-prefetchable) [size=4K] Capabilities: [44] Power Management version 2 Kernel driver in use: ohci_hcd 00:04.1 USB controller: NVIDIA Corporation MCP67 EHCI USB 2.0 Controller (rev a2) (prog-if 20 [EHCI]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 20 Memory at fe02c000 (32-bit, non-prefetchable) [size=256] Capabilities: [44] Debug port: BAR=1 offset=0098 Capabilities: [80] Power Management version 2 Kernel driver in use: ehci_hcd 00:06.0 IDE interface: NVIDIA Corporation MCP67 IDE Controller (rev a1) (prog-if 8a [Master SecP PriP]) Subsystem: Biostar Microtech Int'l Corp Device 3409 Flags: bus master, 66MHz, fast devsel, latency 0 [virtual] Memory at 000001f0 (32-bit, non-prefetchable) [size=8] [virtual] Memory at 000003f0 (type 3, non-prefetchable) [size=1] [virtual] Memory at 00000170 (32-bit, non-prefetchable) [size=8] [virtual] Memory at 00000370 (type 3, non-prefetchable) [size=1] I/O ports at f000 [size=16] Capabilities: [44] Power Management version 2 Kernel driver in use: pata_amd Kernel modules: pata_amd 00:07.0 Audio device: NVIDIA Corporation MCP67 High Definition Audio (rev a1) Subsystem: Biostar Microtech Int'l Corp Device 820c Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 22 Memory at fe024000 (32-bit, non-prefetchable) [size=16K] Capabilities: [44] Power Management version 2 Capabilities: [50] MSI: Enable- Count=1/1 Maskable+ 64bit+ Capabilities: [6c] HyperTransport: MSI Mapping Enable- Fixed+ Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:08.0 PCI bridge: NVIDIA Corporation MCP67 PCI Bridge (rev a2) (prog-if 01 [Subtractive decode]) Flags: bus master, 66MHz, fast devsel, latency 0 Bus: primary=00, secondary=01, subordinate=01, sec-latency=32 I/O behind bridge: 0000c000-0000cfff Memory behind bridge: fdf00000-fdffffff Prefetchable memory behind bridge: fd000000-fd0fffff Capabilities: [b8] Subsystem: NVIDIA Corporation Device cb84 Capabilities: [8c] HyperTransport: MSI Mapping Enable- Fixed- 00:09.0 IDE interface: NVIDIA Corporation MCP67 AHCI Controller (rev a2) (prog-if 85 [Master SecO PriO]) Subsystem: Biostar Microtech Int'l Corp Device 5407 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 23 I/O ports at 09f0 [size=8] I/O ports at 0bf0 [size=4] I/O ports at 0970 [size=8] I/O ports at 0b70 [size=4] I/O ports at dc00 [size=16] Memory at fe02a000 (32-bit, non-prefetchable) [size=8K] Capabilities: [44] Power Management version 2 Capabilities: [8c] SATA HBA v1.0 Capabilities: [b0] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [cc] HyperTransport: MSI Mapping Enable- Fixed+ Kernel driver in use: ahci 00:0b.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=0 I/O behind bridge: 0000b000-0000bfff Memory behind bridge: fde00000-fdefffff Prefetchable memory behind bridge: 00000000fdd00000-00000000fddfffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:0c.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=03, subordinate=03, sec-latency=0 I/O behind bridge: 0000a000-0000afff Memory behind bridge: fdc00000-fdcfffff Prefetchable memory behind bridge: 00000000fdb00000-00000000fdbfffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:0d.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=04, subordinate=04, sec-latency=0 I/O behind bridge: 00009000-00009fff Memory behind bridge: fda00000-fdafffff Prefetchable memory behind bridge: 00000000fd900000-00000000fd9fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:0e.