Search Results

Search found 41338 results on 1654 pages for 'used'.

Page 108/1654 | < Previous Page | 104 105 106 107 108 109 110 111 112 113 114 115  | Next Page >

  • SharePoint 2010 Hosting :: SharePoint 2010 Custom Web Template

    - by mbridge
    SharePoint 2010 offers some changes and additions to the SharePoint 2007 approach. Site definitions and publishing providers remain largely the same, but site templates created from the SharePoint UI or SharePoint Designer are now saved to a .WSP file, the same solution deployment packaging file format used for deploying custom SharePoint solutions. Site Templates saved to a .WSP solution file can be imported into Visual Studio for additional customization. Introducing the WebTemplate Feature Element The WebTemplate element, introduced in SharePoint 2010, allows site templates to be defined and deployed as a Feature as part of a solution package. A WebTemplate element feature can be used to deploy site templates in either a Farm or Sandbox solution - without modification. If deployed as a Farm feature and solution, site templates will appear in the site collection provisioning page in Central Administration and can be used to provision new site collections, or within a Site Collection to create sub-sites. If deployed as a Site feature and Sandbox solution, site templates will appear within the site collection to support creating a root site or sub-sites. Creating a new WebTemplate Feature in Visual Studio 2010 In addition to supporting the ability to save and import Site Templates created from the SharePoint UI into Visual Studio for customization, it can also be used to create new site templates from scratch. In the following sample we will walk through how to create a new WebTemplate solution based on  a customized version of the out-of-box Blank Site. 1. Create a new Empty SharePoint Project in Visual Studio 2010. 2. Add a new Empty Element to the project. we like to create folders for each type of element in our solution, so in our sample, we have created a Web Templates folder, and then added the BLANKENT element. NOTE: The Elements folder MUST share the same name as the WebTemplate name property. 3. Open the empty Elements.xml and add the <WebTemplate /> element block. 4. Copy the default.aspx and ONET.XML files from the STS site definition location at 14\TEMPLATES\Site Templates\STS. We will customize the ONET.XML in the next section. Open the properties for each file and set the Deployment Type to ElementFile. This ensures the files are deployed with the Element when included in a Feature. 5. By default a new feature is added to the solution for you automatically when a new element is added to the solution. Rename and edit the feature as appropriate. Select Farm for the scope to deploy the WebTemplate to the entire farm, or Site for a sandboxed solution. Customize the ONET.XML At this point, you have a working WebTemplate solution that will deploy the identical site to the out-of-box Blank Site, however the ONET.XML supporting the STS site definition contains 3 configurations – essentially 3 separate site templates and can be simplified before customizing. In the following sample, we have trimmed the ONET.XML to the essentials for a single Site Template, and added references to the <SiteFeatures /> and <WebFeatures /> elements to include the SharePoint Standard and Enterprise features. We have left the top-level navigation bar, and the default page module intact, but removed all other extraneous markup.

    Read the article

  • Why is my machine unable to mount my SMB drives ("CIFS VFS: Error connecting to socket. Aborting operation", return code -115)?

    - by downbeat
    I have a machine running Precise (12.04 x64), and I cannot mount my SMB drives (I have 3, we'll call them public, private and download). It used to work (a week or two ago) and I didn't touch fstab! The machine hosting the shares is a commercial NAS, and I'm not seeing anything that would indicate it's an issue with the NAS. I have an older machine which I updated to Precise at the same time (both fresh installed, not dist-upgrade), so should have a very similar configuration. It is not having any problems. I am not having problems on windows machines/partitions either, only one of my Precise machines. The two machines are using identical entries in fstab and identical /etc/samba/smb.conf files. I don't think I've ever changed smb.conf (has never mattered before). My fstab entries all basically look like this: //10.1.1.111/public /media/public cifs credentials=/home/downbeat/.credentials,iocharset=utf8,uid=downbeat,gid=downbeat,file_mode=0644,dir_mode=0755 0 0 Here's the dmesg output on boot: [ 51.162198] CIFS VFS: Error connecting to socket. Aborting operation [ 51.162369] CIFS VFS: cifs_mount failed w/return code = -115 [ 51.194106] CIFS VFS: Error connecting to socket. Aborting operation [ 51.194250] CIFS VFS: cifs_mount failed w/return code = -115 [ 51.198120] CIFS VFS: Error connecting to socket. Aborting operation [ 51.198243] CIFS VFS: cifs_mount failed w/return code = -115 There are no other errors I see in the dmesg output. Originally when I ran 'testparm -s', the output contained these lines ERROR: lock directory /var/run/samba does not exist ERROR: pid directory /var/run/samba does not exist Here's the samba related programs I have installed: $ dpkg --list|grep -i samba ii libpam-winbind 2:3.6.3-2ubuntu2.3 Samba nameservice and authentication integration plugins ii libwbclient0 2:3.6.3-2ubuntu2.3 Samba winbind client library ii nautilus-share 0.7.3-1ubuntu2 Nautilus extension to share folder using Samba ii python-smbc 1.0.13-0ubuntu1 Python bindings for Samba clients (libsmbclient) ii samba-common 2:3.6.3-2ubuntu2.3 common files used by both the Samba server and client ii samba-common-bin 2:3.6.3-2ubuntu2.3 common files used by both the Samba server and client ii winbind 2:3.6.3-2ubuntu2.3 Samba nameservice integration server $ dpkg --list|grep -i smb ii dmidecode 2.11-4 SMBIOS/DMI table decoder ii libsmbclient 2:3.6.3-2ubuntu2.3 shared library for communication with SMB/CIFS servers ii python-smbc 1.0.13-0ubuntu1 Python bindings for Samba clients (libsmbclient) ii smbclient 2:3.6.3-2ubuntu2.3 command-line SMB/CIFS clients for Unix ii smbfs 2:5.1-1ubuntu1 Common Internet File System utilities - compatibility package $ dpkg --list|grep -i cifs ii cifs-utils 2:5.1-1ubuntu1 Common Internet File System utilities ii libsmbclient 2:3.6.3-2ubuntu2.3 shared library for communication with SMB/CIFS servers ii smbclient 2:3.6.3-2ubuntu2.3 command-line SMB/CIFS clients for Unix I originally noticed that my other machine had "libpam-winbind" and "nautilus-share" installed and the machine with the issue did not. Installing those two packages solved my errors with 'testparm -s', but did not fix my issue. Finally, I tried to purge and reinstall these packages smbclient smbfs cifs-utils samba-common samba-common-bin Still no luck. Again, it used to work; now it doesn't. Very similarly configured machine works (but some packages are out of date on the working machine). The NAS has only one interface/IP address, nmblookup works to find it's IP from it's hostname (from the machine with the issue) and it responds to a ping. Please any help would be great. I've been searching on AskUbuntu, SuperUser, ubuntuforums and plain old search engines for a week now and it's driving me crazy!

    Read the article

  • C# 4.0: COM Interop Improvements

    - by Paulo Morgado
    Dynamic resolution as well as named and optional arguments greatly improve the experience of interoperating with COM APIs such as Office Automation Primary Interop Assemblies (PIAs). But, in order to alleviate even more COM Interop development, a few COM-specific features were also added to C# 4.0. Ommiting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. These parameters are typically not meant to mutate a passed-in argument, but are simply another way of passing value parameters. Specifically for COM methods, the compiler allows to declare the method call passing the arguments by value and will automatically generate the necessary temporary variables to hold the values in order to pass them by reference and will discard their values after the call returns. From the point of view of the programmer, the arguments are being passed by value. This method call: object fileName = "Test.docx"; object missing = Missing.Value; document.SaveAs(ref fileName, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing); can now be written like this: document.SaveAs("Test.docx", Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value); And because all parameters that are receiving the Missing.Value value have that value as its default value, the declaration of the method call can even be reduced to this: document.SaveAs("Test.docx"); Dynamic Import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object form the context of the call, but has to explicitly perform a cast on the returned values to make use of that knowledge. These casts are so common that they constitute a major nuisance. To make the developer’s life easier, it is now possible to import the COM APIs in such a way that variants are instead represented using the type dynamic which means that COM signatures have now occurrences of dynamic instead of object. This means that members of a returned object can now be easily accessed or assigned into a strongly typed variable without having to cast. Instead of this code: ((Excel.Range)(excel.Cells[1, 1])).Value2 = "Hello World!"; this code can now be used: excel.Cells[1, 1] = "Hello World!"; And instead of this: Excel.Range range = (Excel.Range)(excel.Cells[1, 1]); this can be used: Excel.Range range = excel.Cells[1, 1]; Indexed And Default Properties A few COM interface features are still not available in C#. On the top of the list are indexed properties and default properties. As mentioned above, these will be possible if the COM interface is accessed dynamically, but will not be recognized by statically typed C# code. No PIAs – Type Equivalence And Type Embedding For assemblies indentified with PrimaryInteropAssemblyAttribute, the compiler will create equivalent types (interfaces, structs, enumerations and delegates) and embed them in the generated assembly. To reduce the final size of the generated assembly, only the used types and their used members will be generated and embedded. Although this makes development and deployment of applications using the COM components easier because there’s no need to deploy the PIAs, COM component developers are still required to build the PIAs.

