Search Results

Search found 11138 results on 446 pages for 'dynamic linq'.

Page 109/446 | < Previous Page | 105 106 107 108 109 110 111 112 113 114 115 116  | Next Page >

  • After grouping by, can I refer to the elements of the original IEnumerable in a LINQ query?

    - by michielvoo
    Example: from OriginalObject in ListOfOriginalObjects group new CustomObject { X = OriginalObject.A, Y = OriginalObject.B } by OriginalObject.Z into grouping select new GroupOfCustomObjects { Z = grouping.Key, C = OriginalObject.C, group = grouping } In the select part of the query, I'd like to add a property (OriginalObject.C) to the type GroupOfCustomObjects. But it seems that OriginalObject is out of scope in that part of the query. I can sort of understand why, since I am not grouping on that property and I am also not making that property part of CustomObject that I'm grouping. One workaround is to add a property C to CustomObject and the in the GroupOfCustomObjects read the value of the first CustomObject in the grouping. My issue with that is that I'm adding a property to an object that doesn't need it (CustomObject), just to be able to add it to the GroupOfCustomObjects. I hope I have explained this properly! Is there a way to refer to the OriginalObject that the query starts with? Thanks!

    Read the article

  • Why does a Linq Cast<T> operation fail when I have an implicit cast defined?

    - by Ryan Versaw
    I've created two classes, with one of them having an implicit cast between them: public class Class1 { public int Test1; } public class Class2 { public int Test2; public static implicit operator Class1(Class2 item) { return new Class1{Test1 = item.Test2}; } } When I create a new list of one type and try to Cast<T> to the other, it fails with an InvalidCastException: List<Class2> items = new List<Class2>{new Class2{Test2 = 9}}; foreach (Class1 item in items.Cast<Class1>()) { Console.WriteLine(item.Test1); } This, however, works fine: foreach (Class1 item in items) { Console.WriteLine(item.Test1); } Why is the implicit cast not called when using Cast<T>?

    Read the article

  • Can you use the same Enum in multiple entities in Linq-to-SQL?

    - by Mark
    In my persistence layer, I've declared a load of Enums to represent tables containing reference data (i.e. data never changes). In Linq2SQL, I am able to set the type of an entity property to an enum type and all is well, but as soon as I set a second entity's property to use the same enum type, the Code Generator (MSLinqToSQLGenerator) start generating an empty code file. I assume that MSLinqToSQLGenerator is quietly crashing. The question is why, and are there any work-arounds? Anyone else experienced this problem?

    Read the article

  • Risky Business with LINQ to SQL and OR Designer?

    - by Toadmyster
    I have two tables with a one to many relationship in SQL 2008. The first table (BBD) PK | BBDataID | int       | Floor_Qty | tinyint       | Construct_Year | char(4)       | etc, etc describes the data common to all buildings and the second (BBDCerts) PK | BBDCertsID | int       | BBDataID | int       | Certification_Type | varchar(20)       | etc, etc is a collection of certifications for a particular building. Thus, the primary key in BBD (BBDataID) is mapped to the corresponding field in BBDCerts via an FK relationship, but BBDCertsID is the second table's primary key and BBDataID is not because it will not be unique. My problem is that I want to be able to use the OR generated data context to get at the list of certs when I access a particular record in the BBD table. For instance: Dim vals = (From q in db.BBD Where q.BBDataID = x Select q.Floor_Qty, q.Construct_Year, q.BBDCerts).SingleOrDefault and later be able to access a particular certification like this: vals.BBDCerts.Certification_Type.First Now, the automatic associations created when the SQL tables are dropped on the design surface don't generate the EntityRef associations that are needed to access the other table using the dot notation. So, I have to use the OR designer to make the BBDCerts BBDataID a primary key (this doesn't affect the actual database), and then manually change the association properties to the appropriate OneToMany settings. There might be a better way to approach this solution but my question is, is the way I've done it safe? I've done a barrage of tests and the correct cert is referenced or updated every time. Frankly, the whole thing makes me nervous.

    Read the article

  • How to query for entities with no matching siblings, with LINQ?

    - by Ryan
    I've got the two following entities ... class Citation { public int CitationId { get; set; } public string Identifier { get; set; } } class CitationIdentifier { public int CitationIdentifierId { get; set; } public string Identifier { get; set; } } I'm trying to query for all Citation records where the Identifier property does not match any of the CitationIdentifiers record Identifier property. So, if I have a Citation with an Identifier property containing "foo", but there are no CitationIdentifier records with an Identifier property containing "foo", then I'd like to retrieve that Citation. I'm working with an IDbSet<Citation>. Any ideas? Thanks.