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=05, subordinate=05, sec-latency=0 I/O behind bridge: 00008000-00008fff Memory behind bridge: fd800000-fd8fffff Prefetchable memory behind bridge: 00000000fd700000-00000000fd7fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:0f.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=06, subordinate=06, sec-latency=0 I/O behind bridge: 00007000-00007fff Memory behind bridge: fd600000-fd6fffff Prefetchable memory behind bridge: 00000000fd500000-00000000fd5fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:10.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=07, subordinate=07, sec-latency=0 I/O behind bridge: 00006000-00006fff Memory behind bridge: fd400000-fd4fffff Prefetchable memory behind bridge: 00000000fd300000-00000000fd3fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:11.0 PCI bridge: NVIDIA Corporation MCP67 PCI Express Bridge (rev a2) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=08, subordinate=08, sec-latency=0 I/O behind bridge: 00005000-00005fff Memory behind bridge: fd200000-fd2fffff Prefetchable memory behind bridge: 00000000fd100000-00000000fd1fffff Capabilities: [40] Subsystem: NVIDIA Corporation Device 0000 Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] HyperTransport: MSI Mapping Enable- Fixed- Capabilities: [80] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Kernel driver in use: pcieport Kernel modules: shpchp 00:12.0 VGA compatible controller: NVIDIA Corporation C68 [GeForce 7050 PV / nForce 630a] (rev a2) (prog-if 00 [VGA controller]) Subsystem: Biostar Microtech Int'l Corp Device 1406 Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 21 Memory at fb000000 (32-bit, non-prefetchable) [size=16M] Memory at e0000000 (64-bit, prefetchable) [size=256M] Memory at fc000000 (64-bit, non-prefetchable) [size=16M] [virtual] Expansion ROM at 80000000 [disabled] [size=128K] Capabilities: [48] Power Management version 2 Capabilities: [50] MSI: Enable- Count=1/1 Maskable- 64bit+ Kernel driver in use: nvidia Kernel modules: nvidia_current, nouveau, nvidiafb 00:18.0 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] HyperTransport Technology Configuration Flags: fast devsel Capabilities: [80] HyperTransport: Host or Secondary Interface 00:18.1 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] Address Map Flags: fast devsel 00:18.2 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] DRAM Controller Flags: fast devsel 00:18.3 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] Miscellaneous Control Flags: fast devsel Capabilities: [f0] Secure device <?> Kernel driver in use: k8temp Kernel modules: k8temp 03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 01) Subsystem: Biostar Microtech Int'l Corp Device 2305 Flags: bus master, fast devsel, latency 0, IRQ 47 I/O ports at ac00 [size=256] Memory at fdcff000 (64-bit, non-prefetchable) [size=4K] [virtual] Expansion ROM at fdb00000 [disabled] [size=128K] Capabilities: [40] Power Management version 2 Capabilities: [48] Vital Product Data Capabilities: [50] MSI: Enable+ Count=1/2 Maskable- 64bit+ Capabilities: [60] Express Endpoint, MSI 00 Capabilities: [84] Vendor Specific Information: Len=4c <?> Capabilities: [100] Advanced Error Reporting Capabilities: [12c] Virtual Channel Capabilities: [148] Device Serial Number 32-00-00-00-10-ec-81-68 Capabilities: [154] Power Budgeting <?> Kernel driver in use: r8169 Kernel modules: r8169 sudo rfkill list all 2: phy2: Wireless LAN Soft blocked: no Hard blocked: no Would appreciate insight on how to chase this down.