    Read the article

  • To sample or not to sample...

    - by [email protected]
    Ideally, we would know the exact answer to every question. How many people support presidential candidate A vs. B? How many people suffer from H1N1 in a given state? Does this batch of manufactured widgets have any defective parts? Knowing exact answers is expensive in terms of time and money and, in most cases, is impractical if not impossible. Consider asking every person in a region for their candidate preference, testing every person with flu symptoms for H1N1 (assuming every person reported when they had flu symptoms), or destructively testing widgets to determine if they are "good" (leaving no product to sell). Knowing exact answers, fortunately, isn't necessary or even useful in many situations. Understanding the direction of a trend or statistically significant results may be sufficient to answer the underlying question: who is likely to win the election, have we likely reached a critical threshold for flu, or is this batch of widgets good enough to ship? Statistics help us to answer these questions with a certain degree of confidence. This focuses on how we collect data. In data mining, we focus on the use of data, that is data that has already been collected. In some cases, we may have all the data (all purchases made by all customers), in others the data may have been collected using sampling (voters, their demographics and candidate choice). Building data mining models on all of your data can be expensive in terms of time and hardware resources. Consider a company with 40 million customers. Do we need to mine all 40 million customers to get useful data mining models? The quality of models built on all data may be no better than models built on a relatively small sample. Determining how much is a reasonable amount of data involves experimentation. When starting the model building process on large datasets, it is often more efficient to begin with a small sample, perhaps 1000 - 10,000 cases (records) depending on the algorithm, source data, and hardware. This allows you to see quickly what issues might arise with choice of algorithm, algorithm settings, data quality, and need for further data preparation. Instead of waiting for a model on a large dataset to build only to find that the results don't meet expectations, once you are satisfied with the results on the initial sample, you can  take a larger sample to see if model quality improves, and to get a sense of how the algorithm scales to the particular dataset. If model accuracy or quality continues to improve, consider increasing the sample size. Sampling in data mining is also used to produce a held-aside or test dataset for assessing classification and regression model accuracy. Here, we reserve some of the build data (data that includes known target values) to be used for an honest estimate of model error using data the model has not seen before. This sampling transformation is often called a split because the build data is split into two randomly selected sets, often with 60% of the records being used for model building and 40% for testing. Sampling must be performed with care, as it can adversely affect model quality and usability. Even a truly random sample doesn't guarantee that all values are represented in a given attribute. This is particularly troublesome when the attribute with omitted values is the target. A predictive model that has not seen any examples for a particular target value can never predict that target value! For other attributes, values may consist of a single value (a constant attribute) or all unique values (an identifier attribute), each of which may be excluded during mining. Values from categorical predictor attributes that didn't appear in the training data are not used when testing or scoring datasets. In subsequent posts, we'll talk about three sampling techniques using Oracle Database: simple random sampling without replacement, stratified sampling, and simple random sampling with replacement.

    Read the article

  • Craig Mundie's video

    - by GGBlogger
    Timothy recently posted “Microsoft Shows Off Radical New UI, Could Be Used In Windows 8” on Slashdot. I took such grave exception to his post that I found it necessary to my senses to write this blog. We need to go back many years to the days of hand cranked calculators and early main frame computers. These devices had singular purposes – they were “number crunchers” used to make accounting easier. The front facing display in early mainframes was “blinken lights.” The calculators did provide printing – in the form of paper tape and the mainframes used line printers to generate reports as needed. We had other metaphors to work with. The typewriter was/is a mechanical device that substitutes for a type setting machine. The originals go back to 1867 and the keyboard layout has remained much the same to this day. In the earlier years the Morse code telegraphs gave way to Teletype machines. The old ASR33, seen on the left in this photo of one of the first computers I help manufacture, used a keyboard very similar to the keyboards in use today. It also generated punched paper tape that we generated to program this computer in machine language. Everything considered this computer which dates back to the late 1960s has a keyboard for input and a roll of paper as output. So in a very rudimentary fashion little has changed. Oh – we didn’t have a mouse! The entire point of this exercise is to point out that we still use very similar methods to get data into and out of a computer regardless of the operating system involved. The Altair, IMSAI, Apple, Commodore and onward to our modern machines changed the hardware that we interfaced to but changed little in the way we input, view and output the results of our computing effort. The mouse made some changes and the advent of windowed interfaces such as Windows and Apple made things somewhat easier for the user. My 4 year old granddaughter plays here Dora games on our computer. She knows how to start programs, use the mouse, play the game and is quite adept so we have come some distance in making computers useable. One of my chief bitches is the constant harangues leveled at Microsoft. Yup – they are a money making organization. You like Apple? No problem for me. I don’t use Apple mostly because I’m comfortable in the Windows environment but probably more because I don’t like Apple’s “Holier than thou” attitude. Some think they do superior things and that’s also fine with me. Obviously the iPhone has not done badly and other Apple products have fared well. But they are expensive. I just build a new machine with 4 Terabytes of storage, an Intel i7 Core 950 processor and 12 GB of RAMIII. It cost me – with dual monitors – less than 2000 dollars. Now to the chief reason for this blog. I’m going to continue developing software for as long as I’m able. For that reason I don’t see my keyboard, mouse and displays changing much for many years. I also don’t think Microsoft is going to spoil that for me by making radical changes to my developer experience. What Craig Mundie does in his video here:  http://www.ispyce.com/2011/02/microsoft-shows-off-radical-new-ui.html is explore the potential future of computer interfaces for the masses of potential users. Using a computer today requires a person to have rudimentary capabilities with keyboards and the mouse. Wouldn’t it be great if all they needed was hand gestures? Although not mentioned it would also be nice if computers responded intelligently to a user’s voice. There is absolutely no argument with the fact that user interaction with these machines is going to change over time. My personal prediction is that it will take years for much of what Craig discusses to come to a cost effective reality but it is certainly coming. I just don’t believe that what Craig discusses will be the future look of a Window 8.

    Read the article

  • MvcExtensions - PerRequestTask

    - by kazimanzurrashid
    In the previous post, we have seen the BootstrapperTask which executes when the application starts and ends, similarly there are times when we need to execute some custom logic when a request starts and ends. Usually, for this kind of scenario we create HttpModule and hook the begin and end request events. There is nothing wrong with this approach, except HttpModules are not at all IoC containers friendly, also defining the HttpModule execution order is bit cumbersome, you either have to modify the machine.config or clear the HttpModules and add it again in web.config. Instead, you can use the PerRequestTask which is very much container friendly as well as supports execution orders. Lets few examples where it can be used. Remove www Subdomain Lets say we want to remove the www subdomain, so that if anybody types http://www.mydomain.com it will automatically redirects to http://mydomain.com. public class RemoveWwwSubdomain : PerRequestTask { public RemoveWww() { Order = DefaultOrder - 1; } protected override TaskContinuation ExecuteCore(PerRequestExecutionContext executionContext) { const string Prefix = "http://www."; Check.Argument.IsNotNull(executionContext, "executionContext"); HttpContextBase httpContext = executionContext.HttpContext; string url = httpContext.Request.Url.ToString(); bool startsWith3W = url.StartsWith(Prefix, StringComparison.OrdinalIgnoreCase); bool shouldContinue = true; if (startsWith3W) { string newUrl = "http://" + url.Substring(Prefix.Length); HttpResponseBase response = httpContext.Response; response.StatusCode = (int)HttpStatusCode.MovedPermanently; response.Status = "301 Moved Permanently"; response.RedirectLocation = newUrl; response.SuppressContent = true; shouldContinue = false; } return shouldContinue ? TaskContinuation.Continue : TaskContinuation.Break; } } As you can see, first, we are setting the order so that we do not have to execute the remaining tasks of the chain when we are redirecting, next in the ExecuteCore, we checking the whether www is present, if present we are sending a permanently moved http status code and breaking the task execution chain otherwise we are continuing with the chain. Blocking IP Address Lets take another scenario, your application is hosted in a shared hosting environment where you do not have the permission to change the IIS setting and you want to block certain IP addresses from visiting your application. Lets say, you maintain a list of IP address in database/xml files which you want to block, you have a IBannedIPAddressRepository service which is used to match banned IP Address. public class BlockRestrictedIPAddress : PerRequestTask { protected override TaskContinuation ExecuteCore(PerRequestExecutionContext executionContext) { bool shouldContinue = true; HttpContextBase httpContext = executionContext.HttpContext; if (!httpContext.Request.IsLocal) { string ipAddress = httpContext.Request.UserHostAddress; HttpResponseBase httpResponse = httpContext.Response; if (executionContext.ServiceLocator.GetInstance<IBannedIPAddressRepository>().IsMatching(ipAddress)) { httpResponse.StatusCode = (int)HttpStatusCode.Forbidden; httpResponse.StatusDescription = "IPAddress blocked."; shouldContinue = false; } } return shouldContinue ? TaskContinuation.Continue : TaskContinuation.Break; } } Managing Database Session Now, let see how it can be used to manage NHibernate session, assuming that ISessionFactory of NHibernate is already registered in our container. public class ManageNHibernateSession : PerRequestTask { private ISession session; protected override TaskContinuation ExecuteCore(PerRequestExecutionContext executionContext) { ISessionFactory factory = executionContext.ServiceLocator.GetInstance<ISessionFactory>(); session = factory.OpenSession(); return TaskContinuation.Continue; } protected override void DisposeCore() { session.Close(); session.Dispose(); } } As you can see PerRequestTask can be used to execute small and precise tasks in the begin/end request, certainly if you want to execute other than begin/end request there is no other alternate of HttpModule. That’s it for today, in the next post, we will discuss about the Action Filters, so stay tuned.

