Search Results

Search found 34093 results on 1364 pages for 'database architecture'.

Page 107/1364 | < Previous Page | 103 104 105 106 107 108 109 110 111 112 113 114  | Next Page >

  • Joining Tables Based on Foreign Keys

    - by maestrojed
    I have a table that has a lot of fields that are foreign keys referencing a related table. I am writing a script in PHP that will do the db queries. When I query this table for its data I need to know the values associated with these keys not the key. How do most people go about this? A 101 way to do this would be to query this table for its data including the foreign keys and then query the related tables to get each key's value. This could be a lot of queries (~10). Question 1: I think I could write 1 query with a bunch of joins. Would that be better? This approach also requires the querying script to know which table fields are foreign keys. Since I have many tables like this but all with different fields, this means writing nice generic functions is hard. MySQL InnoDB tables allow for foreign constraints. I know the database has these set up correctly. Question 2: What about the idea of querying the table and identifying what the constraints are and then matching them up using whatever process I decide on from Question 1. I like this idea but never see it being used in code. Makes me think its not a good idea for some reason. I would use something like SHOW CREATE TABLE tbl_name; to find what constraints/relationships exist for that table. Thank you for any suggestions or advice.

    Read the article

  • Help a CRUD programmer think about an "approval workflow"

    - by gerdemb
    I've been working on a web application that is basically a CRUD application (Create, Read, Update, Delete). Recently, I've started working on what I'm calling an "approval workflow". Basically, a request is generated for a material and then sent for approval to a manager. Depending on what is requested, different people need to approve the request or perhaps send it back to the requester for modification. The approvers need to keep track of what to approve what has been approved and the requesters need to see the status of their requests. As a "CRUD" developer, I'm having a hard-time wrapping my head around how to design this. What database tables should I have? How do I keep track of the state of the request? How should I notify users of actions that have happened to their requests? Is their a design pattern that could help me with this? Should I be drawing state-machines in my code? I think this is a generic programing question, but if it makes any difference I'm using Django with MySQL.

    Read the article

  • If we make a number every millisecond, how much data would we have in a day?

    - by Roger Travis
    I'm a bit confused here... I'm being offered to get into a project, where would be an array of certain sensors, that would give off reading every millisecond ( yes, 1000 reading in a second ). Reading would be a 3 or 4 digit number, for example like 818 or 1529. This reading need to be stored in a database on a server and accessed remotely. I never worked with such big amounts of data, what do you think, how much in terms of MBs reading from one sensor for a day would be?... 4(digits)x1000x60x60x24 ... = 345600000 bits ... right ? about 42 MB per day... doesn't seem too bad, right? therefor a DB of, say, 1 GB, would hold 23 days of info from 1 sensor, correct? I understand that MySQL & PHP probably would not be able to handle it... what would you suggest, maybe some aps? azure? oracle? ... Thansk!

    Read the article

  • Delivering activity feed items in a moderately scalable way

    - by sotangochips
    The application I'm working on has an activity feed where each user can see their friends' activity (much like Facebook). I'm looking for a moderately scalable way to show a given users' activity stream on the fly. I say 'moderately' because I'm looking to do this with just a database (Postgresql) and maybe memcached. For instance, I want this solution to scale to 200k users each with 100 friends. Currently, there is a master activity table that stores the rendered html for the given activity (Jim added a friend, George installed an application, etc.). This master activity table keeps the source user, the html, and a timestamp. Then, there's a separate ('join') table that simply keeps a pointer to the person who should see this activity in their friend feed, and a pointer to the object in the main activity table. So, if I have 100 friends, and I do 3 activities, then the join table will then grow to 300 items. Clearly this table will grow very quickly. It has the nice property, though, that fetching activity to show to a user takes a single (relatively) inexpensive query. The other option is to just keep the main activity table and query it by saying something like: select * from activity where source_user in (1, 2, 44, 2423, ... my friend list) This has the disadvantage that you're querying for users who may never be active, and as your friend list grows, this query can get slower and slower. I see the pros and the cons of both sides, but I'm wondering if some SO folks might help me weigh the options and suggest one way or they other. I'm also open to other solutions, though I'd like to keep it simple and not install something like CouchDB, etc. Many thanks!