    Read the article

  • Please help!! Is there a better way to write this LINQ query

    - by Raj Aththanayake
    Hi Is there a better simplified way to write this query. My logic is if collection contains customer ids and countrycodes, do the query ordey by customer id ascending. If there are no contain id in CustIDs then do the order by customer name. Is there a better way to write this query? I'm not really familiar with complex lambdas. var custIdResult = (from Customer c in CustomerCollection where (c.CustomerID.ToLower().Contains(param.ToLower()) && (countryCodeFilters.Any(item => item.Equals(c.CountryCode))) ) select c).ToList(); if (custIdResult.Count > 0) { return from Customer c in custIdResult ( c.CustomerName.ToLower().Contains(param.ToLower()) && countryCodeFilters.Any(item => item.Equals(c.CountryCode)) ) orderby c.CustomerID ascending select c; } else { return from Customer c in CustomerCollection where ( c.CustomerName.ToLower().Contains(param.ToLower()) && countryCodeFilters.Any(item => item.Equals(c.CountryCode)) ) orderby c.CustomerName descending select c; }

    Read the article

  • If I'm projecting with linq and not using a range variable what is the proper syntax?

    - by itchi
    I have a query that sums and aggregates alot of data something like this: var anonType = from x in collection let value = collection.Where(c=>c.Code == "A") select new { sum = value.Sum(v=>v.Amount) }; I find it really weird that I have to declare the range variable x, especially if I'm not using it. So, am I doing something wrong or is there a different format I should be following? Also, keep in mind that anonType has about 15 different properties that are all types of aggregates (sums,counts, etc). So I couldn't do something like: int x = collection.Where(c=>c.Code == "A").Sum(v=>v.Amount);

    Read the article

  • Using LINQ, how do you get all label controls.

    - by John
    I want to get a collection of all label controls that are part of a user control. I have the following code: var labelControls = from Control ctl in this.Controls where ctl.GetType() == typeof(Label) select ctl; but the result is zero results. Please assist. Thanks.

    Read the article

  • How Can I Get a List<int> From Linq to XML that Produces List<List<int>>?

    - by DaveDev
    I have an XML snippet as follows: <PerformancePanel> <LegalText> <Line id="300" /> <Line id="304" /> <Line id="278" /> </LegalText> </PerformancePanel> I'm using the following code to get an object: var performancePanels = new { Panels = (from panel in doc.Elements("PerformancePanel") select new { LegalTextIds = (from legalText in panel.Elements("LegalText").Elements("Line") select new List<int>() { (int)legalText.Attribute("id") }).ToList() }).ToList() }; The type of LegalTextIds is List<List<int>>. How can I get this as a List<int>?

    Read the article

  • Same Salt, Different Encrypted Password is not working? Using Linq to update password.

    - by Xaisoft
    Hello, I am running into a wall regarding changing the password and was wondering if anyone had any ideas. Here are the database values prior to changing the password: Clear Text password = abc1980 Encrypted Password = Yn1N5l+4AUqkOM3WYO7ww/sCN+o= Salt = 82qVIhUIoblBRIRvFSZ1fw== After I change my password to abc1973, salt remains the same, but the Encrypted Password changes which is supposed to happen: Encrypted Password = rHtjLq3qxAl/7T1GfkxrsHzPsNk= However, when I try to login with abc1973 as the password, it does not login. If I try abc1980, it logs me in. It is updating the database, is it caching the values somewhere? Any ideas?

    Read the article

  • [Linq to sql] query result what should i use Count() or Any()...

    - by Pandiya Chendur
    I am checking login of a user by this repository method, public bool getLoginStatus(string emailId, string password) { var query = from r in taxidb.Registrations where (r.EmailId == emailId && r.Password==password) select r; if (query.Count() != 0) { return true; } return false; } I saw in one of the previous questions !query.Any() would be faster... Which should i use? Any suggestion....

    Read the article

  • How do I select the item with the highest value using LINQ?

    - by mafutrct
    Imagine you got a class like this: class Foo { string key; int value; } How would you select the Foo with the highest value from an IEnumeralbe<Foo>? A basic problem is to keep the number of iterations low (i.e. at 1), but that affects readability. After all, the best I could find was something along the lines of this: IEnumerable<Foo> list; Foo max = list.Aggregate ((l, r) => l.value > r.value ? l : r); Can you think of a more better way?