    Read the article

  • C - circular character buffer w/ pthreads

    - by Matt
    I have a homework assignment where I have to implement a circular buffer and add and remove chars with separate threads: #include <pthread.h> #include <stdio.h> #define QSIZE 10 pthread_cond_t full,/* count == QSIZE */ empty,/* count == 0 */ ready; pthread_mutex_t m, n; /* implements critical section */ unsigned int iBuf, /* tail of circular queue */ oBuf; /* head of circular queue */ int count; /* count characters */ char buf [QSIZE]; /* the circular queue */ void Put(char s[]) {/* add "ch"; wait if full */ pthread_mutex_lock(&m); int size = sizeof(s)/sizeof(char); printf("size: %d", size); int i; for(i = 0; i < size; i++) { while (count >= QSIZE) pthread_cond_wait(&full, &m);/* is there empty slot? */ buf[iBuf] = s[i]; /* store the character */ iBuf = (iBuf+1) % QSIZE; /* increment mod QSIZE */ count++; if (count == 1) pthread_cond_signal(&empty);/* new character available */ } pthread_mutex_unlock(&m); } char Get() {/* remove "ch" from queue; wait if empty */ char ch; pthread_mutex_lock(&m); while (count <= 0) pthread_cond_wait(&empty, &m);/* is a character present? */ ch = buf[oBuf]; /* retrieve from the head of the queue */ oBuf = (oBuf+1) % QSIZE; count--; if (count == QSIZE-1) pthread_cond_signal(&full);/* signal existence of a slot */ pthread_mutex_unlock(&m); return ch; } void * p1(void *arg) { int i; for (i = 0; i < 5; i++) { Put("hella"); } } void * p2(void *arg) { int i; for (i = 0; i < 5; i++) { Put("goodby"); } } int main() { pthread_t t1, t2; void *r1, *r2; oBuf = 0; iBuf = 0; count=0; /* all slots are empty */ pthread_cond_init(&full, NULL); pthread_cond_init(&empty, NULL); pthread_mutex_init(&m, NULL); pthread_create(&t1, NULL, p1, &r1); pthread_create(&t2, NULL, p2, &r2); printf("Main"); char c; int i = 0; while (i < 55) { c = Get(); printf("%c",c); i++; } pthread_join(t1, &r1); pthread_join(t2, &r2); return 0; } I shouldn't have to change the logic much at all, the requirements are pretty specific. I think my problem lies in the Put() method. I think the first thread is going in and blocking the critical section and causing a deadlock. I was thinking I should make a scheduling attribute? Of course I could be wrong. I am pretty new to pthreads and concurrent programming, so I could really use some help spotting my error.

    Read the article

  • Custom language - FOR loop in a clojure interpeter?