    Read the article

  • Having to insert a record, then update the same record warrants 1:1 relationship design?

    - by dianovich
    Let's say an Order has many Line items and we're storing the total cost of an order (based on the sum of prices on order lines) in the orders table. -------------- orders -------------- id ref total_cost -------------- -------------- lines -------------- id order_id price -------------- In a simple application, the order and line are created during the same step of the checkout process. So this means INSERT INTO orders .... -- Get ID of inserted order record INSERT into lines VALUES(null, order_id, ...), ... where we get the order ID after creating the order record. The problem I'm having is trying to figure out the best way to store the total cost of an order. I don't want to have to create an order create lines on an order calculate cost on order based on lines then update record created in 1. in orders table This would mean a nullable total_cost field on orders for starters... My solution thus far is to have an order_totals table with a 1:1 relationship to the orders table. But I think it's redundant. Ideally, since everything required to calculate total costs (lines on an order) is in the database, I would work out the value every time I need it, but this is very expensive. What are your thoughts?

    Read the article

  • guarantee child records either in one table or another, but not both?

    - by user151841
    I have a table with two child tables. For each record in the parent table, I want one and only one record in one of the child tables -- not one in each, not none. How to I define that? Here's the backstory. Feel free to criticize this implementation, but please answer the question above, because this isn't the only time I've encountered it: I have a database that holds data pertaining to user surveys. It was originally designed with one authentication method for starting a survey. Since then, requirements have changed, and now there are two different ways someone could sign on to start a survey. Originally I captured the authentication token in a column in the survey table. Since requirements changed, there are three other bits of data that I want to capture in authentication. So for each record in the survey table, I'm either going to have one token, or a set of three. All four of these are of different types, so my thought was, instead of having four columns where either one is going to be null, or three are going to be null ( or even worse, a bad mashup of either of those scenarios ), I would have two child tables, one for holding the single authentication token, the other for holding the three. Problem is, I don't know offhand how to define that in DDL. I'm using MySQL, so maybe there's a feature that MySQL doesn't implement that lets me do this.

    Read the article

  • SQL SERVER – Copy Data from One Table to Another Table – SQL in Sixty Seconds #031 – Video

    - by pinaldave
    Copy data from one table to another table is one of the most requested questions on forums, Facebook and Twitter. The question has come in many formats and there are places I have seen developers are using cursor instead of this direct method. Earlier I have written the similar article a few years ago - SQL SERVER – Insert Data From One Table to Another Table – INSERT INTO SELECT – SELECT INTO TABLE. The article has been very popular and I have received many interesting and constructive comments. However there were two specific comments keep on ending up on my mailbox. 1) SQL Server AdventureWorks Samples Database does not have table I used in the example 2) If there is a video tutorial of the same example. After carefully thinking I decided to build a new set of the scripts for the example which are very similar to the old one as well video tutorial of the same. There was no better place than our SQL in Sixty Second Series to cover this interesting small concept. Let me know what you think of this video. Here is the updated script. -- Method 1 : INSERT INTO SELECT USE AdventureWorks2012 GO ----Create TestTable CREATE TABLE TestTable (FirstName VARCHAR(100), LastName VARCHAR(100)) ----INSERT INTO TestTable using SELECT INSERT INTO TestTable (FirstName, LastName) SELECT FirstName, LastName FROM Person.Person WHERE EmailPromotion = 2 ----Verify that Data in TestTable SELECT FirstName, LastName FROM TestTable ----Clean Up Database DROP TABLE TestTable GO --------------------------------------------------------- --------------------------------------------------------- -- Method 2 : SELECT INTO USE AdventureWorks2012 GO ----Create new table and insert into table using SELECT INSERT SELECT FirstName, LastName INTO TestTable FROM Person.Person WHERE EmailPromotion = 2 ----Verify that Data in TestTable SELECT FirstName, LastName FROM TestTable ----Clean Up Database DROP TABLE TestTable GO Related Tips in SQL in Sixty Seconds: SQL SERVER – Insert Data From One Table to Another Table – INSERT INTO SELECT – SELECT INTO TABLE Powershell – Importing CSV File Into Database – Video SQL SERVER – 2005 – Export Data From SQL Server 2005 to Microsoft Excel Datasheet SQL SERVER – Import CSV File into Database Table Using SSIS SQL SERVER – Import CSV File Into SQL Server Using Bulk Insert – Load Comma Delimited File Into SQL Server SQL SERVER – 2005 – Generate Script with Data from DatabaseDatabase Publishing Wizard What would you like to see in the next SQL in Sixty Seconds video? Reference: Pinal Dave (http://blog.sqlauthority.com)   Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video Tagged: Excel

