Search Results

Search found 20827 results on 834 pages for 'check'.

Page 108/834 | < Previous Page | 104 105 106 107 108 109 110 111 112 113 114 115  | Next Page >

  • Can I share data between two users in an ASP.NET Application?

    - by Dave
    I have an issue with Roles.IsUserInRole function. It take hell amount of time to just check if the logged-in user is in particular role(typ 3-9 sec). I searched to find a solution and arrived on this but I am not sure If I have fully grasped it. What I got from the above, A new derived class is created. Inside that class, there is a list which retrieves all user at once. The next time you check IsUserInRole, you do not use the actual IsUserInRole method but rather use the one you overrode in your class. Is this the correct description? Am I on track? My question is, can data be share between two different users in ASP.NET application? If yes, will the shared data exist only if there is at least one user logged in. If all users logs out, that shared data is destroyed? My point is this data will be created only one time whenever a user logs in. For all subsequent users they can use this data and check their roles against the list? I need a detailed answer. My application has users and different roles. We are using ASP.NET roles.

    Read the article

  • Is it better to return NULL or empty values from functions/methods where the return value is not present?

    - by P B
    I am looking for a recommendation here. I am struggling with whether it is better to return NULL or an empty value from a method when the return value is not present or cannot be determined. Take the following two methods as an examples: string ReverseString(string stringToReverse) // takes a string and reverses it. Person FindPerson(int personID) // finds a Person with a matching personID. In ReverseString(), I would say return an empty string because the return type is string, so the caller is expecting that. Also, this way, the caller would not have to check to see if a NULL was returned. In FindPerson(), returning NULL seems like a better fit. Regardless of whether or not NULL or an empty Person Object (new Person()) is returned the caller is going to have to check to see if the Person Object is NULL or empty before doing anything to it (like calling UpdateName()). So why not just return NULL here and then the caller only has to check for NULL. Does anyone else struggle with this? Any help or insight is appreciated.

    Read the article

  • How to fix a Corrupted USB

    - by Help
    My USB stick has suddenly stopped working. It's a Busbi 4GB. My USB used to be G:/ but as soon as I plugged it in, I used to get a pop up box showing that it was plugged in. Now, when I plug this in, it shows as I:/ and no pop up box appears. It shows in my computer as I:/ and when I click to open it says I:/ is not accessible the disk structure is corrupted and unreadable. I have tried to change the file name back to G:/ but nothing happened (this was under disk management). On disk management, it shows Volume as I:/ Layout simple Type Basic File system RAW status Healthy (Active,Primary partition) Capacity 3.42GB. I've tried right clicking properties then the tab tools and click error checking (this option will check the volume for errors). When I click "check now" it comes up with the disk check could not be performed because Windows cannot access the disk.

    Read the article

  • sync two huge filesystems

    - by guettli
    I need to sync two huge file systems. Both sides run linux with full root access. My preferred solution: I can read the list of changed files and directories and sync only the changed files. Here are some solutions and why they don't fit: rsync: Needs to check recursively all files. There are some million files and only little changes. The check takes too long. unison: the same: needs to check all files. inotify: I need a handler for every directory and there too many. Inotify was not build for "watch all files" scenarios. DRDB: Both sides should run independent.

    Read the article

  • Automate Monitor string in different log files

    - by EVIA
    I have few log files in different servers and I want to check output in the end of those log files for e.g . success: 4000 failed: 200 These logs files are getting generated daily and I have to keep track of these numbers. If there is any way I can automate this option instead of going and checking these files and wasting so much of my time. I want to create some kind of script like Go to \serverA\C$\log_07_02_2012.txt and check this line Go to \serverB\C$\log_07_02_2012.txt and check some other line. .... and it should give me output from all of these...

    Read the article

  • cmake doesn't work in windows XP

    - by Runner
    I'm new with cmake,just installed it and following this article: http://www.cs.swarthmore.edu/~adanner/tips/cmake.php D:\Works\c\cmake\build>cmake .. -- Building for: NMake Makefiles CMake Warning at CMakeLists.txt:2 (project): To use the NMake generator, cmake must be run from a shell that can use the compiler cl from the command line. This environment does not contain INCLUDE, LIB, or LIBPATH, and these must be set for the cl compiler to work. -- The C compiler identification is unknown -- The CXX compiler identification is unknown CMake Warning at D:/Tools/CMake 2.8/share/cmake-2.8/Modules/Platform/Windows-cl.cmake:32 (ENABLE_LANGUAGE): To use the NMake generator, cmake must be run from a shell that can use the compiler cl from the command line. This environment does not contain INCLUDE, LIB, or LIBPATH, and these must be set for the cl compiler to work. Call Stack (most recent call first): D:/Tools/CMake 2.8/share/cmake-2.8/Modules/CMakeCInformation.cmake:58 (INCLUDE) CMakeLists.txt:2 (project) CMake Error: your RC compiler: "CMAKE_RC_COMPILER-NOTFOUND" was not found. Please set CMAKE_RC_COMPILER to a valid compiler path or name. -- Check for CL compiler version -- Check for CL compiler version - failed -- Check if this is a free VC compiler -- Check if this is a free VC compiler - yes -- Using FREE VC TOOLS, NO DEBUG available -- Check for working C compiler: cl CMake Warning at CMakeLists.txt:2 (PROJECT): To use the NMake generator, cmake must be run from a shell that can use the compiler cl from the command line. This environment does not contain INCLUDE, LIB, or LIBPATH, and these must be set for the cl compiler to work. CMake Warning at D:/Tools/CMake 2.8/share/cmake-2.8/Modules/Platform/Windows-cl.cmake:32 (ENABLE_LANGUAGE): To use the NMake generator, cmake must be run from a shell that can use the compiler cl from the command line. This environment does not contain INCLUDE, LIB, or LIBPATH, and these must be set for the cl compiler to work. Call Stack (most recent call first): D:/Tools/CMake 2.8/share/cmake-2.8/Modules/CMakeCInformation.cmake:58 (INCLUDE) CMakeLists.txt:2 (PROJECT) CMake Error at D:/Tools/CMake 2.8/share/cmake-2.8/Modules/CMakeRCInformation.cmake:22 (GET_FILENAME_COMPONENT): get_filename_component called with incorrect number of arguments Call Stack (most recent call first): D:/Tools/CMake 2.8/share/cmake-2.8/Modules/Platform/Windows-cl.cmake:32 (ENABLE_LANGUAGE) D:/Tools/CMake 2.8/share/cmake-2.8/Modules/CMakeCInformation.cmake:58 (INCLUDE) CMakeLists.txt:2 (PROJECT) CMake Error: CMAKE_RC_COMPILER not set, after EnableLanguage CMake Error: your C compiler: "cl" was not found. Please set CMAKE_C_COMPILER to a valid compiler path or name. CMake Error: Internal CMake error, TryCompile configure of cmake failed -- Check for working C compiler: cl -- broken CMake Error at D:/Tools/CMake 2.8/share/cmake-2.8/Modules/CMakeTestCCompiler.cmake:52 (MESSAGE): The C compiler "cl" is not able to compile a simple test program. It fails with the following output: CMake will not be able to correctly generate this project. Call Stack (most recent call first): CMakeLists.txt:2 (project) CMake Error: your C compiler: "cl" was not found. Please set CMAKE_C_COMPILER to a valid compiler path or name. CMake Error: your CXX compiler: "cl" was not found. Please set CMAKE_CXX_COMPILER to a valid compiler path or name. -- Configuring incomplete, errors occurred! What are the complete requirement to use cmake successfully in windows XP?I've already installed Visual Studio under D:\Tools\Microsoft Visual Studio 9.0