    - by Mark
    I have a basic interpreter in clojure. Now i need to implement for (initialisation; finish-test; loop-update) { statements } Implement a similar for-loop for the interpreted language. The pattern will be: (for variable-declarations end-test loop-update do statement) The variable-declarations will set up initial values for variables.The end-test returns a boolean, and the loop will end if end-test returns false. The statement is interpreted followed by the loop-update for each pass of the loop. Examples of use are: (run ’(for ((i 0)) (< i 10) (set i (+ 1 i)) do (println i))) (run ’(for ((i 0) (j 0)) (< i 10) (seq (set i (+ 1 i)) (set j (+ j (* 2 i)))) do (println j))) inside my interpreter. I will attach my interpreter code I got so far. Any help is appreciated. Interpreter (declare interpret make-env) ;; needed as language terms call out to 'interpret' (def do-trace false) ;; change to 'true' to show calls to 'interpret' ;; simple utilities (def third ; return third item in a list (fn [a-list] (second (rest a-list)))) (def fourth ; return fourth item in a list (fn [a-list] (third (rest a-list)))) (def run ; make it easy to test the interpreter (fn [e] (println "Processing: " e) (println "=> " (interpret e (make-env))))) ;; for the environment (def make-env (fn [] '())) (def add-var (fn [env var val] (cons (list var val) env))) (def lookup-var (fn [env var] (cond (empty? env) 'error (= (first (first env)) var) (second (first env)) :else (lookup-var (rest env) var)))) ;; for terms in language ;; -- define numbers (def is-number? (fn [expn] (number? expn))) (def interpret-number (fn [expn env] expn)) ;; -- define symbols (def is-symbol? (fn [expn] (symbol? expn))) (def interpret-symbol (fn [expn env] (lookup-var env expn))) ;; -- define boolean (def is-boolean? (fn [expn] (or (= expn 'true) (= expn 'false)))) (def interpret-boolean (fn [expn env] expn)) ;; -- define functions (def is-function? (fn [expn] (and (list? expn) (= 3 (count expn)) (= 'lambda (first expn))))) (def interpret-function ; keep function definitions as they are written (fn [expn env] expn)) ;; -- define addition (def is-plus? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '+ (first expn))))) (def interpret-plus (fn [expn env] (+ (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define subtraction (def is-minus? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '- (first expn))))) (def interpret-minus (fn [expn env] (- (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define multiplication (def is-times? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '* (first expn))))) (def interpret-times (fn [expn env] (* (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define division (def is-divides? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '/ (first expn))))) (def interpret-divides (fn [expn env] (/ (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define equals test (def is-equals? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '= (first expn))))) (def interpret-equals (fn [expn env] (= (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define greater-than test (def is-greater-than? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '> (first expn))))) (def interpret-greater-than (fn [expn env] (> (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define not (def is-not? (fn [expn] (and (list? expn) (= 2 (count expn)) (= 'not (first expn))))) (def interpret-not (fn [expn env] (not (interpret (second expn) env)))) ;; -- define or (def is-or? (fn [expn] (and (list? expn) (= 3 (count expn)) (= 'or (first expn))))) (def interpret-or (fn [expn env] (or (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define and (def is-and? (fn [expn] (and (list? expn) (= 3 (count expn)) (= 'and (first expn))))) (def interpret-and (fn [expn env] (and (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define print (def is-print? (fn [expn] (and (list? expn) (= 2 (count expn)) (= 'println (first expn))))) (def interpret-print (fn [expn env] (println (interpret (second expn) env)))) ;; -- define with (def is-with? (fn [expn] (and (list? expn) (= 3 (count expn)) (= 'with (first expn))))) (def interpret-with (fn [expn env] (interpret (third expn) (add-var env (first (second expn)) (interpret (second (second expn)) env))))) ;; -- define if (def is-if? (fn [expn] (and (list? expn) (= 4 (count expn)) (= 'if (first expn))))) (def interpret-if (fn [expn env] (cond (interpret (second expn) env) (interpret (third expn) env) :else (interpret (fourth expn) env)))) ;; -- define function-application (def is-function-application? (fn [expn env] (and (list? expn) (= 2 (count expn)) (is-function? (interpret (first expn) env))))) (def interpret-function-application (fn [expn env] (let [function (interpret (first expn) env)] (interpret (third function) (add-var env (first (second function)) (interpret (second expn) env)))))) ;; the interpreter itself (def interpret (fn [expn env] (cond do-trace (println "Interpret is processing: " expn)) (cond ; basic values (is-number? expn) (interpret-number expn env) (is-symbol? expn) (interpret-symbol expn env) (is-boolean? expn) (interpret-boolean expn env) (is-function? expn) (interpret-function expn env) ; built-in functions (is-plus? expn) (interpret-plus expn env) (is-minus? expn) (interpret-minus expn env) (is-times? expn) (interpret-times expn env) (is-divides? expn) (interpret-divides expn env) (is-equals? expn) (interpret-equals expn env) (is-greater-than? expn) (interpret-greater-than expn env) (is-not? expn) (interpret-not expn env) (is-or? expn) (interpret-or expn env) (is-and? expn) (interpret-and expn env) (is-print? expn) (interpret-print expn env) ; special syntax (is-with? expn) (interpret-with expn env) (is-if? expn) (interpret-if expn env) ; functions (is-function-application? expn env) (interpret-function-application expn env) :else 'error))) ;; tests of using environment (println "Environment tests:") (println (add-var (make-env) 'x 1)) (println (add-var (add-var (add-var (make-env) 'x 1) 'y 2) 'x 3)) (println (lookup-var '() 'x)) (println (lookup-var '((x 1)) 'x)) (println (lookup-var '((x 1) (y 2)) 'x)) (println (lookup-var '((x 1) (y 2)) 'y)) (println (lookup-var '((x 3) (y 2) (x 1)) 'x)) ;; examples of using interpreter (println "Interpreter examples:") (run '1) (run '2) (run '(+ 1 2)) (run '(/ (* (+ 4 5) (- 2 4)) 2)) (run '(with (x 1) x)) (run '(with (x 1) (with (y 2) (+ x y)))) (run '(with (x (+ 2 4)) x)) (run 'false) (run '(not false)) (run '(with (x true) (with (y false) (or x y)))) (run '(or (= 3 4) (> 4 3))) (run '(with (x 1) (if (= x 1) 2 3))) (run '(with (x 2) (if (= x 1) 2 3))) (run '((lambda (n) (* 2 n)) 4)) (run '(with (double (lambda (n) (* 2 n))) (double 4))) (run '(with (sum-to (lambda (n) (if (= n 0) 0 (+ n (sum-to (- n 1)))))) (sum-to 100))) (run '(with (x 1) (with (f (lambda (n) (+ n x))) (with (x 2) (println (f 3))))))