    Read the article

  • Deployment Options for AutoVue 20.0 Users

    - by celine.beck
    AutoVue release 20.0 boasts a brand new architecture. As part of this product rearchitecture, AutoVue can now be deployed either as a desktop deployment to serve the needs of individual users in their personal productivity; or in a Client / Server deployment for those that require connections to enterprise applications / back-end systems. The most common question that we hear from our customers about this new architecture is the following: "Is AutoVue Desktop Version still part of release 20.0 and if so, what is the difference between AutoVue Desktop Version and the Desktop deployment of AutoVue release 20.0?" A detailed answer to these questions is provided in a very complete article entitled Understanding Deployment Options for AutoVue 19.3 Desktop Version users upgrading to AutoVue 20.0 (note 1058254.1) which was posted on My Oracle Support. Is AutoVue Desktop Version still part of AutoVue 20.0? Yes, AutoVue Desktop Version 20.0 is still available to customers and partners, as a maintenance release of AutoVue 19.3. As such, it will not contain any of the new capabilities featured in AutoVue release 20.0. All format enhancements and new format support have been added to release 20.0 Desktop Version though. What is the different between AutoVue Desktop Version 20.0 and the Desktop Deployment of AutoVue release 20.0? AutoVue 20.0 Desktop deployment works like the AutoVue Desktop version. It is installed as a standalone product on each user's machine and runs a local instance of AutoVue. The AutoVue 20.0 Desktop deployment includes all new features, formats and performance enhancements included in release 20.0 (walkthrough capability, improved compare, ...) What deployment options are available to AutoVue 19.3 Desktop Version customers? AutoVue Desktop Version users can evolve at their own pace to the new AutoVue platform. With release 20.0, customers can opt to: Option 1: Stay on AutoVue Desktop Version 20.0 Option 2: Migrate to AutoVue and select the desktop deployment method Option 3: Migrate to AutoVue and select the Client/Server deployment method What is the Client / Server deployment of AutoVue 20.0? The Client/Server deployment has AutoVue installed on a server, to which local client machines connect to access and view documents. AutoVue 20.0 Client Server Deployment allows users to leverage the new online/offline capabilities in release 20.0 and easily switch between online and offline modes of operation. With the Client/Server deployment, customers also get a complete, open and standards-based set of integration tools that allows them to tie AutoVue to any enterprise applications to provide users with a consistent view of data and business objects and expand workflow automation to document-based processes. Related articles: AutoVue Release 20.0 Now Available, New Walkthrough Capability in AutoVue 20.0, Watch the AutoVue 20.0 Release Webcast, April 27 at 12pm EST