    Read the article

  • clojure.algo.monad strange m-plus behaviour with parser-m - why is second m-plus evaluated?

    - by Mark Fisher
    I'm getting unexpected behaviour in some monads I'm writing. I've created a parser-m monad with (def parser-m (state-t maybe-m)) which is pretty much the example given everywhere (here, here and here) I'm using m-plus to act a kind of fall-through query mechanism, in my case, it first reads values from a cache (database), if that returns nil, the next method is to read from "live" (a REST call). However, the second value in the m-plus list is always called, even though its value is disgarded (if the cache hit was good) and the final return is that of the first monadic function. Here's a cutdown version of the issue i'm seeing, and some solutions I found, but I don't know why. My questions are: Is this expected behaviour or a bug in m-plus? i.e. will the 2nd method in a m-plus list always be evaluated if the first item returns a value? Minor in comparison to the above, but if i remove the call _ (fetch-state) from checker, when i evaluate that method, it prints out the messages for the functions the m-plus is calling (when i don't think it should). Is this also a bug? Here's a cut-down version of the code in question highlighting the problem. It simply checks key/value pairs passed in are same as the initial state values, and updates the state to mark what it actually ran. (ns monods.monad-test (:require [clojure.algo.monads :refer :all])) (def parser-m (state-t maybe-m)) (defn check-k-v [k v] (println "calling with k,v:" k v) (domonad parser-m [kv (fetch-val k) _ (do (println "k v kv (= kv v)" k v kv (= kv v)) (m-result 0)) :when (= kv v) _ (do (println "passed") (m-result 0)) _ (update-val :ran #(conj % (str "[" k " = " v "]"))) ] [k v])) (defn filler [] (println "filler called") (domonad parser-m [_ (fetch-state) _ (do (println "filling") (m-result 0)) :when nil] nil)) (def checker (domonad parser-m [_ (fetch-state) result (m-plus ;; (filler) ;; intitially commented out deliberately (check-k-v :a 1) (check-k-v :b 2) (check-k-v :c 3))] result)) (checker {:a 1 :b 2 :c 3 :ran []}) When I run this as is, the output is: > (checker {:a 1 :b 2 :c 3 :ran []}) calling with k,v: :a 1 calling with k,v: :b 2 calling with k,v: :c 3 k v kv (= kv v) :a 1 1 true passed k v kv (= kv v) :b 2 2 true passed [[:a 1] {:a 1, :b 2, :c 3, :ran ["[:a = 1]"]}] I don't expect the line k v kv (= kv v) :b 2 2 true to show at all. The first function to m-plus (as seen in the final output) is what is returned from it. Now, I've found if I pass a filler into m-plus that does nothing (i.e. uncomment the (filler) line) then the output is correct, the :b value isn't evaluated. If I don't have the filler method, and make the first method test fail (i.e. change it to (check-k-v :a 2) then again everything is good, I don't get a call to check :c, only a and b are tested. From my understanding of what the state-t maybe-m transformation is giving me, then the m-plus function should look like: (defn m-plus [left right] (fn [state] (if-let [result (left state)] result (right state)))) which would mean that right isn't called unless left returns nil/false. I'd be interested to know if my understanding is correct or not, and why I have to put the filler method in to stop the extra evaluation (whose effects I don't want to happen). Apologies for the long winded post!

    Read the article

  • reading the file name from user input in MIPS assembly

    - by Hassan Al-Jeshi
    I'm writing a MIPS assembly code that will ask the user for the file name and it will produce some statistics about the content of the file. However, when I hard code the file name into a variable from the beginning it works just fine, but when I ask the user to input the file name it does not work. after some debugging, I have discovered that the program adds 0x00 char and 0x0a char (check asciitable.com) at the end of user input in the memory and that's why it does not open the file based on the user input. anyone has any idea about how to get rid of those extra chars, or how to open the file after getting its name from the user?? here is my complete code (it is working fine except for the file name from user thing, and anybody is free to use it for any purpose he/she wants to): .data fin: .ascii "" # filename for input msg0: .asciiz "aaaa" msg1: .asciiz "Please enter the input file name:" msg2: .asciiz "Number of Uppercase Char: " msg3: .asciiz "Number of Lowercase Char: " msg4: .asciiz "Number of Decimal Char: " msg5: .asciiz "Number of Words: " nline: .asciiz "\n" buffer: .asciiz "" .text #----------------------- li $v0, 4 la $a0, msg1 syscall li $v0, 8 la $a0, fin li $a1, 21 syscall jal fileRead #read from file move $s1, $v0 #$t0 = total number of bytes li $t0, 0 # Loop counter li $t1, 0 # Uppercase counter li $t2, 0 # Lowercase counter li $t3, 0 # Decimal counter li $t4, 0 # Words counter loop: bge $t0, $s1, end #if end of file reached OR if there is an error in the file lb $t5, buffer($t0) #load next byte from file jal checkUpper #check for upper case jal checkLower #check for lower case jal checkDecimal #check for decimal jal checkWord #check for words addi $t0, $t0, 1 #increment loop counter j loop end: jal output jal fileClose li $v0, 10 syscall fileRead: # Open file for reading li $v0, 13 # system call for open file la $a0, fin # input file name li $a1, 0 # flag for reading li $a2, 0 # mode is ignored syscall # open a file move $s0, $v0 # save the file descriptor # reading from file just opened li $v0, 14 # system call for reading from file move $a0, $s0 # file descriptor la $a1, buffer # address of buffer from which to read li $a2, 100000 # hardcoded buffer length syscall # read from file jr $ra output: li $v0, 4 la $a0, msg2 syscall li $v0, 1 move $a0, $t1 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg3 syscall li $v0, 1 move $a0, $t2 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg4 syscall li $v0, 1 move $a0, $t3 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg5 syscall addi $t4, $t4, 1 li $v0, 1 move $a0, $t4 syscall jr $ra checkUpper: blt $t5, 0x41, L1 #branch if less than 'A' bgt $t5, 0x5a, L1 #branch if greater than 'Z' addi $t1, $t1, 1 #increment Uppercase counter L1: jr $ra checkLower: blt $t5, 0x61, L2 #branch if less than 'a' bgt $t5, 0x7a, L2 #branch if greater than 'z' addi $t2, $t2, 1 #increment Lowercase counter L2: jr $ra checkDecimal: blt $t5, 0x30, L3 #branch if less than '0' bgt $t5, 0x39, L3 #branch if greater than '9' addi $t3, $t3, 1 #increment Decimal counter L3: jr $ra checkWord: bne $t5, 0x20, L4 #branch if 'space' addi $t4, $t4, 1 #increment words counter L4: jr $ra fileClose: # Close the file li $v0, 16 # system call for close file move $a0, $s0 # file descriptor to close syscall # close file jr $ra Note: I'm using MARS Simulator, if that makes any different