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 19 (sys.dm_exec_query_stats)

    - by Tamarick Hill
    The sys.dm_exec_query_stats DMV is one of the most useful DMV’s out there when it comes to performance tuning. If you have been keeping up with this blog series this month, you know that I started out on Day 1 reviewing many of the DMV’s within the ‘exec’ namespace. I’m not sure how I missed this one considering how valuable it is, but hey, they say it’s better late than never right?? On Day 7 and Day 8 we reviewed the sys.dm_exec_procedure_stats and sys.dm_exec_trigger_stats respectively. This sys.dm_exec_query_stats DMV is very similar to these two. As a matter of fact, this DMV will return all of the information you saw in the other two DMV’s, but in addition to that, you can see stats for all queries that have cached execution plans on your server. You can even see stats for statements that are ran Ad-Hoc as long as they are still cached in the buffer pool. To better illustrate this DMV, let have a quick look at it: SELECT * FROM sys.dm_exec_query_stats As you can see, there is a lot of information returned from this DMV. I wont go into detail about each and every one of these columns, but I will touch on a few of them briefly. The first column is the ‘sql_handle’, which if you remember from Day 4 of our blog series, I explained how you can use this column to extract the actual SQL text that was executed. The next columns statement_start_offset and statement_end_offset provide you a way of extracting the exact SQL statement that was executed as part of a batch. The plan_handle column is used to extract the Execution plan that was used, which we talked about during Day 5 of this blog series. Later in the result set, you have columns to identify how many times a particular statement was executed, how much CPU time it used, how many reads/writes it performed, the duration, how many rows were returned, etc. These columns provide you with a solid avenue to begin your performance optimization. The last column I will touch on is the query_plan_hash column. A lot of times when you have Dynamic SQL running on your server, you have similar statements with different parameter values being passed in. Many times these types of statements will get similar execution plans and then a Binary hash value can be generated based on these similar plans. This query plan hash can be used to find the cost of all queries that have similar execution plans and then you can tune based on that plan to improve the performance of all of the individual queries. This is a very powerful way of identifying and tuning Ad-hoc statements that run on your server. As I stated earlier, this sys.dm_exec_query_stats DMV is a very powerful and recommended DMV for performance tuning. You are able to quickly identify statements that are running on your server and analyze their impact on system resources. Using this DMV to track down the biggest performance killers on your server will allow you to make the biggest gains once you focus your tuning efforts on those top offenders. For more information about this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms189741.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Tuning Red Gate: #3 of Lots

    - by Grant Fritchey
    I'm drilling down into the metrics about SQL Server itself available to me in the Analysis tab of SQL Monitor to see what's up with our two problematic servers. In the previous post I'd noticed that rg-sql01 had quite a few CPU spikes. So one of the first things I want to check there is how much CPU is getting used by SQL Server itself. It's possible we're looking at some other process using up all the CPU Nope, It's SQL Server. I compared this to the rg-sql02 server: You can see that there is a more, consistently low set of CPU counters there. I clearly need to look at rg-sql01 and capture more specific data around the queries running on it to identify which ones are causing these CPU spikes. I always like to look at the Batch Requests/sec on a server, not because it's an indication of a problem, but because it gives you some idea of the load. Just how much is this server getting hit? Here are rg-sql01 and rg-sql02: Of the two, clearly rg-sql01 has a lot of activity. Remember though, that's all this is a measure of, activity. It doesn't suggest anything other than what it says, the number of requests coming in. But it's the kind of thing you want to know in order to understand how the system is used. Are you seeing a correlation between the number of requests and the CPU usage, or a reverse correlation, the number of requests drops as the CPU spikes? See, it's useful. Some of the details you can look at are Compilations/sec, Compilations/Batch and Recompilations/sec. These give you some idea of how the cache is getting used within the system. None of these showed anything interesting on either server. One metric that I like (even though I know it can be controversial) is the Page Life Expectancy. On the average server I expect see a series of mountains as the PLE climbs then drops due to a data load or something along those lines. That's not the case here: Those spikes back in January suggest that the servers weren't really being used much. The PLE on the rg-sql01 seems to be somewhat consistent growing to 3 hours or so then dropping, but the rg-sql02 PLE looks like it might be all over the map. Instead of continuing to look at this high level gathering data view, I'm going to drill down on rg-sql02 and see what it's done for the last week: And now we begin to see where we might have an issue. Memory on this system is getting flushed every 1/2 hour or so. I'm going to check another metric, scans: Whoa! I'm going back to the system real quick to look at some disk information again for rg-sql02. Here is the average disk queue length on the server: and the transfers Right, I think I have a guess as to what's up here. We're seeing memory get flushed constantly and we're seeing lots of scans. The disks are queuing, especially that F drive, and there are lots of requests that correspond to the scans and the memory flushes. In short, we've got queries that are scanning the data, a lot, so we either have bad queries or bad indexes. I'm going back to the server overview for rg-sql02 and check the Top 10 expensive queries. I'm modifying it to show me the last 3 days and the totals, so I'm not looking at some maintenance routine that ran 10 minutes ago and is skewing the results: OK. I need to look into these queries that are getting executed this much. They're generating a lot of reads, but which queries are generating the most reads: Ow, all still going against the same database. This is where I'm going to temporarily leave SQL Monitor. What I want to do is connect up to the server, validate that the Warehouse database is using the F:\ drive (which I'll put money down it is) and then start seeing what's up with these queries. Part 1 of the Series Part 2 of the Series

    Read the article

  • Where's the Swap File/Partition?

    - by chrisbunney
    I'm investigating the virtual memory configuration of a Debian based Amazon EC2 instance, and as my background isn't in system admin, I'm slightly confused by what I'm seeing. We're using MongoDB, and the monitoring server we have indicates that the Mongo process is using about 20GB of swap space, however I can't figure out where this is located on the server. As far as I can tell from using the various suggested methods from Google, there is either a much smaller amount, or none at all. top indicates that there is 1.8GB of swap memory: top - 15:35:21 up 6 days, 3:23, 1 user, load average: 1.60, 1.43, 1.37 Tasks: 47 total, 2 running, 45 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 1.3%sy, 0.0%ni, 14.7%id, 83.8%wa, 0.0%hi, 0.0%si, 0.1%st Mem: 3928924k total, 2855572k used, 1073352k free, 640564k buffers Swap: 0k total, 0k used, 0k free, 1887788k cached swapon -s doesn't seem to think there's any swap space: Filename Type Size Used Priority free -m doesn't think there's any swap either: total used free shared buffers cached Mem: 3836 3663 172 0 626 2701 -/+ buffers/cache: 336 3500 Swap: 0 0 0 And neither does vmstat: procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 0 3 0 66224 641372 2874744 0 0 21 5012 21 33 2 2 76 19 But cat /etc/fstab thinks there is a swap partition: /dev/xvda1 / ext3 defaults 1 1 /dev/xvda2 /mnt ext3 defaults 0 0 /dev/xvda3 swap swap defaults 0 0 none /proc proc defaults 0 0 none /sys sysfs defaults 0 0 However df -k gives no indication of the xvda3 partition: Filesystem 1K-blocks Used Available Use% Mounted on /dev/xvda1 16513960 15675324 0 100% / tmpfs 1964460 8 1964452 1% /lib/init/rw udev 1914148 28 1914120 1% /dev tmpfs 1964460 4 1964456 1% /dev/shm So I really don't know what to make of this, because I appear to have a process using about 10 times more virtual memory than what might be available, and I have no idea where this virtual memory is on the system. I'm probably misinterpreting the output of the tools, so I'd be grateful if someone would be able to set me straight: What have I got wrong, what's the right interpretation, and how do you reach that interpretation? EDIT0: We use 10gen's MMS for monitoring the database, the relevant section for memory from the last data point is: "mem": { "virtual": 20749, "bits": 64, "supported": true, "mappedWithJournal": 20376, "mapped": 10188, "resident": 1219 }, This JSON is specific to the database process (I believe) rather than the system as a whole. fdisk -l /dev/xvda outputs... nothing? I tried each of the 3 xvda entries in /etc/fstab as well: root@ip:~# fdisk -l /dev/xvda1 Disk /dev/xvda1: 34.4 GB, 34359738368 bytes 255 heads, 63 sectors/track, 4177 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/xvda1 doesn't contain a valid partition table root@ip:~# fdisk -l /dev/xvda2 root@ip:~# fdisk -l /dev/xvda3 root@ip:~# Edit1: Output of cat /proc/meminfo for the sake of completeness: MemTotal: 3928924 kB MemFree: 726600 kB Buffers: 648368 kB Cached: 2216556 kB SwapCached: 0 kB Active: 1945100 kB Inactive: 994016 kB Active(anon): 60476 kB Inactive(anon): 12952 kB Active(file): 1884624 kB Inactive(file): 981064 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 0 kB SwapFree: 0 kB Dirty: 387180 kB Writeback: 0 kB AnonPages: 73380 kB Mapped: 1188260 kB Shmem: 48 kB Slab: 149768 kB SReclaimable: 146076 kB SUnreclaim: 3692 kB KernelStack: 1104 kB PageTables: 16096 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 1964460 kB Committed_AS: 305572 kB VmallocTotal: 34359738367 kB VmallocUsed: 16760 kB VmallocChunk: 34359721448 kB HardwareCorrupted: 0 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 3932160 kB DirectMap2M: 0 kB