    Read the article

  • SQL SERVER – Guest Post – Architecting Data Warehouse – Niraj Bhatt

    - by pinaldave
    Niraj Bhatt works as an Enterprise Architect for a Fortune 500 company and has an innate passion for building / studying software systems. He is a top rated speaker at various technical forums including Tech·Ed, MCT Summit, Developer Summit, and Virtual Tech Days, among others. Having run a successful startup for four years Niraj enjoys working on – IT innovations that can impact an enterprise bottom line, streamlining IT budgets through IT consolidation, architecture and integration of systems, performance tuning, and review of enterprise applications. He has received Microsoft MVP award for ASP.NET, Connected Systems and most recently on Windows Azure. When he is away from his laptop, you will find him taking deep dives in automobiles, pottery, rafting, photography, cooking and financial statements though not necessarily in that order. He is also a manager/speaker at BDOTNET, Asia’s largest .NET user group. Here is the guest post by Niraj Bhatt. As data in your applications grows it’s the database that usually becomes a bottleneck. It’s hard to scale a relational DB and the preferred approach for large scale applications is to create separate databases for writes and reads. These databases are referred as transactional database and reporting database. Though there are tools / techniques which can allow you to create snapshot of your transactional database for reporting purpose, sometimes they don’t quite fit the reporting requirements of an enterprise. These requirements typically are data analytics, effective schema (for an Information worker to self-service herself), historical data, better performance (flat data, no joins) etc. This is where a need for data warehouse or an OLAP system arises. A Key point to remember is a data warehouse is mostly a relational database. It’s built on top of same concepts like Tables, Rows, Columns, Primary keys, Foreign Keys, etc. Before we talk about how data warehouses are typically structured let’s understand key components that can create a data flow between OLTP systems and OLAP systems. There are 3 major areas to it: a) OLTP system should be capable of tracking its changes as all these changes should go back to data warehouse for historical recording. For e.g. if an OLTP transaction moves a customer from silver to gold category, OLTP system needs to ensure that this change is tracked and send to data warehouse for reporting purpose. A report in context could be how many customers divided by geographies moved from sliver to gold category. In data warehouse terminology this process is called Change Data Capture. There are quite a few systems that leverage database triggers to move these changes to corresponding tracking tables. There are also out of box features provided by some databases e.g. SQL Server 2008 offers Change Data Capture and Change Tracking for addressing such requirements. b) After we make the OLTP system capable of tracking its changes we need to provision a batch process that can run periodically and takes these changes from OLTP system and dump them into data warehouse. There are many tools out there that can help you fill this gap – SQL Server Integration Services happens to be one of them. c) So we have an OLTP system that knows how to track its changes, we have jobs that run periodically to move these changes to warehouse. The question though remains is how warehouse will record these changes? This structural change in data warehouse arena is often covered under something called Slowly Changing Dimension (SCD). While we will talk about dimensions in a while, SCD can be applied to pure relational tables too. SCD enables a database structure to capture historical data. This would create multiple records for a given entity in relational database and data warehouses prefer having their own primary key, often known as surrogate key. As I mentioned a data warehouse is just a relational database but industry often attributes a specific schema style to data warehouses. These styles are Star Schema or Snowflake Schema. The motivation behind these styles is to create a flat database structure (as opposed to normalized one), which is easy to understand / use, easy to query and easy to slice / dice. Star schema is a database structure made up of dimensions and facts. Facts are generally the numbers (sales, quantity, etc.) that you want to slice and dice. Fact tables have these numbers and have references (foreign keys) to set of tables that provide context around those facts. E.g. if you have recorded 10,000 USD as sales that number would go in a sales fact table and could have foreign keys attached to it that refers to the sales agent responsible for sale and to time table which contains the dates between which that sale was made. These agent and time tables are called dimensions which provide context to the numbers stored in fact tables. This schema structure of fact being at center surrounded by dimensions is called Star schema. A similar structure with difference of dimension tables being normalized is called a Snowflake schema. This relational structure of facts and dimensions serves as an input for another analysis structure called Cube. Though physically Cube is a special structure supported by commercial databases like SQL Server Analysis Services, logically it’s a multidimensional structure where dimensions define the sides of cube and facts define the content. Facts are often called as Measures inside a cube. Dimensions often tend to form a hierarchy. E.g. Product may be broken into categories and categories in turn to individual items. Category and Items are often referred as Levels and their constituents as Members with their overall structure called as Hierarchy. Measures are rolled up as per dimensional hierarchy. These rolled up measures are called Aggregates. Now this may seem like an overwhelming vocabulary to deal with but don’t worry it will sink in as you start working with Cubes and others. Let’s see few other terms that we would run into while talking about data warehouses. ODS or an Operational Data Store is a frequently misused term. There would be few users in your organization that want to report on most current data and can’t afford to miss a single transaction for their report. Then there is another set of users that typically don’t care how current the data is. Mostly senior level executives who are interesting in trending, mining, forecasting, strategizing, etc. don’t care for that one specific transaction. This is where an ODS can come in handy. ODS can use the same star schema and the OLAP cubes we saw earlier. The only difference is that the data inside an ODS would be short lived, i.e. for few months and ODS would sync with OLTP system every few minutes. Data warehouse can periodically sync with ODS either daily or weekly depending on business drivers. Data marts are another frequently talked about topic in data warehousing. They are subject-specific data warehouse. Data warehouses that try to span over an enterprise are normally too big to scope, build, manage, track, etc. Hence they are often scaled down to something called Data mart that supports a specific segment of business like sales, marketing, or support. Data marts too, are often designed using star schema model discussed earlier. Industry is divided when it comes to use of data marts. Some experts prefer having data marts along with a central data warehouse. Data warehouse here acts as information staging and distribution hub with spokes being data marts connected via data feeds serving summarized data. Others eliminate the need for a centralized data warehouse citing that most users want to report on detailed data. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Business Intelligence, Data Warehousing, Database, Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Vermeidung von SOA Anti-Patterns mittels AIA