    Read the article

  • WordPress: Display Online Users' Avatars

    - by Wade D Ouellet
    Hi, I'm using version 2.7.0 of this WordPress plugin to display which users are currently online (the latest version doesn't work): http://wordpress.org/extend/plugins/wp-useronline/ It's working great but I would love to be able to alter it quickly to display the users' avatars instead of their names. Hoping someone with pretty good knowledge of WordPress queries and functions can help. The part below seems to be the part that handles all this. If this isn't enough, here is the link to download the version I am using with the full php files: http://downloads.wordpress.org/plugin/wp-useronline.2.70.zip // If No Bot Is Found, Then We Check Members And Guests if ( !$bot_found ) { if ( $current_user->ID ) { // Check For Member $user_id = $current_user->ID; $user_name = $current_user->display_name; $user_type = 'member'; $where = $wpdb->prepare("WHERE user_id = %d", $user_id); } elseif ( !empty($_COOKIE['comment_author_'.COOKIEHASH]) ) { // Check For Comment Author (Guest) $user_id = 0; $user_name = trim(strip_tags($_COOKIE['comment_author_'.COOKIEHASH])); $user_type = 'guest'; } else { // Check For Guest $user_id = 0; $user_name = __('Guest', 'wp-useronline'); $user_type = 'guest'; } } // Check For Page Title if ( is_admin() && function_exists('get_admin_page_title') ) { $page_title = ' &raquo; ' . __('Admin', 'wp-useronline') . ' &raquo; ' . get_admin_page_title(); } else { $page_title = wp_title('&raquo;', false); if ( empty($page_title) ) $page_title = ' &raquo; ' . strip_tags($_SERVER['REQUEST_URI']); elseif ( is_singular() ) $page_title = ' &raquo; ' . __('Archive', 'wp-useronline') . ' ' . $page_title; } $page_title = get_bloginfo('name') . $page_title; // Delete Users $delete_users = $wpdb->query($wpdb->prepare(" DELETE FROM $wpdb->useronline $where OR timestamp < CURRENT_TIMESTAMP - %d ", self::$options->timeout)); // Insert Users $data = compact('user_type', 'user_id', 'user_name', 'user_ip', 'user_agent', 'page_title', 'page_url', 'referral'); $data = stripslashes_deep($data); $insert_user = $wpdb->insert($wpdb->useronline, $data); // Count Users Online self::$useronline = intval($wpdb->get_var("SELECT COUNT(*) FROM $wpdb->useronline"));

    Read the article

  • jQuery Selector based on sender

    - by Othman
    I have 4 select inputs with the same options. and I am trying to disable any option that has been selected from one of these selects. <select name="homeTeams[]" onchange="check()"> <option value="1">Team1</option> <option value="2">Team2</option> <option value="3">Team3</option> <option value="4">Team4</option> </select> <select name="homeTeams[]" onchange="check()"> <option value="1">Team1</option> <option value="2">Team2</option> <option value="3">Team3</option> <option value="4">Team4</option> </select> <select name="awayTeams[]" onchange="check()"> <option value="1">Team1</option> <option value="2">Team2</option> <option value="3">Team3</option> <option value="4">Team4</option> </select> <select name="awayTeams[]" onchange="check()"> <option value="1">Team1</option> <option value="2">Team2</option> <option value="3">Team3</option> <option value="4">Team4</option> </select> I am trying to disable the option that has been selected from one of these selectors. I am using jQuery to do it, but I can't get the value based on the sender. Ex: if the user has chosen Team1 from Select 1 the jQuery code will disable the option Team1 from Select2 and Select3 and Select4. function check() { var a = $('select option:selected').val(); alert(a); } it gives me the value of the first select. any Ideas ?

    Read the article

  • how to develop a program to minimize errors in human transcription of hand written surveys

    - by Alex. S.
    I need to develop custom software to do surveys. Questions may be of multiple choice, or free text in a very few cases. I was asked to design a subsystem to check if there is any error in the manual data entry for the multiple choices part. We're trying to speed up the user data entry process and to minimize human input differences between digital forms and the original questionnaires. The surveys are filled with handwritten marks and text by human interviewers, so it's possible to find hard to read marks, or also the user could accidentally select a different value in some question, and we would like to avoid that. The software must include some automatic control to detect possible typing differences. Each answer of the multiple choice questions has the same probability of being selected. This question has two parts: The GUI. The most simple thing I have in mind is to implement the most usable design of the questions display: use of large and readable fonts and space generously the choices. Is there something else? For faster input, I would like to use drop down lists (favoring keyboard over mouse). Given the questions are grouped in sections, I would like to show the answers selected for the questions of that section, but this could slow down the process. Any other ideas? The error checking subsystem. What else can I do to minimize or to check human typos in the multiple choice questions? Is this a solvable problem? is there some statistical methodology to check values that were entered by the users are the same from the hand filled forms? For example, let's suppose the survey has 5 questions, and each has 4 options. Let's say I have n survey forms filled in paper by interviewers, and they're ready to be entered in the software, then how to minimize the accidental differences that can have the manual transcription of the n surveys, without having to double check everything in the 5 questions of the n surveys? My first suggestion is that at the end of the processing of all the hand filled forms, the software could choose some forms randomly to make a double check of the responses in a few instances, but on what criteria can I make this selection? This validation would be enough to cover everything in a significant way? The actual survey is nation level and it has 56 pages with over 200 questions in total, so it will be a lot of hand written pages by many people, and the intention is to reduce the likelihood of errors and to optimize speed in the data entry process. The surveys must filled in paper first, given the complications of taking laptops or handhelds with the interviewers.