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Visual Studio Code Analysis: CA0001 Error Running Code Analysis - object reference not set to an instance of an object

    - by sturdytree
    For a WPF application being developed in VS 2012 (Ultimate), the application runs fine when a particular project's code analysis is disabled. Enabling it results in the error above. This was working fine until recently (i.e. running with code analysis enabled for the particular project) and the only recent change I can think of is removing NHibernate Profiler (using NuGet). Will be grateful for any pointers on how to debug this, or to see a more detailed log/error message.

    Read the article

  • Silverlight Project - Setting Reference to Copy Local false not working.

    - by cmaduro
    Why is it that when my Silverlight project is built, the output directory contains a bunch of culture specific directories: ar\System.Windows.Controls.resources.dll bg\System.Windows.Controls.resources.dll ca\System.Windows.Controls.resources.dll etc etc etc Also the root of the build output contains: System.Xml.Linq.dll System.windows.Controls.dll I have gone through the projects in my solution and made sure that "Copy Local" is set to false for all the referances of the mentioned dll files. Those 2 files were set to true, but I did switch them to false. Despite my effort to google an answer, I remain stuck.

    Read the article

  • JPA + Hibernate + Named Query + how to JOIN a subquery result

    - by Srihari
    Can anybody help me in converting the following native query into a Named Query? Native Query: SELECT usr1.user_id, urr1.role_id, usr2.user_id, urr2.role_id, usr1.school_id, term.term_name, count(material.material_id) as "Total Book Count", fpc.FOLLETT_PENDING_COUNT as "Follett Pending Count", rrc.RESOLUTION_REQUIRED_COUNT as "Resolution Required Count" FROM va_school sch JOIN va_user_school_rel usr1 on sch.school_id=usr1.school_id JOIN va_user_role_rel urr1 on usr1.user_id=urr1.user_id and urr1.role_id=1001 JOIN va_user_school_rel usr2 on sch.school_id=usr2.school_id JOIN va_user_role_rel urr2 on usr2.user_id=urr2.user_id and urr2.role_id=1002 JOIN va_term term on term.school_id = usr1.school_id JOIN va_class course on course.term_id = term.term_id JOIN va_material material on material.class_id = course.class_id LEFT JOIN (SELECT VA_CLASS.TERM_ID as "TERM_ID", COUNT(*) as "FOLLETT_PENDING_COUNT" FROM VA_CLASS JOIN VA_MATERIAL ON VA_MATERIAL.CLASS_ID = VA_CLASS.CLASS_ID WHERE VA_CLASS.reference_flag = 'A' AND trunc(VA_MATERIAL.FOLLETT_STATUS) = 0 GROUP BY VA_CLASS.TERM_ID) fpc on term.term_id = fpc.term_id LEFT JOIN (SELECT VA_CLASS.TERM_ID as "TERM_ID", COUNT(*) as "RESOLUTION_REQUIRED_COUNT" FROM VA_CLASS JOIN VA_MATERIAL ON VA_MATERIAL.CLASS_ID = VA_CLASS.CLASS_ID WHERE VA_CLASS.reference_flag = 'A' AND trunc(VA_MATERIAL.FOLLETT_STATUS) = 1 GROUP BY VA_CLASS.TERM_ID) rrc on term.term_id = rrc.term_id WHERE course.reference_flag = 'A' GROUP BY usr1.user_id, urr1.role_id, usr2.user_id, urr2.role_id, usr1.school_id, term.term_name, fpc.FOLLETT_PENDING_COUNT, rrc.RESOLUTION_REQUIRED_COUNT ORDER BY usr1.school_id, term.term_name; Thanks in advance. Srihari

    Read the article

  • Do MSDN subscriptions count as licenses for the purposes of upgrade pricing?