    - by Hans Viehmann
    Gerade ist mir ein White Paper des Enterprise Architecture Teams in die Hände gefallen, das sich mit SOA Anti-Patterns befasst. Es ist zwar kein AIA Paper im eigentlichen Sinne, aber mit AIA hat man natürlich eine gute Unterstützung darin, die dort beschriebenen Fehler zu vermeiden. Das White Paper behandelt Themen wie: Vermeidung von SOA Silos SOA Reifegrad und Projekt-Management Ausuferndes Service Portfolio Umgang mit Referenz-Architekturen EAI 2.0 - Punkt-zu-Punkt Integration auf offenen Standards Ein Link auf das Dokument ist unten angefügt - viel Vergnügen bei der Lektüre ... Oracle White Paper: SOA Anti-Patterns.

    Read the article

  • ROA on top of SOA

    - by Vaibhav Pujari
    I already have a stable Service Oriented Architecture for my application which exposes services as API calls. (the verbs) Now, I need to build a Resource Oriented Architecture to expose a RESTful API to interact with the application objects. (the nouns) What are the best practices to reuse the existing services: - without any persistence inside my new code. - without putting unnecessary logic into the REST layer i.e. it should ideally just leverage the services provided by SOA API. I want this layer to be as thin as possible. - without modifying the existing SOA API - allow easy extension of the REST API i.e. it should be easy to add more resources without changing the (yet to be written) core code. (I want to make resource names and their associated actions configurable so more contributors can easily add resources without a need to understand my module) Any advices/suggestions how to achieve this? Edit: Adding more info My Stack: My existing stacks is in Java. But since I plan to just use the services, I don't think that should affect the design of new REST code. I am planning to implement the new REST code in PHP. How well the services map to resources? Some services are mapped well i.e. there are services for creating, updating application objects. But for other application objects, there are no direct services available. More importantly, there are actions beyond just create, update etc. that apply to application objects. And I would like to provide some way for these actions to be exposed through REST. Since these are verbs, how do I deal with them? Where exactly I need help? I would appreciate any help towards high level design to accomplish the task along-with making the framework extendible. For instance, tomorrow there are some new services added to my SOA layer, I want to make sure it is easy for a fresh developer to write a REST call by simply registering a new resource (in a config file/db) and write code for connecting it with SOA calls. Just like plugin.

    Read the article

  • Has Little Endian won?