    Read the article

  • whats wrong with this php mysql_real_escape_string

    - by skyhigh
    Hi Atomic Number Latin English Abbreviation * check the variables for content */ /*** a list of filters ***/ $filters = array( 'searchtext' => array( 'filter' => FILTER_CALLBACK, 'options' => 'mysql_real_escape_string'), 'fieldname' => array( 'filter' => FILTER_CALLBACK, 'options' => 'mysql_real_escape_string') ); /*** escape all POST variables ***/ $input = filter_input_array(INPUT_POST, $filters); /*** check the values are not empty ***/ if(empty($input['fieldname']) || empty($input['searchtext'])) { echo 'Invalid search'; } else { /*** mysql hostname ***/ $hostname = 'localhost'; /*** mysql username ***/ $username = 'username'; /*** mysql password ***/ $password = 'password'; /*** mysql database name ***/ $dbname = 'periodic_table'; /*** connect to the database ***/ $link = @mysql_connect($hostname, $username, $password); /*** check if the link is a valid resource ***/ if(is_resource($link)) { /*** select the database we wish to use ***/ if(mysql_select_db($dbname, $link) === TRUE) { /*** sql to SELECT information***/ $sql = sprintf("SELECT * FROM elements WHERE %s = '%s'", $input['fieldname'], $input['searchtext']); /*** echo the sql query ***/ echo '<h3>'.$sql.'</h3>'; /*** run the query ***/ $result = mysql_query($sql); /*** check if the result is a valid resource ***/ if(is_resource($result)) { /*** check if we have more than zero rows ***/ if(mysql_num_rows($result) !== 0) { echo '<table>'; while($row=mysql_fetch_array($result)) { echo '<tr> <td>'.$row['atomicnumber'].'</td> <td>'.$row['latin'].'</td> <td>'.$row['english'].'</td> <td>'.$row['abbr'].'</td> </tr>'; } echo '</table>'; } else { /*** if zero results are found.. ***/ echo 'Zero results found'; } } else { /*** if the resource is not valid ***/ 'No valid resource found'; } } /*** if we are unable to select the database show an error ****/ else { echo 'Unable to select database '.$dbname; } /*** close the connection ***/ mysql_close($link); } else { /*** if we fail to connect ***/ echo 'Unable to connect'; } } } else { echo 'Please Choose An Element'; } ? I got this code from phppro.org tutorials site and i tried to run it. It gives Warning: mysql_real_escape_string() [function.mysql-real-escape-string]: A link to the server could not be established. .... Warning: mysql_real_escape_string() [function.mysql-real-escape-string]: Access denied for user 'ODBC'@'localhost' (using password: NO).... I went to php.net and look it up "Note: A MySQL connection is required before using mysql_real_escape_string() otherwise an error of level E_WARNING is generated, and FALSE is returned. If link_identifier isn't defined, the last MySQL connection is used." My questions are: 1-why they put single quotation around mysql_real_escape_string ? 2-They should establish a connection first, then use the $filter array statement with mysql_real_escape_string ?

    Read the article

  • PHP Parse Error unexpected '{'

    - by Laxmidi
    Hi, I'm getting a "Parse error: syntax error, unexpected '{' in line 2". And I don't see the problem. <?php class pointLocation {     var $pointOnVertex = true; // Check if the point sits exactly on one of the vertices     function pointLocation() {     }                   function pointInPolygon($point, $polygon, $pointOnVertex = true) {         $this->pointOnVertex = $pointOnVertex;                  // Transform string coordinates into arrays with x and y values         $point = $this->pointStringToCoordinates($point);         $vertices = array();          foreach ($polygon as $vertex) {             $vertices[] = $this->pointStringToCoordinates($vertex);          }                  // Check if the point sits exactly on a vertex         if ($this->pointOnVertex == true and $this->pointOnVertex($point, $vertices) == true) {             return "vertex";         }                  // Check if the point is inside the polygon or on the boundary         $intersections = 0;          $vertices_count = count($vertices);              for ($i=1; $i < $vertices_count; $i++) {             $vertex1 = $vertices[$i-1];              $vertex2 = $vertices[$i];             if ($vertex1['y'] == $vertex2['y'] and $vertex1['y'] == $point['y'] and $point['x'] > min($vertex1['x'], $vertex2['x']) and $point['x'] < max($vertex1['x'], $vertex2['x'])) { // Check if point is on an horizontal polygon boundary                 return "boundary";             }             if ($point['y'] > min($vertex1['y'], $vertex2['y']) and $point['y'] <= max($vertex1['y'], $vertex2['y']) and $point['x'] <= max($vertex1['x'], $vertex2['x']) and $vertex1['y'] != $vertex2['y']) {                  $xinters = ($point['y'] - $vertex1['y']) * ($vertex2['x'] - $vertex1['x']) / ($vertex2['y'] - $vertex1['y']) + $vertex1['x'];                  if ($xinters == $point['x']) { // Check if point is on the polygon boundary (other than horizontal)                     return "boundary";                 }                 if ($vertex1['x'] == $vertex2['x'] || $point['x'] <= $xinters) {                     $intersections++;                  }             }          }          // If the number of edges we passed through is even, then it's in the polygon.          if ($intersections % 2 != 0) {             return "inside";         } else {             return "outside";         }     }               function pointOnVertex($point, $vertices) {         foreach($vertices as $vertex) {             if ($point == $vertex) {                 return true;             }         }          }                   function pointStringToCoordinates($pointString) {         $coordinates = explode(" ", $pointString);         return array("x" => $coordinates[0], "y" => $coordinates[1]);     }           } $pointLocation = new pointLocation(); $points = array("30 19", "0 0", "10 0", "30 20", "11 0", "0 11", "0 10", "30 22", "20 20"); $polygon = array("10 0", "20 0", "30 10", "30 20", "20 30", "10 30", "0 20", "0 10", "10 0"); foreach($points as $key => $point) { echo "$key ($point) is " . $pointLocation->pointInPolygon($point, $polygon) . "<br>"; } ?> Does anyone see the problem? Thanks, -Laxmidi

    Read the article

  • Can you call FB.login inside a callback from other FB methods (like FB.getLoginStatus) without triggering popup blockers?