    Read the article

  • Ubuntu 11.04 and 10.04 hang with black screen while installing from USB disk

    - by Bill
    I've been trying to install Ubuntu 11.04 from a USB flash stick and each time I try to boot from the USB key one of two things happen: A) The screen that asks you what you would like to do (e.g. run Ubuntu from the USB key or install it) shows up and the countdown to the default option starts to count down but as soon as I either touch the keyboard (sometimes I press enter or the arrow keys to select an option) or the countdown gets to zero the screen just locks up and nothing happens no matter how long I wait. B) When I boot from the USB key the screen will flicker for a second and then go black with a flashing white underscore at the top left corner of the screen. Again it doesn't matter how long I wait, nothing happens and pressing keys doesn't do a thing. The very first time I tried to install it I got a terminal-like screen that said something about a directory called 'casper' having an error of some sort. I have tried installing from USB using both 11.04 and 10.10. I'm about to try 10.04. I have read tons of forum posts about this but so far I haven't seen anything in the solutions that apply to me. My intention is to dual boot Windows 7 and Ubuntu. I must keep Windows as I am required to use Visual Studio for one of my college courses. Right now I'm using Wubi but I really want a full install. I can't use LVPM because it doesn't work with the version of Wubi I used. So now I'm thinking my best bet is to try to get a clean install working. I'd also convert Wubi to a full install too but there's no solution as far as I've read. So could someone tell me a reason why this is happening or if there's something I can do to get around the problem? I'm using a Gateway LT2802u netbook with and Intel Atom N455 processor, 1GB RAM, Intel Graphics Media Accelerator 3150 graphics card, and a 250GB HDD. I don't have anything on my current Wubi install that I can't replace so keep in mind when answering that I don't care if I lose my current settings and files from Wubi. Thanks everyone! UPDATE I just answered my own question so in case anyone else is having this same problem using similar hardware, do the following: When I first tried installing 11.04 I used the recommended universal installer tool to create the USB live/installation disk. That caused the original problem. Note that I had already downloaded the 11.04 ISO and did not use the included downloader from the USB creator. After that failed I used the same USB creator but had it download 10.10 for me. It also failed with the same issue. I repeated this process with unetbootin as well for both versions. Finally, I downloaded the Ubuntu 10.04 ISO and used the recommended USB creator once again. There was an error while creating the USB live install so I reformatted the USB key as FAT32 and tried again. It created the USB key. I then booted from the USB flash drive and selected "Install Ubuntu" (exact wording was different). It worked! It took me through the process that you see shown in pictures on the Ubuntu website. I let it create the appropriate partitions for me and it simply worked. I did get a few errors while the system tried to restart after it installed. It hung on a terminal-like screen but I pressed ENTER and it restarted. I booted into Windows 7, it checked the disks as it sensed that I messed with a partition, then it booted into Windows normally. Now I'm going to uninstall Wubi and update my new full install of Ubuntu! I'm excited to get the benefits of a full install now. So in the end, hopefully someone can learn from what I did.

    Read the article

  • #iPad at One Week: A Great Device Made with a Heavy Hand

    - by andrewbrust
    I have now had my iPad for a little over a week. In that time, Apple introduced the world to its iPhone OS 4 (and the SDK agreement’s draconian new section 3.3.1), HP introduced is Slate, and Microsoft got ready to launch Visual Studio 2010 and .NET 4.0. And through it all I have used my iPad. I've used it for email, calendar, controlling my Sonos, and writing an essay. I've used it for getting on TripIt and Twitter, and surfing the Web. I've used it for online banking, and online ordering and delivery of food. And the verdict? Honestly? I think it's a great device and I thoroughly enjoy using it. The screen is bright and vibrant. I am surprisingly fast and accurate when I type on it. The touch screen's responsiveness is nearly flawless. The software, including a number of third party applications, include pleasing animations and use of color that make it fun to get work done. And speaking of work, the Exchange integration is, dare I say it, robust. Not as full-featured as on a PC or Windows Mobile device, but still offering core functionality and, so far at least, without bugs. The UI is intuitive, not just to me, but also to my 5 1/2 year old, and also to my nearly-3-year-old son. They picked it up and, with just just a few pointers from me, they almost immediately knew what to do, whether they were looking at photos (and swiping/flicking along as they did so), using a drawing program, playing a game, or watching YouTube videos. The younger of the two of them even tried to get up on a chair and grab the thing today. He dropped it, from about 4 feet off the ground. And it's still fine. (Meanwhile, I'll be keeping it on a higher shelf.) I cannot fully describe yet what makes this form factor and this product so appealing. Maybe it's that it's an always-on device. Maybe it's just being able to hold such a nice, relatively large display so close. Maybe it's the design sensibility, that seems to pervade throughout the app ecosystem. Or maybe it's that one's fingers, and not pens or mice, are the software's preferred input device. Whatever the attraction, it's strong. And no matter how much I tend to root for Microsoft and against Apple, Cupertino has, in my mind, scored big, Can Microsoft compete? Yes, but not with the Windows 7 standard UI (nor with individual OEMs’ own UIs on top). I hope Microsoft builds a variant of the Windows Phone 7 specifically for tablet devices. And I hope they make it clear that all developers, and programming languages, are welcome to the platform. Once that’s established, the OEMs have to build great hardware with fast, responsive touch screens, under Microsoft's watchful eye. That may be the hardest part of getting this right. No matter what, Microsoft's got a fight on its hands. I don't know if it can count on winning that fight, either. But Silverlight and Live Tiles could certainly help. And so can treating developers like adults.  Apple seems intent on treating their devs like kids, and then giving the kids a curfew.  For that, dev-friendly Microsoft may one day give thanks.

    Read the article

  • Windows Azure Recipe: Social Web / Big Media

    - by Clint Edmonson
    With the rise of social media there’s been an explosion of special interest media web sites on the web. From athletics to board games to funny animal behaviors, you can bet there’s a group of people somewhere on the web talking about it. Social media sites allow us to interact, share experiences, and bond with like minded enthusiasts around the globe. And through the power of software, we can follow trends in these unique domains in real time. Drivers Reach Scalability Media hosting Global distribution Solution Here’s a sketch of how a social media application might be built out on Windows Azure: Ingredients Traffic Manager (optional) – can be used to provide hosting and load balancing across different instances and/or data centers. Perfect if the solution needs to be delivered to different cultures or regions around the world. Access Control – this service is essential to managing user identity. It’s backed by a full blown implementation of Active Directory and allows the definition and management of users, groups, and roles. A pre-built ASP.NET membership provider is included in the training kit to leverage this capability but it’s also flexible enough to be combined with external Identity providers including Windows LiveID, Google, Yahoo!, and Facebook. The provider model has extensibility points to hook into other identity providers as well. Web Role – hosts the core of the web application and presents a central social hub users. Database – used to store core operational, functional, and workflow data for the solution’s web services. Caching (optional) – as a web site traffic grows caching can be leveraged to keep frequently used read-only, user specific, and application resource data in a high-speed distributed in-memory for faster response times and ultimately higher scalability without spinning up more web and worker roles. It includes a token based security model that works alongside the Access Control service. Tables (optional) – for semi-structured data streams that don’t need relational integrity such as conversations, comments, or activity streams, tables provide a faster and more flexible way to store this kind of historical data. Blobs (optional) – users may be creating or uploading large volumes of heterogeneous data such as documents or rich media. Blob storage provides a scalable, resilient way to store terabytes of user data. The storage facilities can also integrate with the Access Control service to ensure users’ data is delivered securely. Content Delivery Network (CDN) (optional) – for sites that service users around the globe, the CDN is an extension to blob storage that, when enabled, will automatically cache frequently accessed blobs and static site content at edge data centers around the world. The data can be delivered statically or streamed in the case of rich media content. Training These links point to online Windows Azure training labs and resources where you can learn more about the individual ingredients described above. (Note: The entire Windows Azure Training Kit can also be downloaded for offline use.) Windows Azure (16 labs) Windows Azure is an internet-scale cloud computing and services platform hosted in Microsoft data centers, which provides an operating system and a set of developer services which can be used individually or together. It gives developers the choice to build web applications; applications running on connected devices, PCs, or servers; or hybrid solutions offering the best of both worlds. New or enhanced applications can be built using existing skills with the Visual Studio development environment and the .NET Framework. With its standards-based and interoperable approach, the services platform supports multiple internet protocols, including HTTP, REST, SOAP, and plain XML SQL Azure (7 labs) Microsoft SQL Azure delivers on the Microsoft Data Platform vision of extending the SQL Server capabilities to the cloud as web-based services, enabling you to store structured, semi-structured, and unstructured data. Windows Azure Services (9 labs) As applications collaborate across organizational boundaries, ensuring secure transactions across disparate security domains is crucial but difficult to implement. Windows Azure Services provides hosted authentication and access control using powerful, secure, standards-based infrastructure. See my Windows Azure Resource Guide for more guidance on how to get started, including links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • Windows Phone 7 Silverlight / XNA development talk