    - by espertus
    When teaching recently about the Big vs. Little Endian battle, a student asked whether it had been settled, and I realized I didn't know. Looking at the Wikipedia article, it seems that the most popular current OS/architecture pairs use Little Endian but that Internet Protocol specifies Big Endian for transferring numeric values in packet headers. Would that be a good summary of the current status? Do current network cards or CPUs provide hardware support for switching byte order?

    Read the article

  • What is Database Continuous Integration?

    - by SQLDev
    Although not everyone is practicing continuous integration, many have at least heard of the concept. A recent poll on www.simple-talk.com indicates that 40% of respondents are employing the technique. It is widely accepted that the earlier issues are identified in the development process, the lower the cost to the development process. The worst case scenario, of course, is for the bug to be found by the customer following the product release. A number of Agile development best practices have evolved to combat this problem early in the development process, including pair programming, code inspections and unit testing. Continuous integration is one such Agile concept that tackles the problem at the point of committing a change to source control. This can alternatively be run on a regular schedule. This triggers a sequence of events that compiles the code and performs a variety of tests. Often the continuous integration process is regarded as a build validation test, and if issues were to be identified at this stage, the testers would simply not 'waste their time ' and touch the build at all. Such a ‘broken build’ will trigger an alert and the development team’s number one priority should be to resolve the issue. How application code is compiled and tested as part of continuous integration is well understood. However, this isn’t so clear for databases. Indeed, before I cover the mechanics of implementation, we need to decide what we mean by database continuous integration. For me, database continuous integration can be implemented as one or more of the following: 1)      Your application code is being compiled and tested. You therefore need a database to be maintained at the corresponding version. 2)      Just as a valid application should compile, so should the database. It should therefore be possible to build a new database from scratch. 3)     Likewise, it should be possible to generate an upgrade script to take your already deployed databases to the latest version. I will be covering these in further detail in future blogs. In the meantime, more information can be found in the whitepaper linked off www.red-gate.com/ci If you have any questions, feel free to contact me directly or post a comment to this blog post.

    Read the article

  • What is Database Continuous Integration?

    - by David Atkinson
    Although not everyone is practicing continuous integration, many have at least heard of the concept. A recent poll on www.simple-talk.com indicates that 40% of respondents are employing the technique. It is widely accepted that the earlier issues are identified in the development process, the lower the cost to the development process. The worst case scenario, of course, is for the bug to be found by the customer following the product release. A number of Agile development best practices have evolved to combat this problem early in the development process, including pair programming, code inspections and unit testing. Continuous integration is one such Agile concept that tackles the problem at the point of committing a change to source control. This can alternatively be run on a regular schedule. This triggers a sequence of events that compiles the code and performs a variety of tests. Often the continuous integration process is regarded as a build validation test, and if issues were to be identified at this stage, the testers would simply not 'waste their time ' and touch the build at all. Such a ‘broken build’ will trigger an alert and the development team’s number one priority should be to resolve the issue. How application code is compiled and tested as part of continuous integration is well understood. However, this isn’t so clear for databases. Indeed, before I cover the mechanics of implementation, we need to decide what we mean by database continuous integration. For me, database continuous integration can be implemented as one or more of the following: 1)      Your application code is being compiled and tested. You therefore need a database to be maintained at the corresponding version. 2)      Just as a valid application should compile, so should the database. It should therefore be possible to build a new database from scratch. 3)     Likewise, it should be possible to generate an upgrade script to take your already deployed databases to the latest version. I will be covering these in further detail in future blogs. In the meantime, more information can be found in the whitepaper linked off www.red-gate.com/ci If you have any questions, feel free to contact me directly or post a comment to this blog post.

    Read the article

  • Should I organize my folders by business domain or by technical domain?

    - by Florian Margaine
    For example, if I'm using some MVC-like architecture, which folder structure should I use: domain1/ controller model view domain2/ controller model view Or: controllers/ domain1 domain2 models/ domain1 domain2 views/ domain1 domain2 I deliberately left out file extensions to keep this question language-agnostic. Personally, I'd prefer to separate by business domain (gut feeling), but I see that most/many frameworks separate by technical domain. Why whould I choose one over the other?