    - by Erik Kallevig
    I'm trying to set up a pretty basic authentication logic flow with the FB JavaScript SDK to check a user's logged-in status and permissions before performing an action (and prompting the user to login with permissions if they are not)... User types a message into a textarea on my site to post to their Facebook feed and click's a 'post to facebook' button on my site. In response to the click, I check user's logged in status with FB.getLoginStatus In the callback to FB.getLoginStatus, if user is not logged in, prompt them to login (FB.login). In the callback to FB.login I then need to make sure they have the right permissions so I make a call to FB.api('/me/permissions') -- if they don't , I again prompt them to login (FB.login) The problem I'm running into is that anytime I try to call FB.login inside a callback to other FB methods, the browser seems to lose track of the origin of execution (the click) and thus will block the popup. I'm wondering if I'm missing some way to prompt the user to login after checking their status without the browser mistakenly thinking that it's not a user-initiated popup? I've currently fallen back to just calling FB.login() first regardless. The undesired side effect of this approach, however, is that if the user is already logged-in with permissions and I'm still calling FB.login, the auth popup will open and close immediately before continuing, which looks rather buggy despite being functional. It seems like checking a user's login status and permissions before doing something would be a common flow so I feel like I'm missing something. Here's some example code. <div onclick="onClickPostBtn()">Post to Facebook</div> <script> // Callback to click on Post button. function onClickPostBtn() { // Check if logged in, prompt to do so if not. FB.getLoginStatus(function(response) { if (response.status === 'connected') { checkPermissions(response.authResponse.accessToken); } else { FB.login(function(){}, {scope: 'publish_stream'}) } }); } // Logged in, check permissions. function checkPermissions(accessToken) { FB.api('/me/permissions', {'access_token': accessToken}, function(response){ // Logged in and authorized for this site. if (response.data && response.data.length) { // Parse response object to check for permission here... if (hasPermission) { // Logged in with permission, perform some action. } else { // Logged in without proper permission, request login with permissions. FB.login(function(){}, {scope: 'publish_stream'}) } // Logged in to FB but not authorized for this site. } else { FB.login(function(){}, {scope: 'publish_stream'}) } } ); } </script>

    Read the article

  • Problem carrying Session over to other pages

    - by AAA
    I am able to login a user, but while processing to the next page (memebers area) I can't display any user info let alone print the $_SESSION[email]. I am not sure what's up. Below is the login code and the testing members are page. Login page: session_start(); //also in a real app you would get the id dynamically $sql = "select `email`, `password` from `accounts` where `email` = '$_POST[email]'"; $query = mysql_query($sql) or die ("Error: ".mysql_error()); while ($row = mysql_fetch_array($query)){ $email = $row['email']; $secret = $row['password']; //we will echo these into the proper fields } mysql_free_result($query); // Process the POST variables $email = $_POST["email"]; //Variables $_SESSION["email"] = $_POST["email"]; $secret = $info['password']; //Checks if there is a login cookie if(isset($_COOKIE['ID_my_site'])) //if there is, it logs you in and directes you to the members page { $email = $_COOKIE['ID_my_site']; $pass = $_COOKIE['Key_my_site']; $check = mysql_query("SELECT email, password FROM accounts WHERE email = '$email'")or die(mysql_error()); while($info = mysql_fetch_array( $check )) { if (@ $info['password'] != $pass) { } else { header("Location: home.php"); } } } //if the login form is submitted if (isset($_POST['submit'])) { // if form has been submitted // makes sure they filled it in if(!$_POST['email'] | !$_POST['password']) { die('You did not fill in a required field.'); } // checks it against the database if (!get_magic_quotes_gpc()) { $_POST['email'] = addslashes($_POST['email']); } $check = mysql_query("SELECT email,password FROM accounts WHERE email = '".$_POST['email']."'")or die(mysql_error()); //Gives error if user dosen't exist $check2 = mysql_num_rows($check); if ($check2 == 0) { die('That user does not exist in our database. <a href=add.php>Click Here to Register</a>'); } while($info = mysql_fetch_array( $check )) //gives error if the password is wrong if (@ $_POST['password'] != $info['password']) { die('Incorrect password, please try again'); } else { // if login is ok then we add a cookie $_POST['email'] = stripslashes($_POST['email']); $hour = time() + 3600; setcookie(ID_my_site, $_POST['email'], $hour); setcookie(Key_my_site, $_POST['password'], $hour); //then redirect them to the members area header("Location: home.php"); } } } else { // if they are not logged in ?> <?php } ?> home.php session_start(); if(!isset($_SESSION['email'])) { header('Location: login_test3.php'); die('<a href="login_test3.php">Login first!</a>'); } //Variables $_SESSION["email"] = $email; print $_SESSION['name']; UPDATE Just realized the existing code gets in to the home.php file but will not echo anything. But as soon as you hit refresh the session is gone.