    - by subodhnpushpak
    Hi, I presented on Windows Phone 7 app development using Silverlight. Here are few pics from the event Windows Phone 7 development VIEW SLIDE SHOW DOWNLOAD ALL     I demonstrated the Visual studio, emulator capabilities/ features. An demo on Wp7 app communication with an OData Service, along with a demo on XNA app. There was lot of curious questions; I am listing them here because these keep on popping up again and again: 1. What tools does it takes to develop Wp7 app? Are they free? A typical WP7 app can be developed either using Silverlight or XNA. For developers, Visual Studio 2010 is a good choice as it provides an integrated development environment with lots of useful project templates; which makes the task really easy. For designers, Blend may be used to develop the UI in XAML. Both the tools are FREE (express version) to download and very intuitive to use. 2. What about the learning curve? If you know C#, (or any other programming language), learning curve is really flat. XAML (used for UI) may be new for you, but trust me; its very intuitive. Also you can use Microsoft Blend to generate the UI (XAML) for you. 3. How can I develop /test app without using actual device? How can I be sure my app runs as expected on actual device? The WP7 SDK comes along with an excellent emulator; which you can use for development/ testing on a computer. Later you can just change a setting and deploy the application on WP7. You will require Zune software for deploying the application on phone along with Developers key from WP7 marketplace. You can obtain key from marketplace by filling a form. The whole process for registering  is easy; just follow the steps on the site. 4. Which one should I use? Silverlight or XNA? Use Silverlight for enterprise/ business / utility apps. Use XNA for Games app. While each platform is capable / strong and may be used in conjunction as well; The methodologies used for development in these platforms are very different. XNA works on typical Do..While loop where as Silverlight works on event based methodology. 5. Where are the learning resources? Are they free? There is lots of stuff on WP7. Most of them are free. There is a excellent free book by Charles Petzold to download and http://www.microsoft.com/windowsphone is full of demos /todos / vidoes. All the exciting stuff was captured live and you can view it here; in case you were not able to catch it live!! @ http://livestre.am/AUfx. My talk starts from 3:19:00 timeline in the video!! Is there an app you miss on WP7? Do let me know about it and I may work on it for free !!! Keep discovering. Keep is Simple. WP7. Subodh

    Read the article

  • Indexing data from multiple tables with Oracle Text

    - by Roger Ford
    It's well known that Oracle Text indexes perform best when all the data to be indexed is combined into a single index. The query select * from mytable where contains (title, 'dog') 0 or contains (body, 'cat') 0 will tend to perform much worse than select * from mytable where contains (text, 'dog WITHIN title OR cat WITHIN body') 0 For this reason, Oracle Text provides the MULTI_COLUMN_DATASTORE which will combine data from multiple columns into a single index. Effectively, it constructs a "virtual document" at indexing time, which might look something like: <title>the big dog</title> <body>the ginger cat smiles</body> This virtual document can be indexed using either AUTO_SECTION_GROUP, or by explicitly defining sections for title and body, allowing the query as expressed above. Note that we've used a column called "text" - this might have been a dummy column added to the table simply to allow us to create an index on it - or we could created the index on either of the "real" columns - title or body. It should be noted that MULTI_COLUMN_DATASTORE doesn't automatically handle updates to columns used by it - if you create the index on the column text, but specify that columns title and body are to be indexed, you will need to arrange triggers such that the text column is updated whenever title or body are altered. That works fine for single tables. But what if we actually want to combine data from multiple tables? In that case there are two approaches which work well: Create a real table which contains a summary of the information, and create the index on that using the MULTI_COLUMN_DATASTORE. This is simple, and effective, but it does use a lot of disk space as the information to be indexed has to be duplicated. Create our own "virtual" documents using the USER_DATASTORE. The user datastore allows us to specify a PL/SQL procedure which will be used to fetch the data to be indexed, returned in a CLOB, or occasionally in a BLOB or VARCHAR2. This PL/SQL procedure is called once for each row in the table to be indexed, and is passed the ROWID value of the current row being indexed. The actual contents of the procedure is entirely up to the owner, but it is normal to fetch data from one or more columns from database tables. In both cases, we still need to take care of updates - making sure that we have all the triggers necessary to update the indexed column (and, in case 1, the summary table) whenever any of the data to be indexed gets changed. I've written full examples of both these techniques, as SQL scripts to be run in the SQL*Plus tool. You will need to run them as a user who has CTXAPP role and CREATE DIRECTORY privilege. Part of the data to be indexed is a Microsoft Word file called "1.doc". You should create this file in Word, preferably containing the single line of text: "test document". This file can be saved anywhere, but the SQL scripts need to be changed so that the "create or replace directory" command refers to the right location. In the example, I've used C:\doc. multi_table_indexing_1.sql : creates a summary table containing all the data, and uses multi_column_datastore Download link / View in browser multi_table_indexing_2.sql : creates "virtual" documents using a procedure as a user_datastore Download link / View in browser

    Read the article

  • SQL SERVER – Monitoring SQL Server Database Transaction Log Space Growth – DBCC SQLPERF(logspace) – Puzzle for You

    - by pinaldave
    First of all – if you are going to say this is very old subject, I agree this is very (very) old subject. I believe in earlier time we used to have this only option to monitor Log Space. As new version of SQL Server released we all equipped with DMV, Performance Counters, Extended Events and much more new enhancements. However, during all this year, I have always used DBCC SQLPERF(logspace) to get the details of the logs. It may be because when I started my career I remember this command and it did what I wanted all the time. Recently I have received interesting question and I thought, I should request your help. However, before I request your help, let us see traditional usage of DBCC SQLPERF(logspace). Every time I have to get the details of the log I ran following script. Additionally, I liked to store the details of the when the log file snapshot was taken as well so I can go back and know the status log file growth. This gives me a fair estimation when the log file was growing. CREATE TABLE dbo.logSpaceUsage ( id INT IDENTITY (1,1), logDate DATETIME DEFAULT GETDATE(), databaseName SYSNAME, logSize DECIMAL(18,5), logSpaceUsed DECIMAL(18,5), [status] INT ) GO INSERT INTO dbo.logSpaceUsage (databaseName, logSize, logSpaceUsed, [status]) EXEC ('DBCC SQLPERF(logspace)') GO SELECT * FROM dbo.logSpaceUsage GO I used to record the details of log file growth every hour of the day and then we used to plot charts using reporting services (and excel in much earlier times). Well, if you look at the script above it is very simple script. Now here is the puzzle for you. Puzzle 1: Write a script based on a table which gives you the time period when there was highest growth based on the data stored in the table. Puzzle 2: Write a script based on a table which gives you the amount of the log file growth from the beginning of the table to the latest recording of the data. You may have to run above script at some interval to get the various data samples of the log file to answer above puzzles. To make things simple, I am giving you sample script with expected answers listed below for both of the puzzle. Here is the sample query for puzzle: -- This is sample query for puzzle CREATE TABLE dbo.logSpaceUsage ( id INT IDENTITY (1,1), logDate DATETIME DEFAULT GETDATE(), databaseName SYSNAME, logSize DECIMAL(18,5), logSpaceUsed DECIMAL(18,5), [status] INT ) GO INSERT INTO dbo.logSpaceUsage (databaseName, logDate, logSize, logSpaceUsed, [status]) SELECT 'SampleDB1', '2012-07-01 7:00:00.000', 5, 10, 0 UNION ALL SELECT 'SampleDB1', '2012-07-01 9:00:00.000', 16, 10, 0 UNION ALL SELECT 'SampleDB1', '2012-07-01 11:00:00.000', 9, 10, 0 UNION ALL SELECT 'SampleDB1', '2012-07-01 14:00:00.000', 18, 10, 0 UNION ALL SELECT 'SampleDB3', '2012-06-01 7:00:00.000', 5, 10, 0 UNION ALL SELECT 'SampleDB3', '2012-06-04 7:00:00.000', 15, 10, 0 UNION ALL SELECT 'SampleDB3', '2012-06-09 7:00:00.000', 25, 10, 0 GO Expected Result of Puzzle 1 You will notice that there are two entries for database SampleDB3 as there were two instances of the log file grows with the same value. Expected Result of Puzzle 2 Well, please a comment with valid answer and I will post valid answers with due credit next week. Not to mention that winners will get a surprise gift from me. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: DBCC