    - by Roger Lipscombe
    To qualify for upgrade pricing of Expression Studio... You must be a licensed user of one of the following products to be eligible for the upgrade versions. Any Microsoft® Expression product Any Adobe Creative Suite product Microsoft Visual Studio 2005 or later I've got a boxed, retail copy of Visual Studio 2003, so it appears I've missed that particular boat. On the other hand, I've got an MSDN Professional subscription, which includes Visual Studio. Does this copy of Visual Studio entitle me to upgrade pricing on Expression Studio? Given that you can't get Visual Studio without an MSDN subscription, I figure it does, but I can't find anything definitive.

    Read the article

  • get equation from XML, AS3

    - by VideoDnd
    There's an variable in my swf I want to receive XML. It's an integer value in the form of an equation. How do I receive the XML value for 'formatcount'? My Variable //Variable I want to grab XML<br> //formatcount=int('want xml value to go here'); formatcount=int(count*count/100); Path formatcount = myXML.FORMATCOUNT.text() My XML <?xml version="1.0" encoding="utf-8"?> <SESSION> <TIMER TITLE="speed">1000</TIMER> <COUNT TITLE="starting position">10000</COUNT> <FORMATCOUNT TITLE="ramp">count*count/1000</FORMATCOUNT> </SESSION>

    Read the article

  • How to the view count of a question in momery?

    - by Freewind
    My website is like stackoverflow, there are many questions. I want to record how many times a question has been visited. I have a column called "view_count" in the question table to save it. When a user visited a question many times, the view_count should be increased only 1. So I have to record which user has visited which question, and I think it is too much expensive to save them in the database, because the records will be huge. So I want to keep them in the memory, and persistent the number to database every 10 minutes. I have searched about "cache" of rails, but I haven't found an example. I need an simple sample of how to do this, thanks for help~

    Read the article

  • JPA + Hibernate + Named Query + how to JOIN a subquery result

    - by Srihari
    Hi, Can anybody help me in converting the following native query into a Named Query? Native Query: SELECT usr1.user_id, urr1.role_id, usr2.user_id, urr2.role_id, usr1.school_id, term.term_name, count(material.material_id) as "Total Book Count", fpc.FOLLETT_PENDING_COUNT as "Follett Pending Count", rrc.RESOLUTION_REQUIRED_COUNT as "Resolution Required Count" FROM va_school sch JOIN va_user_school_rel usr1 on sch.school_id=usr1.school_id JOIN va_user_role_rel urr1 on usr1.user_id=urr1.user_id and urr1.role_id=1001 JOIN va_user_school_rel usr2 on sch.school_id=usr2.school_id JOIN va_user_role_rel urr2 on usr2.user_id=urr2.user_id and urr2.role_id=1002 JOIN va_term term on term.school_id = usr1.school_id JOIN va_class course on course.term_id = term.term_id JOIN va_material material on material.class_id = course.class_id LEFT JOIN (SELECT VA_CLASS.TERM_ID as "TERM_ID", COUNT(*) as "FOLLETT_PENDING_COUNT" FROM VA_CLASS JOIN VA_MATERIAL ON VA_MATERIAL.CLASS_ID = VA_CLASS.CLASS_ID WHERE VA_CLASS.reference_flag = 'A' AND trunc(VA_MATERIAL.FOLLETT_STATUS) = 0 GROUP BY VA_CLASS.TERM_ID) fpc on term.term_id = fpc.term_id LEFT JOIN (SELECT VA_CLASS.TERM_ID as "TERM_ID", COUNT(*) as "RESOLUTION_REQUIRED_COUNT" FROM VA_CLASS JOIN VA_MATERIAL ON VA_MATERIAL.CLASS_ID = VA_CLASS.CLASS_ID WHERE VA_CLASS.reference_flag = 'A' AND trunc(VA_MATERIAL.FOLLETT_STATUS) = 1 GROUP BY VA_CLASS.TERM_ID) rrc on term.term_id = rrc.term_id WHERE course.reference_flag = 'A' GROUP BY usr1.user_id, urr1.role_id, usr2.user_id, urr2.role_id, usr1.school_id, term.term_name, fpc.FOLLETT_PENDING_COUNT, rrc.RESOLUTION_REQUIRED_COUNT ORDER BY usr1.school_id, term.term_name; Thanks in advance. Srihari

    Read the article

< Previous Page | 102 103 104 105 106 107 108 109 110 111 112 113  | Next Page >