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

  • dns queries not using nscd for caching

    - by xenoterracide
    I'm trying to use nscd (Nameservices Cache Daemon) to cache dns locally so I can stop using bind to do it. I've gotten it started and ntpd seems to attempt to use it. But everything else for hosts seems to ignore it. e.g if I do dig apache.org 3 times none of them will hit the cache. I'm viewing the cache stats using nscd -g to determine whether it's been used. I've also turned the debug log level up to see if I can see it hitting and the queries don't even hit nscd. nsswitch.conf # Begin /etc/nsswitch.conf passwd: files group: files shadow: files publickey: files hosts: cache files dns networks: files protocols: files services: files ethers: files rpc: files netgroup: files # End /etc/nsswitch.confenter code here nscd.conf # # /etc/nscd.conf # # An example Name Service Cache config file. This file is needed by nscd. # # Legal entries are: # # logfile <file> # debug-level <level> # threads <initial #threads to use> # max-threads <maximum #threads to use> # server-user <user to run server as instead of root> # server-user is ignored if nscd is started with -S parameters # stat-user <user who is allowed to request statistics> # reload-count unlimited|<number> # paranoia <yes|no> # restart-interval <time in seconds> # # enable-cache <service> <yes|no> # positive-time-to-live <service> <time in seconds> # negative-time-to-live <service> <time in seconds> # suggested-size <service> <prime number> # check-files <service> <yes|no> # persistent <service> <yes|no> # shared <service> <yes|no> # max-db-size <service> <number bytes> # auto-propagate <service> <yes|no> # # Currently supported cache names (services): passwd, group, hosts, services # logfile /var/log/nscd.log threads 4 max-threads 32 server-user nobody # stat-user somebody debug-level 9 # reload-count 5 paranoia no # restart-interval 3600 enable-cache passwd yes positive-time-to-live passwd 600 negative-time-to-live passwd 20 suggested-size passwd 211 check-files passwd yes persistent passwd yes shared passwd yes max-db-size passwd 33554432 auto-propagate passwd yes enable-cache group yes positive-time-to-live group 3600 negative-time-to-live group 60 suggested-size group 211 check-files group yes persistent group yes shared group yes max-db-size group 33554432 auto-propagate group yes enable-cache hosts yes positive-time-to-live hosts 3600 negative-time-to-live hosts 20 suggested-size hosts 211 check-files hosts yes persistent hosts yes shared hosts yes max-db-size hosts 33554432 enable-cache services yes positive-time-to-live services 28800 negative-time-to-live services 20 suggested-size services 211 check-files services yes persistent services yes shared services yes max-db-size services 33554432 resolv.conf # Generated by dhcpcd from eth0 nameserver 127.0.0.1 domain westell.com nameserver 192.168.1.1 nameserver 208.67.222.222 nameserver 208.67.220.220 as kind of a side note I'm using archlinux.

    Read the article

  • dns queries not using nscd for caching

    - by xenoterracide
    I'm trying to use nscd (Nameservices Cache Daemon) to cache dns locally so I can stop using bind to do it. I've gotten it started and ntpd seems to attempt to use it. But everything else for hosts seems to ignore it. e.g if I do dig apache.org 3 times none of them will hit the cache. I'm viewing the cache stats using nscd -g to determine whether it's been used. I've also turned the debug log level up to see if I can see it hitting and the queries don't even hit nscd. nsswitch.conf # Begin /etc/nsswitch.conf passwd: files group: files shadow: files publickey: files hosts: cache files dns networks: files protocols: files services: files ethers: files rpc: files netgroup: files # End /etc/nsswitch.confenter code here nscd.conf # # /etc/nscd.conf # # An example Name Service Cache config file. This file is needed by nscd. # # Legal entries are: # # logfile <file> # debug-level <level> # threads <initial #threads to use> # max-threads <maximum #threads to use> # server-user <user to run server as instead of root> # server-user is ignored if nscd is started with -S parameters # stat-user <user who is allowed to request statistics> # reload-count unlimited|<number> # paranoia <yes|no> # restart-interval <time in seconds> # # enable-cache <service> <yes|no> # positive-time-to-live <service> <time in seconds> # negative-time-to-live <service> <time in seconds> # suggested-size <service> <prime number> # check-files <service> <yes|no> # persistent <service> <yes|no> # shared <service> <yes|no> # max-db-size <service> <number bytes> # auto-propagate <service> <yes|no> # # Currently supported cache names (services): passwd, group, hosts, services # logfile /var/log/nscd.log threads 4 max-threads 32 server-user nobody # stat-user somebody debug-level 9 # reload-count 5 paranoia no # restart-interval 3600 enable-cache passwd yes positive-time-to-live passwd 600 negative-time-to-live passwd 20 suggested-size passwd 211 check-files passwd yes persistent passwd yes shared passwd yes max-db-size passwd 33554432 auto-propagate passwd yes enable-cache group yes positive-time-to-live group 3600 negative-time-to-live group 60 suggested-size group 211 check-files group yes persistent group yes shared group yes max-db-size group 33554432 auto-propagate group yes enable-cache hosts yes positive-time-to-live hosts 3600 negative-time-to-live hosts 20 suggested-size hosts 211 check-files hosts yes persistent hosts yes shared hosts yes max-db-size hosts 33554432 enable-cache services yes positive-time-to-live services 28800 negative-time-to-live services 20 suggested-size services 211 check-files services yes persistent services yes shared services yes max-db-size services 33554432 resolv.conf # Generated by dhcpcd from eth0 nameserver 127.0.0.1 domain westell.com nameserver 192.168.1.1 nameserver 208.67.222.222 nameserver 208.67.220.220 as kind of a side note I'm using archlinux.

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Redaction in AutoVue

    - by [email protected]
    As the trend to digitize all paper assets continues, so does the push to digitize all the processes around these assets. One such process is redaction - removing sensitive or classified information from documents. While for some this may conjure up thoughts of old CIA documents filled with nothing but blacked out pages, there are actually many uses for redaction today beyond military and government. Many companies have a need to remove names, phone numbers, social security numbers, credit card numbers, etc. from documents that are being scanned in and/or released to the public or less privileged users - insurance companies, banks and legal firms are a few examples. The process of digital redaction actually isn't that far from the old paper method: Step 1. Find a folder with a big red stamp on it labeled "TOP SECRET" Step 2. Make a copy of that document, since some folks still need to access the original contents Step 3. Black out the text or pages you want to hide Step 4. Release or distribute this new 'redacted' copy So where does a solution like AutoVue come in? Well, we've really been doing all of these things for years! 1. With AutoVue's VueLink integration and iSDK, we can integrate to virtually any content management system and view documents of almost any format with a single click. Finding the document and opening it in AutoVue: CHECK! 2. With AutoVue's markup capabilities, adding filled boxes (or other shapes) around certain text is a no-brainer. You can even leverage AutoVue's powerful APIs to automate the addition of markups over certain text or pre-defined regions using our APIs. Black out the text you want to hide: CHECK! 3. With AutoVue's conversion capabilities, you can 'burn-in' the comments into a new file, either as a TIFF, JPEG or PDF document. Burning-in the redactions avoids slip-ups like the recent (well-publicized) TSA one. Through our tight integrations, the newly created copies can be directly checked into the content management system with no manual intervention. Make a copy of that document: CHECK! 4. Again, leveraging AutoVue's integrations, we can now define rules in the system based on a user's privileges. An 'authorized' user wishing to view the document from the repository will get exactly that - no redactions. An 'unauthorized' user, when requesting to view that same document, can get redirected to open the redacted copy of the same document. Release or distribute the new 'redacted' copy: CHECK! See this movie (WMV format, 2mins, 20secs, no audio) for a quick illustration of AutoVue's redaction capabilities. It shows how redactions can be added based on text searches, manual input or pre-defined templates/regions. Let us know what you think in the comments. And remember - this is all in our flagship AutoVue product - no additional software required!