    Read the article

  • Instruction vs data cache usage

    - by Nick Rosencrantz
    Say I've got a cache memory where instruction and data have different cache memories ("Harvard architecture"). Which cache, instruction or data, is used most often? I mean "most often" as in time, not amount of data since data memory might be used "more" in terms of amount of data while instruction cache might be used "more often" especially depending on the program. Are there different answers a) in general and b) for a specific program?

    Read the article

  • Do you test your SQL/HQL/Criteria ?

    - by 0101
    Do you test your SQL or SQL generated by your database framework? There are frameworks like DbUnit that allow you to create real in-memory database and execute real SQL. But its very hard to use(not developer-friendly so to speak), because you need to first prepare test data(and it should not be shared between tests). P.S. I don't mean mocking database or framework's database methods, but tests that make you 99% sure that your SQL is working even after some hardcore refactoring.

    Read the article

  • REST and PayPal

    - by Nikolay Fominyh
    Is it ok to query REST API and get redirect to third party from it, or it is only about resources? Let's look at following scenario: User gets to payment page User clicks on "Pay using paypal button" API query PayPal for redirect url API returns redirect url in response. Client side redirect goes here. User does PayPal routine and returns with token User query API with token API do token check and adds money Is this scenario complex for REST architecture?

    Read the article

  • Pay in the future should make you think in the present

    - by BuckWoody
    Distributed Computing - and more importantly “-as-a-Service” models of computing have a different cost model. This is something that sounds obvious on the surface but it’s often forgotten during the design and coding phase of a project. In on-premises computing, we’re used to purchasing a server and all of the hardware infrastructure and software licenses needed not only for one project, but several. This is an up-front or “sunk” cost that we consume by running code the organization needs to perform its function. Using a direct connection over wires you’ve already paid for, we don’t often have to think about bandwidth, hits on the data store or the amount of compute we use - we just know more is better. In a pay-as-you-go model, however, each of these architecture decisions has a potential cost impact. The amount of data you store, the number of times you access it, and the amount you send back all come with a charge. The offset is that you don’t buy anything at all up-front, so that sunk cost is freed up. And financial professionals know that money now is worth more than money later. Saving that up-front cost allows you to invest it in other things. It’s not just that you’re using things that now cost money - it’s that the design itself in distributed computing has a cost impact. That can be a really good thing, such as when you dynamically add capacity for paying customers. If you can tie back the cost of a series of clicks to what a user will pay to do so, you can set a profit margin that is easy to track. Here’s a case in point: Assume you are using a large instance in Windows Azure to compute some data that you retrieve from a SQL Azure database. If you don’t monitor the path of the application, you may not know what you are really using. Since you’re paying by the size of the instance, it’s best to maximize it all the time. Recently I evaluated just this situation, and found that downsizing the instance and adding another one where needed, adding a caching function to the application, moving part of the data into Windows Azure tables not only increased the speed of the application, but reduced the cost and more closely tied the cost to the profit. The key is this: from the very outset - the design - make sure you include metrics to measure for the cost/performance (sometimes these are the same) for your application. Windows Azure opens up awesome new ways of doing things, so make sure you study distributed systems architecture before you try and force in the application design you have on premises into your new application structure.