    Read the article

  • Booting the liveCD/USB in EFI mode fails on Samsung Tablet XE700T1A

    - by F.L.
    My tablet is Samsung Series 7 Slate (XE700T1A-A02FR (French Language)). It operates an Intel Sandy Bridge architecture. The main issue about this tablet is that it ships with an installed Windows 7 in (U)EFI mode (GPT partition table, etc.), so I'd like to get an EFI dual boot with Ubuntu. But it seems I can't boot on the liveCD in EFI mode. It starts loading (up to initrd), but I then get a blank (black) screen. I've tried the nomodeset kernel option (as well as removing quiet and splash) with no luck. [2012-09-27] I have used the Ubuntu 12.04.1 Desktop ISO (I have read somewhere that it is the only one that can boot in EFI mode). I'd say this has something to do with UEFI since the LiveCD boots in bios mode but not in efi mode. Besides, I am not sure my boot info will help, since I can't boot the LiveCD in EFI mode. As a result I can't install ubuntu in EFI mode. So it would be the boot info from the liveCD boot in bios mode. This happens on a ubuntu-12.04.1-desktop-amd64 iso used on a LiveUSB. Live USB was created by dd'ing the iso onto the full disk device (i.e. /dev/sdx no number) of the Flash drive. I have also tried copying the LiveCD files on a primary GPT partition, but with no luck, I just get the grub shell, no menu, no install option. [2012-09-28] I tried today a flash drive created with Ubuntu's Startup Disk Creator and the alternate 12.04.1 64 bit ISO. I get a grub menu in text mode (which meens it did start in efi mode) with install options / test options. But when I start any of these, I simply get a black screen (no cursor, neither mouse nor text-mode cursor). I tried removing the 'quiet' option and adding nomodeset and acpi=off, but it didn't do any good. So this is the same result as for the LiveCD. [2012-10-01] I have tried with a version of the secure remix version via usb-creator-gtk. The boot on the USB key has the same symptoms. Boot in EFI mode is impossible (I have menu but whatever entry I choose, I get the blank screen problem). The boot in BIOS mode works, I did the install. Then I used boot-repair to try installing grub-efi and get a system that would boot in efi mode. But I can't boot this system, because the EFI firmware doesn't seem to detect that sda contains a valid efi partition. Here is the resulting boot-info Boot info 1253554 [2012-10-01] Today, I have reinstalled the pre-shipped version of windows 7, and then installed ubuntu from a secure-remix iso dumped on USB flash drive vie usb-creator-gtk booted in BIOS mode. When install ended, I said "continue testing" then I used boot-repair to try get the bootloader installed. Now, when I boot the tablet, I get the grub menu, it can chainload windows 7 flawlessly. But when I try to start one of the ubuntu options I get the same old blank screen. Here is the new boot-info: Boot info 1253927 [2012-10-01] I tried installing the 3.3 kernel by chrooting a live usb boot (secure remix again) into the installed system. Same symptoms. I feel the key to this is that the device's efi firmware (which is EFI v2.0) would expose the graphics hardware in a way that prevents the kernel to initialize it, and thus prevents it from booting (the kernel stops all drive access just after the screen turns kind of very dark purple). Here is some info on the UEFI firmware as given by rEFInd: EFI revision: 2.00 Platform: x86_64 (64 bit) Firmware: American Megatrends 4.635 Screen Output: Graphics Output (UEFI), 800x600 [2012-10-08] This week end I tried loading the kernel with elilo. Eventhough I didn't have more luck on booting the kernel, elilo gives more info when loading the kernel. I think the next step is trying to load a kernel with EFI stub directly.

    Read the article

  • Oracle Retail Mobile Point-of-Service

    - by David Dorf
    When most people discuss mobile in retail, they immediately go to shopping applications.  While I agree the consumer side of mobile is huge, I believe its also important to arm store associates with mobile tools.  There are around a dozen major roll-outs of mobile POS to chain retailers, and all have been successful.  This does not, however, signal the demise of traditional registers.  Retailers will adopt mobile POS slowly and reduce the number of fixed registers over time, but there's likely to be a combination of both for the foreseeable future.  Even Apple retains at least one fixed register in every store, you just have to know where to look. The business benefits for mobile POS are pretty straightforward: 1. Faster checkout.  Walmart's CFO recently reported that for every second they shave off the average transaction time, they can potentially save $12M a year in labor.  I think its more likely that labor will be redeployed to enhance the customer experience. 2. Smarter associates.  The sales associates on the floor need the same access to information that consumers have, if not more.  They need ready access to product details, reviews, inventory, etc. to meet consumer expectations.  In a recent study, 40% of consumers said a savvy store associate can impact their final product selection more than a website. 3. Lower costs.  Mobile POS hardware (iPod touch + sled) costs about a fifth of fixed registers, not to mention the reclaimed space that can be used for product displays. But almost all Mobile POS solutions can claim those benefits equally.  Where there's differentiation is on the technical side.  Oracle recently announced availability of the Oracle Retail Mobile Point-of-Service, and it has three big technology advantages in the market: 1. Portable. We used a popular open-source component called PhoneGap that abstracts the app from the underlying OS and hardware so that iOS, Android, and other platforms could be supported.  Further, we used Web technologies such as HTML5 and JavaScript, which are commonly known by many programmers, as opposed to ObjectiveC which is more difficult to find.  The screen can adjust to different form-factors and sizes, just like you see with browsers.  In the future when a new, zippy device gets released, retailers will have the option to move to that device more easily than if they used a native app. 2. Flexible.  Our Mobile POS is free with the Oracle Retail Point-of-Service product.  Retailers can use any combination of fixed and mobile registers, and those ratios can change as required.  Perhaps start with 1 mobile and 4 fixed per store, then transition over time to 4 mobile and 1 fixed without any additional software licenses.  Our scalable solution supports lots of combinations. 3. Consistent.  Because our Mobile POS is fully integrated to our traditional POS, the same business logic is reused.  Third-party Mobile POS solutions often handle pricing, promotions, and tax calculations separately leading to possible inconsistencies within the store.  That won't happen with Oracle's solution. For many retailers, Mobile POS can lower costs, increase customer service, and generally enhance a consumer's in-store experience.  Apple led the way, but lots of other retailers are discovering the many benefits of adding mobile capabilities in their stores.  Just be sure to examine both the business and technology benefits so you get the most value from your solution for the longest period of time.

    Read the article

  • New spreadsheet accompanying SmartAssembly 6.0 provides statistics for prioritizing bug fixes

    - by Jason Crease
    One problem developers face is how to prioritize the many voices providing input into software bugs. If there is something wrong with a function that is the darling of a particular user, he or she tends to want action - now! The developer's dilemma is how to ascertain that the problem is major or minor, and when it should be addressed. Now there is a new spreadsheet accompanying SmartAssembly that provides exactly that information in an objective manner. This might upset those used to getting their way by being the loudest or pushiest, but ultimately it will ensure that the biggest problems get the priority they deserve. Here's how it works: Feature Usage Reporting (FUR) in SmartAssembly 6.0 provides a wealth of data about how your software is used by its end-users, but in the SmartAssembly UI the data isn't mined to its full extent. The new Excel spreadsheet for FUR extracts statistics from that data and presents them in easy-to-understand forms. I developed the spreadsheet feature in Microsoft Excel, using a fair amount of VBA. The spreadsheet connects directly to the database which stores the feature-usage data, and shows a wide variety of statistics and tables extracted from that data.  You want to know what percentage of users have used the 'Export as XML' button?  No problem.  How popular is v5.3 is compared to v5.1?  There's graphs for that. You need to know whether you have more users in Russia or Brazil? There's a big pie chart for that. I recently witnessed the spreadsheet in use here at Red Gate Software. My bug is exposed as minor While testing new features in .NET Reflector, I found a usability bug in the Refresh button and filed it in the Red Gate bug-tracking system. The bug was labelled "V.NEXT MINOR," which means it would be fixed in the next point release. Although I'm a professional tester, I'm not much different than most software users when they discover a bug that affects them personally: I wanted it fixed immediately. There was an ulterior motive at play here, of course. I would get to see my colleagues put the spreadsheet to work. The Reflector team loaded up the spreadsheet to view the feature-usage statistics that SmartAssembly collected for the refresh button. The resulting statistics showed that only 8% of users have ever pressed the Refresh button, and only 2.6% of sessions involve pressing the button. When Refresh is used, it's only pressed on average 1.6 times a session, with a maximum of 8 times during a session. This was in stark contrast to what I was doing as a conscientious tester: pressing it dozens of times per session. The spreadsheet provides evidence that my bug was a minor one. On to more serious things Based on the solid evidence uncovered by the spreadsheet, the Reflector team concluded that my experience does not represent that of the vast majority of Reflector's recorded users. The Reflector team had ample data to send me back to my desk and keep the bug classified as "V.NEXT MINOR." The team then went back to fixing more serious bugs. If I'm in the shoes of the user, I might not be thoroughly happy, but I cannot deny that the evidence clearly placed me in a very small minority. Next time I'm hoping the spreadsheet will prove that my bug is more important. Find out more about Feature-Usage Reporting here. The spreadsheet is available for free download here.