    Read the article

  • Add Spell Checking to Your Favorite Windows Apps

    - by Asian Angel
    Some but not all Windows apps have built-in spell checking of some sort. If you want to add spell checking to all of your apps (or a select group) then join us as we look at tinySpell. Note: There is a paid version of this software (tinySpell+) available as well for those who want extra functionality. tinySpell in Action The installation process is simple and straightforward…as soon as you have finished installing tinySpell you will see your new “System Tray Icon”. You can see tinySpell’s “Context Menu” here. Before going any further you may want to have a look through the settings to make any desired display modifications. During our tests we found it very helpful to modify the Spelling Tip options…it will make for a much nicer and easier to read display when you have a spelling error. Clicking on the Applications… Command in the Context Menu will bring up the following window. You can really finesse how active tinySpell will be here: Create a special list of apps that tinySpell will not monitor Create a custom list of apps that tinySpell will monitor If you have any particular or unique words that you would like to add to tinySpell’s Dictionary ahead of time you can do that by clicking on the Dictionary… Command in the Context Menu. Want to check the spelling of a word ahead of time or find that you are just curious about how it is spelled? Click on Open spelling window in the Context Menu to access a special spell check window. For our example we misspelled “spelling” on purpose…notice that the word has turned red. Clicking on the Check Mark Button will open a drop-down list with suggested spellings for the word that you are inquiring about. Click on the appropriate listing if you intend to copy and paste the word. Next we moved on to Notepad. As we were typing tinySpell alerted us when we typed the word “app”. You will hear a small default system sound and see a small popup as shown here if tinySpell thinks a word has been misspelled. The System Tray Icon will also change to a yellow color. You can access the list of suggested spellings by either left clicking on the small popup or the System Tray Icon. If the word is a properly spelled “abbreviation” (or special/custom) like our word here you can select Add to dictionary. Going further in our text document we once again purposely misspelled “spelling”… Left clicking on the popup gave us access to the drop-down list of suggested spellings… And clicking on the correct spelling automatically inserted it into our document in place of the misspelled word. As you can see here tinySpell was even monitoring file names when we went to save the document. Very thorough indeed. Conclusion If your favorite app does not have built-in spell checking, then tinySpell will definitely be a welcome (and very helpful) addition to your Windows system. They offer a portable version as well so you can take it with you to any PC. Links Download tinySpell *Note: The download link is located approximately half-way down the page. Similar Articles Productive Geek Tips Quick Tip: Spell Check Firefox Text Input FieldsEdit the Windows Live Writer Custom DictionaryAccess Your Favorite Google Services in Chrome the Easy WayLaunch External Apps from FirefoxNinite Makes Installing Software Incredibly Simple TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 OpenDNS Guide Google TV The iPod Revolution Ultimate Boot CD can help when disaster strikes Windows Firewall with Advanced Security – How To Guides Sculptris 1.0, 3D Drawing app

    Read the article

  • SQL SERVER – IO_COMPLETION – Wait Type – Day 10 of 28

    - by pinaldave
    For any good system three things are vital: CPU, Memory and IO (disk). Among these three, IO is the most crucial factor of SQL Server. Looking at real-world cases, I do not see IT people upgrading CPU and Memory frequently. However, the disk is often upgraded for either improving the space, speed or throughput. Today we will look at an IO-related wait types. From Book On-Line: Occurs while waiting for I/O operations to complete. This wait type generally represents non-data page I/Os. Data page I/O completion waits appear as PAGEIOLATCH_* waits. IO_COMPLETION Explanation: Any tasks are waiting for I/O to finish. This is a good indication that IO needs to be looked over here. Reducing IO_COMPLETION wait: When it is an issue concerning the IO, one should look at the following things related to IO subsystem: Proper placing of the files is very important. We should check the file system for proper placement of files – LDF and MDF on a separate drive, TempDB on another separate drive, hot spot tables on separate filegroup (and on separate disk),etc. Check the File Statistics and see if there is higher IO Read and IO Write Stall SQL SERVER – Get File Statistics Using fn_virtualfilestats. Check event log and error log for any errors or warnings related to IO. If you are using SAN (Storage Area Network), check the throughput of the SAN system as well as the configuration of the HBA Queue Depth. In one of my recent projects, the SAN was performing really badly so the SAN administrator did not accept it. After some investigations, he agreed to change the HBA Queue Depth on development (test environment) set up and as soon as we changed the HBA Queue Depth to quite a higher value, there was a sudden big improvement in the performance. It is very possible that there are no proper indexes in the system and there are lots of table scans and heap scans. Creating proper index can reduce the IO bandwidth considerably. If SQL Server can use appropriate cover index instead of clustered index, it can effectively reduce lots of CPU, Memory and IO (considering cover index has lesser columns than cluster table and all other; it depends upon the situation). You can refer to the two articles that I wrote; they are about how to optimize indexes: Create Missing Indexes Drop Unused Indexes Checking Memory Related Perfmon Counters SQLServer: Memory Manager\Memory Grants Pending (Consistent higher value than 0-2) SQLServer: Memory Manager\Memory Grants Outstanding (Consistent higher value, Benchmark) SQLServer: Buffer Manager\Buffer Hit Cache Ratio (Higher is better, greater than 90% for usually smooth running system) SQLServer: Buffer Manager\Page Life Expectancy (Consistent lower value than 300 seconds) Memory: Available Mbytes (Information only) Memory: Page Faults/sec (Benchmark only) Memory: Pages/sec (Benchmark only) Checking Disk Related Perfmon Counters Average Disk sec/Read (Consistent higher value than 4-8 millisecond is not good) Average Disk sec/Write (Consistent higher value than 4-8 millisecond is not good) Average Disk Read/Write Queue Length (Consistent higher value than benchmark is not good) Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussions of Wait Stats in this blog are generic and vary from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Types, SQL White Papers, T SQL, Technology