    Read the article

  • .Net Application & Database Modularity/Reuse

    - by Martaver
    I'm looking for some guidance on how to architect an app with regards to modularity, separation of concerns and re-usability. I'm working on an application (ASP.Net, C#) that has distinctly generic chunks of functionality, that I'd love to be able to lift out, all layers, into re-usable components. This means the module handles the database schema, data access, API, everything so that the next time I want to use it I can just register the module and hook into it. Developing modules of re-usable functionality is a no-brainer, but what is really confusing me is what to do when it comes to handling a core re-usable database schema that serves the module's functionality. In an ideal world, I would register a module and it would ensure that the associated database schema exists in the DB. I would code on the assumption that the tables exist, calling the module's functionality through the DLL, agnostic of the database layer. Kind of like Enterprise Library's Caching/Logging Application Block, which can create a DB schema in the target DB to use as a data store. My Questions is: What do you think is the best way to achieve this, firstly, in terms design architecture, and secondly solution structure. What patterns/frameworks do you know that exist & support this kind of thing? My thoughts so far: I mostly use Entity Framework and SQL Server DB Projects. I thought about a 'black box' approach to modules of functionality. I could use use a code-first approach in EF4, and use the ObjectContext to create a database when the module is initialized. However this means that all of the entities that my module encapsulates would be disconnected from the rest of the application because they belonged to an abstracted ObjectContext. Further - Creating appropriate indexes and references between domain entities and the module's entities would be impossible to do practically. I've thought of adopting Enterprise Library and creating my own Application Blocks. I'm not sure how this would play nice with Entity Framework (if at all) though. I like the idea of building on proven patterns & practices to encapsulate established, reusable functionality. I thought of abandoning Entity Framework for the Module, and just creating a separate DB schema for the module with its own set of stored procedures & ADO.Net. Then deploying the script at run-time if interrogation shows that it doesn't exist. But once again, for application developing outside of the application, I would want to use Entity Framework and I would have to use the module separately, disconnected from the domain ObjectContext. Has anyone had experience developing these sorts of full-stack modules? What advice can you offer? Am I biting off more than I can chew?

    Read the article

  • Current State EA: Focus on the Integration!!!

    - by Eric A. Stephens
    A recent project has me at the front end of a large implementation effort covering multiple software components. In addition to the challenges of integrating 15-20 separate and new software components there is the challenge of integrating the portfolio into an existing environment. Like other clients I've worked with and other environments I've worked in for many years, this is typical. The applications are undocumented and under patched leading to a mystery for any architect leading change.  We can boil down most architecture development methodologies (ADM) into first understanding the current/baseline state and then envisioning one or more future states. Many pundits emphasize the need to focus on the future/target states. I agree since enterprise architecture (EA) is about where you are going and not so much where you have been. But to be effective in the future, I contend some focused time needs to be spent on the current state. And specifically on the integration. Integration is always the difficult part of a project (I might put it more coarsely at a cocktail party). While I don't have a case study, my anecdotal experience suggests poorly integrated application portfolios tend to cost more to operate and create entropy when trying to respond to new changes and opportunities. In the aforementioned project, I was able to get one of our EAs assigned to focus on just integration almost immediately. While we're still early in the process, this EA is uncovering all sorts of information that will greatly assist our future state planning for this solution. This information is driving early decision making that we anticipate will accelerate our efforts moving forward. #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }

    Read the article

  • What could be some objective criteria to compare languages? [closed]

    - by rvcoutinho
    I am performing a study on different programming languages (and its related technologies) for a mature corporate architecture. In order to conduct these studies, I need formulate some criteria prior to this evaluation. Some general (and well known) criteria are: readability, writability, reliability, cost and others (such as well-definedness, generality and portability). That said, I present the following questions: What criteria should I not forget? How to make these criteria objective?

    Read the article

  • How to mount an Oracle database to new instance?

    - by Vimvq1987
    I have an instance of Oracle 10g R2 installed on Windows Server 2003. This instance was running an database, which does not have any backup. Now the OS went down, and could not repaired, all I got is the running files of the old instance. How can I restore the database from these files to new instance? A step-by-step guide will be much appreciated because I'm new with Oracle. Thank you very much

    Read the article

  • Cannot Attach Database in SQL Express More Than Two Directories Deep?

    - by Dave Mackey
    I have a database in one of my Visual Studio Express projects. I want to attach it to my local SQLEXPRESS instance so I can run aspnet_regsql on it and add the membership database. When I select Attach Databases and then attempt to browse to the files (C:\Users\username\Documents\Visual Studio 2010\Projects\nameofproject) it only lets me navigate to C:\Users\username...Why? How can I fix this?

    Read the article

< Previous Page | 103 104 105 106 107 108 109 110 111 112 113 114  | Next Page >