    Read the article

  • Grub Rescue Unknown Filesystem Error. Grub Corrupted or Filesystem?

    - by nightcrawler
    Now it has happened twice & have been pulling my hairs now... I have installed xubuntu on my external hardisk & have been using it for about 3 months. It has three partitions, one of 500 mb mounted at /boot, 2nd one of 48gb mounted at / & the rest (out of 160gb) is ntfs partition....used as normal external storage. The last storage supposedly acts as a buffer b/w Linux distributions & Win platform, buffer in the sense that it provides a universal channel for data transfers. I have constantly used this external hardisk for data transfers b/w win7 laptop & xubuntu (on this external hd) without any hassle. However, on of my desktops where I have ubuntu I (for the first time) attached this external drive which let me do data transfers where all three partitions properly mounted....but then nasty thing occurred the same that occurred before. I (as usual) tried booting via this external hd (one having xubuntu, one having being formerly used under Ubuntu) I got error Now I am totally devastated because similar thing happened ~6months before when I had fedora 17 in my external hd (instead of xubuntu) & after it was used under ubuntu the same happened...i didn't reported it because I already had planned towards debian instead of rpm! The mystery is that as long as I don't attach this external hd under ubuntu the data never** corrupts whereas under win xp/7 I can use it as a normal usb storage of coarse linux partitions aren’t available under win platforms... **From corrupts I mean hd fails to boot with the error mentioned however cant say whether data within remains untouched? It seems that my grub & or MBR is corrupted. Please sir guide me to solve this issue also why I cant attach & use linux external hds under linux platform Disk /dev/sdc: 160.0 GB, 160041884672 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581806 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0004e7d0 Device Boot Start End Blocks Id System /dev/sdc1 * 2048 976895 487424 83 Linux /dev/sdc2 978942 96874495 47947777 5 Extended /dev/sdc3 96874496 312575999 107850752 7 HPFS/NTFS/exFAT /dev/sdc5 978944 94726143 46873600 83 Linux /dev/sdc6 94728192 96874495 1073152 82 Linux swap / Solaris I can recall for sure that have seen a thread here when a similar problem occurred & in response someone gave solution of how to mount (now invisible) partitions & recover important data in them. I have misplaced that URL so if any can guide me thither because my important documents resides in / partition What I already have done: Without success I have tried this & related solutions What I plan to do: I believe that filesystem has corrupted & would you recommend solution like this provided I cant recall whether my /boot (500mb) partition was ext4 or ext2 though I am sure that my / (48gb) partition was ext4 UPDATE 1 Attached my external hd under Ubuntu ran followinf command as root grub-install /dev/sdc where /dev/sdc was my external hd containing corrupted xubuntu....it reported all done! I re-ran fdisk -l but to my disappointment it reported Disk /dev/sdc: 160.0 GB, 160041884672 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581806 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x1b6b9167 Disk /dev/sdc doesn't contain a valid partition table ...& now I can't even access its ntfs partition (former /dev/sdc3) please help? UPDATE 2 TestDisk (by cgsecurity) failed at founding any partition table :( TestDisk 6.13, Data Recovery Utility, November 2011 Christophe GRENIER <[email protected]> http://www.cgsecurity.org Disk /dev/sdc - 160 GB / 149 GiB - CHS 19457 255 63 Partition Start End Size in sectors

    Read the article

  • Non use of persisted data

    - by Dave Ballantyne
    Working at a client site, that in itself is good to say, I ran into a set of circumstances that made me ponder, and appreciate, the optimizer engine a bit more. Working on optimizing a stored procedure, I found a piece of code similar to : select BillToAddressID, Rowguid, dbo.udfCleanGuid(rowguid) from sales.salesorderheaderwhere BillToAddressID = 985 A lovely scalar UDF was being used,  in actuality it was used as part of the WHERE clause but simplified here.  Normally I would use an inline table valued function here, but in this case it wasn't a good option. So this seemed like a pretty good case to use a persisted column to improve performance. The supporting index was already defined as create index idxBill on sales.salesorderheader(BillToAddressID) include (rowguid) and the function code is Create Function udfCleanGuid(@GUID uniqueidentifier)returns varchar(255)with schemabindingasbegin Declare @RetStr varchar(255) Select @RetStr=CAST(@Guid as varchar(255)) Select @RetStr=REPLACE(@Retstr,'-','') return @RetStrend Executing the Select statement produced a plan of : Nothing surprising, a seek to find the data and compute scalar to execute the UDF. Lets get optimizing and remove the UDF with a persisted column Alter table sales.salesorderheaderadd CleanedGuid as dbo.udfCleanGuid(rowguid)PERSISTED A subtle change to the SELECT statement… select BillToAddressID,CleanedGuid from sales.salesorderheaderwhere BillToAddressID = 985 and our new optimized plan looks like… Not a lot different from before!  We are using persisted data on our table, where is the lookup to fetch it ?  It didnt happen,  it was recalculated.  Looking at the properties of the relevant Compute Scalar would confirm this ,  but a more graphic example would be shown in the profiler SP:StatementCompleted event. Why did the lookup happen ? Remember the index definition,  it has included the original guid to avoid the lookup.  The optimizer knows this column will be passed into the UDF, run through its logic and decided that to recalculate is cheaper than the lookup.  That may or may not be the case in actuality,  the optimizer has no idea of the real cost of a scalar udf.  IMO the default cost of a scalar UDF should be seen as a lot higher than it is, since they are invariably higher. Knowing this, how do we avoid the function call?  Dropping the guid from the index is not an option, there may be other code reliant on it.   We are left with only one real option,  add the persisted column into the index. drop index Sales.SalesOrderHeader.idxBillgocreate index idxBill on sales.salesorderheader(BillToAddressID) include (rowguid,cleanedguid) Now if we repeat the statement select BillToAddressID,CleanedGuid from sales.salesorderheaderwhere BillToAddressID = 985 We still have a compute scalar operator, but this time it wasnt used to recalculate the persisted data.  This can be confirmed with profiler again. The takeaway here is,  just because you have persisted data dont automatically assumed that it is being used.

    Read the article

  • Introduction to WebCenter Personalization: &ldquo;The Conductor&rdquo;

    - by Steve Pepper
    There are some new faces in the town of WebCenter with the latest 11g PS3 release.  A new component has introduced itself as "Oracle WebCenter Personalization", a.k.a WCP, to simplify delivery of a personalized experience and content to end users.  This posting reviews one of the primary components within WCP: "The Conductor". The Conductor: This ain't just an ordinary cloud... One of the founding principals behind WebCenter Personalization was to provide an open client-side API that remains independent of the technology invoking it, in addition to independence from the architecture running it.  The Conductor delivers this, and much, much more. The Conductor is the engine behind WebCenter Personalization that allows flow-based documents, called "Scenarios", to be managed and executed on the server-side through a well published and RESTful api.      The Conductor also supports an extensible model for custom provider integration that can be easily invoked within a Scenario to promote seamless integration with existing business assets. Introducing the Scenario Conductor Scenarios are declarative offline-authored documents using the custom Personalization JDeveloper bundle included with WebCenter.  A Scenario contains one (or more) statements that can: Create variables that are scoped to the current execution context Iterate over collections, or loop until a specific condition is met Execute one or more statements when a condition is met Invoke other scenarios that exist within the same namespace Invoke a data provider that integrates with custom applications Once a variable is assigned within the Scenario's execution context, it can be referenced anywhere within the same Scenario using the common Expression Language syntax used in J2EE web containers. Scenarios are then published and tested to the Integrated WebLogic Server domain, or published remotely to other domains running WebCenter Personalization. Various Client-side Models The Conductor server API is built upon RESTful services that support a wide variety of clients able to communicate over HTTP.  The Conductor supports the following client-side models: REST:  Popular browser-based languages can be used to manage and execute Conductor Scenarios.  There are other public methods to retrieve configured provider metadata that can be used by custom applications. The Conductor currently supports XML and JSON for it's API syntax. Java: WebCenter Personalization delivers a robust and light-weight java client with the popular Jersey framework as it's foundation.  It has never been easier to write a remote java client to manage remote RESTful services. Expression Language (EL): Allow the results of Scenario execution to control your user interface or embed personalized content using the session-scoped managed bean.  The EL client can also be used in straight JSP pages with minimal configuration. Extensible Provider Framework The Conductor supports a pluggable provider framework for integrating custom code with Scenario execution.  There are two types of providers supported by the Conductor: Function Provider: Function Providers are simple java annotated classes with static methods that are meant to be served as utilities.  Some common uses would include: object creation or instantiation, data transformation, and the like.  Function Providers can be invoked using the common EL syntax from variable assignments, conditions, and loops. For example:  ${myUtilityClass:doStuff(arg1,arg2))} If you are familiar with EL Functions, Function Providers are based on the same concept. Data Provider: Like Function Providers, Data Providers are annotated java classes, but they must adhere to a much more strict object model.  Data Providers have access to a wealth of Conductor services, such as: Access to namespace-scoped configuration API that can be managed by Oracle Enterprise Manager, Scenario execution context for expression resolution, and more.  Oracle ships with three out-of-the-box data providers that supports integration with: Standardized Content Servers(CMIS),  Federated Profile Properties through the Properties Service, and WebCenter Activity Graph. Useful References If you are looking to immediately get started writing your own application using WebCenter Personalization Services, you will find the following references helpful in getting you on your way: Personalizing WebCenter Applications Authoring Personalized Scenarios in JDeveloper Using Personalization APIs Externally Implementing and Calling Function Providers Implementing and Calling Data Providers