    Read the article

  • Validating Petabytes of Data with Regularity and Thoroughness

    - by rickramsey
    by Brian Zents When former Intel CEO Andy Grove said “only the paranoid survive,” he wasn’t necessarily talking about tape storage administrators, but it’s a lesson they’ve learned well. After all, tape storage is the last line of defense to prevent data loss, so tape administrators are extra cautious in making sure their data is secure. Not surprisingly, we are often asked for ways to validate tape media and the files on them. In the past, an administrator could validate the media, but doing so was often tedious or disruptive or both. The debut of the Data Integrity Validation (DIV) and Library Media Validation (LMV) features in the Oracle T10000C drive helped eliminate many of these pains. Also available with the Oracle T10000D drive, these features use hardware-assisted CRC checks that not only ensure the data is written correctly the first time, but also do so much more efficiently. Traditionally, a CRC check takes at least 25 seconds per 4GB file with a 2:1 compression ratio, but the T10000C/D drives can reduce the check to a maximum of nine seconds because the entire check is contained within the drive. No data needs to be sent to a host application. A time savings of at least 64 percent is extremely beneficial over the course of checking an entire 8.5TB T10000D tape. While the DIV and LMV features are better than anything else out there, what storage administrators really need is a way to check petabytes of data with regularity and thoroughness. With the launch of Oracle StorageTek Tape Analytics (STA) 2.0 in April, there is finally a solution that addresses this longstanding need. STA bundles these features into one interface to automate all media validation activities across all Oracle SL3000 and SL8500 tape libraries in an environment. And best of all, the validation process can be associated with the health checks an administrator would be doing already through STA. In fact, STA validates the media based on any of the following policies: Random Selection – Randomly selects media for validation whenever a validation drive in the standalone library or library complex is available. Media Health = Action – Selects media that have had a specified number of successive exchanges resulting in an Exchange Media Health of “Action.” You can specify from one to five exchanges. Media Health = Evaluate – Selects media that have had a specified number of successive exchanges resulting in an Exchange Media Health of “Evaluate.” You can specify from one to five exchanges. Media Health = Monitor – Selects media that have had a specified number of successive exchanges resulting in an Exchange Media Health of “Monitor.” You can specify from one to five exchanges. Extended Period of Non-Use – Selects media that have not had an exchange for a specified number of days. You can specify from 365 to 1,095 days (one to three years). Newly Entered – Selects media that have recently been entered into the library. Bad MIR Detected – Selects media with an exchange resulting in a “Bad MIR Detected” error. A bad media information record (MIR) indicates degraded high-speed access on the media. To avoid disrupting host operations, an administrator designates certain drives for media validation operations. If a host requests a file from media currently being validated, the host’s request takes priority. To ensure that the administrator really knows it is the media that is bad, as opposed to the drive, STA includes drive calibration and qualification features. In addition, validation requests can be re-prioritized or cancelled as needed. To ensure that a specific tape isn’t validated too often, STA prevents a tape from being validated twice within 24 hours via one of the policies described above. A tape can be validated more often if the administrator manually initiates the validation. When the validations are complete, STA reports the results. STA does not report simply a “good” or “bad” status. It also reports if media is even degraded so the administrator can migrate the data before there is a true failure. From that point, the administrators’ paranoia is relieved, as they have the necessary information to make a sound decision about the health of the tapes in their environment. About the Photograph Photograph taken by Rick Ramsey in Death Valley, California, May 2014 - Brian Follow OTN Garage on: Web | Facebook | Twitter | YouTube

    Read the article

  • Edit the Windows Live Writer Custom Dictionary

    - by Matthew Guay
    Windows Live Writer is a great tool for writing and publishing posts to your blog, but its spell check unfortunately doesn’t include many common tech words.  Here’s how you can easily edit your custom dictionary and add your favorite words. Customize Live Writer’s Dictionary Adding an individual word to the Windows Live Writer dictionary works as you would expect.  Right-click on a word and select Add to dictionary. And changing the default spell check settings is easy too.  In the menu, click Tools, then Options, and select the Spelling tab in this dialog.  Here you can choose your dictionary language and turn on/off real-time spell checking and other settings. But there’s no obvious way to edit your custom dictionary.  Editing the custom dictionary directly is nice if you accidently add a misspelled word to your dictionary and want to remove it, or if you want to add a lot of words to the dictionary at once. Live Writer actually stores your custom dictionary entries in a plain text file located in your appdata folder.  It is saved as User.dic in the C:\Users\user_name\AppData\Roaming\Windows Live Writer\Dictionaries folder.  The easiest way to open the custom dictionary is to enter the following in the Run box or the address bar of an Explorer window: %appdata%\Windows Live Writer\Dictionaries\User.dic   This will open the User.dic file in your default text editor.  Add any new words to the custom dictionary on separate lines, and delete any misspelled words you accidently added to the dictionary.   Microsoft Office Word also stores its custom dictionary in a plain text file.  If you already have lots of custom words in it and want to import them into Live Writer, enter the following in the Run command or Explorer’s address bar to open Word’s custom dictionary.  Then copy the words, and past them into your Live Writer custom dictionary file. %AppData%\Microsoft\UProof\Custom.dic Don’t forget to save the changes when you’re done.  Note that the changes to the dictionary may not show up in Live Writer’s spell check until you restart the program.  If it’s currently running, save any posts you’re working on, exit, and then reopen, and all of your new words should be in the dictionary. Conclusion Whether you use Live Writer daily in your job or occasionally post an update to a personal blog, adding your own custom words to the dictionary can save you a lot of time and frustration in editing.  Plus, if you’ve accidently added a misspelled word to the dictionary, this is a great way to undo your mistake and make sure your spelling is up to par! Similar Articles Productive Geek Tips Backup Your Windows Live Writer SettingsTransfer or Move Your Microsoft Office Custom DictionaryFuture Date a Post in Windows Live WriterTools to Help Post Content On Your WordPress BlogInstall Windows Live Essentials In Windows 7 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Video Toolbox is a Superb Online Video Editor Fun with 47 charts and graphs Tomorrow is Mother’s Day Check the Average Speed of YouTube Videos You’ve Watched OutlookStatView Scans and Displays General Usage Statistics How to Add Exceptions to the Windows Firewall

    Read the article

< Previous Page | 104 105 106 107 108 109 110 111 112 113 114 115  | Next Page >