    Read the article

  • Experimenting with other search engines

    - by Bill Graziano
    I’ve been a Google user so long I can hardly remember what I used before it.  Alta Vista maybe?  Or Yahoo.  I’ve tried Bing off and on but it never really stuck.  I probably care more about search engines than your average user because of their impact on SQLTeam.com.  Lately I’ve been trying two other search engines and actually switched to one of them. I’ve played with Blekko a little in the past.  They have some interesting ways to “slice up” your results.  For example, searching on “SQL Server /blogs /date” should just search all the recently updated blogs.  Those two extra words on the search are slashtags.  The full list of slashtags runs from /forums to just see forums to /twitter to /nikon to /reviews and on and on and on.  I laughed when I saw they had slashtags for both liberal and conservative.  I’d hate to find any search results that don’t match my existing worldview :)  You can also create your own slashtags.  I created a mini-search engine for the SQL Server blogs that I read.  You can search it for “backup” at http://blekko.com/ws/backup+/billgraziano/sql-sites.  I uploaded my OPML and it limited the search to just those sites.  It seems like the site is focusing more on curating results and less on algorithms.  This is an interesting site for those power searchers.  There are some great ways to curate results using slashtags.  For 99% of my searches (type words, click on one of the first few links) slashtags are overkill.  They do have some good information on page and site ranking though so I’ll probably send some time looking through that. Blekko recently got my attention again when they said they were banning “content farms” - and that includes eHow and experts-exchange.  I always feel used when I click on a link to EE and find myself scrolling all the way to the bottom to see if I can find the answer.  Sometimes it’s there but sometimes it tells me I need to pay first.  I’ve longed for a way to always exclude certain sites.  Blekko might be taking a hammer to a problem that needs a scalpel but it’s an interesting choice.  (And some of the comments in the TechCrunch link are interesting if you’re a search nerd.) DuckDuckGo is an odd name for a search engine.  Their big hook is that they don’t have search history.  If you wade through your Google account you can probably find the page where it stores your search history.  It was pretty enlightening to find mine.  It was easy to disable but that got me started looking at other search engines.  DDG (or DukGo) just feels like Google used to in the old days.  The results are good enough and the site is fast. Searches will return a snippet from WikiPedia or other site (like StackOverflow) at the top.  I think the idea is to answer the question without needing to visit the site.  I’m not sure that’s a good thing for SQLTeam.com. The only thing I really miss is image search.  You can add a “!i” at the end of any search and it will search the images on Bing.  Bing doesn’t have a great image search but it works for most of what I need.  They call these exclamation marks “!bangs” and they are kinda, sorta like slashtags.  I’ve been using DuckDuckGo now for a few weeks and I’m pretty happy with it.  I use Chrome for my browser and it was an easy switch to make.  It’s still a little surprising seeing my search results come up in a different format.  I’m starting to get used to it though.

    Read the article

  • How much am I worth hourly as a software/web developer? [closed]

    - by luckysmack
    I may be starting a new job very soon as a developer for both web and desktop software. The primary languages I will be using is ASP.NET with C# with some php for existing projects(I've already had one interview which went very well). The job deals primarily in advertising. But this is my first real job in the market, I have no degrees, but have some college time(~1yr). So I am primarily self taught. They are fully aware of my skill set and lack of degrees or certificates. I applied as an entry level developer. It will be a permanent and full time/hourly position, and not a per contract job. So since it my cherry job, im not really sure what to ask for. even though im self taught im pretty confident in my skills and know what im doing fairly well. I pick up on new concepts very well and find new things fairly easy to learn. Here is a very brief summary of my skills: PHP: ~2years C#/.NET: 2 months Python: Basics only. ~1 month OOP Familiarity: Great (1 year) MVC Familiarity: Great (1 year) PHP Frameworks used: CakePHP(6 months), Yii(3 months), Lithium(3 months) CMS Familiar with: Drupal(1.5 years), Wordpress(only basics) I also have ~2yrs experience in maintaining my own VPS server and the hassles all that entails (linux/debian) Pretty much all the above will be used at this job. Although I will be using C# a vast majority of the time. I only recently started learning it but am moving along fairly rapidly and its all going smooth as butter. So what have I built? I have one proprietary site built in drupal which is used an an order log for products, inventory, and their shipments. It is also able to process payments through paypal merchant services. I have worked on a handful of other small apps used here and there I'm not able to show but which worked fairly well (all in php using frameworks though). The business does fairly well and is far from a a typical corporate type environment. It is much closer to a small development studio. And it is based out of northern California. I don't know how/what more info I can give on them. I also want this to be able to be referenced by other people possibly so I am looking for general tips and ideas to get an answer as well. I had trouble finding a reasonable range on other websites which seemed to be either way to low, or showed what a veteran developer makes. I know this is a fairly subjective question, but it is difficult to get a reasonable answer or guesstimate anywhere else. Even if only a little bit help, its much appreciated. So as for the direct question, based on all this info (did I miss anything?), how much should I ask for hourly? How much am I worth as a software developer?

    Read the article

  • How to make a stack stable? Need help for an explicit resting contact scheme (2-dimensional)

    - by Register Sole
    Previously, I struggle with the sequential impulse-based method I developed. Thanks to jedediah referring me to this paper, I managed to rebuild the codes and implement the simultaneous impulse based method with Projected-Gauss-Seidel (PGS) iterative solver as described by Erin Catto (mentioned in the reference of the paper as [Catt05]). So here's how it currently is: The simulation handles 2-dimensional rotating convex polygons. Detection is using separating-axis test, with a SKIN, meaning closest points between two polygons is detected and determined if their distance is less than SKIN. To resolve collision, simultaneous impulse-based method is used. It is solved using iterative solver (PGS-solver) as in Erin Catto's paper. Error-correction is implemented using Baumgarte's stabilization (you can refer to either paper for this) using J V = beta/dt*overlap, J is the Jacobian for the constraints, V the matrix containing the velocities of the bodies, beta an error-correction parameter that is better be < 1, dt the time-step taken by the engine, and overlap, the overlap between the bodies (true overlap, so SKIN is ignored). However, it is still less stable than I expected :s I tried to stack hexagons (or squares, doesn't really matter), and even with only 4 to 5 of them, they would swing! Also note that I am not looking for a sleeping scheme. But I would settle if you have any explicit scheme to handle resting contacts. That said, I would be more than happy if you have a way of treating it generally (as continuous collision, instead of explicitly as a special state). Ideas I have tried: Using simultaneous position based error correction as described in the paper in section 5.3.2, turned out to be worse than the current scheme. If you want to know the parameters I used: Hexagons, side 50 (pixels) gravity 2400 (pixels/sec^2) time-step 1/60 (sec) beta 0.1 restitution 0 to 0.2 coeff. of friction 0.2 PGS iteration 10 initial separation 10 (pixels) mass 1 (unit is irrelevant for now, i modified velocity directly<-impulse method) inertia 1/1000 Thanks in advance! I really appreciate any help from you guys!! :) EDIT In response to Cholesky's comment about warm starting the solver and Baumgarte: Oh right, I forgot to mention! I do save the contact history and the impulse determined in this time step to be used as initial guess in the next time step. As for the Baumgarte, here's what actually happens in the code. Collision is detected when the bodies' closest distance is less than SKIN, meaning they are actually still separated. If at this moment, I used the PGS solver without Baumgarte, restitution of 0 alone would be able to stop the bodies, separated by a distance of ~SKIN, in mid-air! So this isn't right, I want to have the bodies touching each other. So I turn on the Baumgarte, where its role is actually to pull the bodies together! Weird I know, a scheme intended to push the body apart becomes useful for the reverse. Also, I found that if I increase the number of iteration to 100, stacks become much more stable, though the program becomes so slow. UPDATE Since the stack swings left and right, could it be something is wrong with my friction model? Current friction constraint: relative_tangential_velocity = 0

    Read the article

< Previous Page | 104 105 106 107 108 109 110 111 112 113 114 115  | Next Page >