    Read the article

  • Announcing Entity Framework Code-First (CTP5 release)

    - by ScottGu
    This week the data team released the CTP5 build of the new Entity Framework Code-First library.  EF Code-First enables a pretty sweet code-centric development workflow for working with data.  It enables you to: Develop without ever having to open a designer or define an XML mapping file Define model objects by simply writing “plain old classes” with no base classes required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping I’m a big fan of the EF Code-First approach, and wrote several blog posts about it this summer: Code-First Development with Entity Framework 4 (July 16th) EF Code-First: Custom Database Schema Mapping (July 23rd) Using EF Code-First with an Existing Database (August 3rd) Today’s new CTP5 release delivers several nice improvements over the CTP4 build, and will be the last preview build of Code First before the final release of it.  We will ship the final EF Code First release in the first quarter of next year (Q1 of 2011).  It works with all .NET application types (including both ASP.NET Web Forms and ASP.NET MVC projects). Installing EF Code First You can install and use EF Code First CTP5 using one of two ways: Approach 1) By downloading and running a setup program.  Once installed you can reference the EntityFramework.dll assembly it provides within your projects.      or: Approach 2) By using the NuGet Package Manager within Visual Studio to download and install EF Code First within a project.  To do this, simply bring up the NuGet Package Manager Console within Visual Studio (View->Other Windows->Package Manager Console) and type “Install-Package EFCodeFirst”: Typing “Install-Package EFCodeFirst” within the Package Manager Console will cause NuGet to download the EF Code First package, and add it to your current project: Doing this will automatically add a reference to the EntityFramework.dll assembly to your project:   NuGet enables you to have EF Code First setup and ready to use within seconds.  When the final release of EF Code First ships you’ll also be able to just type “Update-Package EFCodeFirst” to update your existing projects to use the final release. EF Code First Assembly and Namespace The CTP5 release of EF Code First has an updated assembly name, and new .NET namespace: Assembly Name: EntityFramework.dll Namespace: System.Data.Entity These names match what we plan to use for the final release of the library. Nice New CTP5 Improvements The new CTP5 release of EF Code First contains a bunch of nice improvements and refinements. Some of the highlights include: Better support for Existing Databases Built-in Model-Level Validation and DataAnnotation Support Fluent API Improvements Pluggable Conventions Support New Change Tracking API Improved Concurrency Conflict Resolution Raw SQL Query/Command Support The rest of this blog post contains some more details about a few of the above changes. Better Support for Existing Databases EF Code First makes it really easy to create model layers that work against existing databases.  CTP5 includes some refinements that further streamline the developer workflow for this scenario. Below are the steps to use EF Code First to create a model layer for the Northwind sample database: Step 1: Create Model Classes and a DbContext class Below is all of the code necessary to implement a simple model layer using EF Code First that goes against the Northwind database: EF Code First enables you to use “POCO” – Plain Old CLR Objects – to represent entities within a database.  This means that you do not need to derive model classes from a base class, nor implement any interfaces or data persistence attributes on them.  This enables the model classes to be kept clean, easily testable, and “persistence ignorant”.  The Product and Category classes above are examples of POCO model classes. EF Code First enables you to easily connect your POCO model classes to a database by creating a “DbContext” class that exposes public properties that map to the tables within a database.  The Northwind class above illustrates how this can be done.  It is mapping our Product and Category classes to the “Products” and “Categories” tables within the database.  The properties within the Product and Category classes in turn map to the columns within the Products and Categories tables – and each instance of a Product/Category object maps to a row within the tables. The above code is all of the code required to create our model and data access layer!  Previous CTPs of EF Code First required an additional step to work against existing databases (a call to Database.Initializer<Northwind>(null) to tell EF Code First to not create the database) – this step is no longer required with the CTP5 release.  Step 2: Configure the Database Connection String We’ve written all of the code we need to write to define our model layer.  Our last step before we use it will be to setup a connection-string that connects it with our database.  To do this we’ll add a “Northwind” connection-string to our web.config file (or App.Config for client apps) like so:   <connectionStrings>          <add name="Northwind"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|\northwind.mdf;User Instance=true"          providerName="System.Data.SqlClient" />   </connectionStrings> EF “code first” uses a convention where DbContext classes by default look for a connection-string that has the same name as the context class.  Because our DbContext class is called “Northwind” it by default looks for a “Northwind” connection-string to use.  Above our Northwind connection-string is configured to use a local SQL Express database (stored within the \App_Data directory of our project).  You can alternatively point it at a remote SQL Server. Step 3: Using our Northwind Model Layer We can now easily query and update our database using the strongly-typed model layer we just built with EF Code First. The code example below demonstrates how to use LINQ to query for products within a specific product category.  This query returns back a sequence of strongly-typed Product objects that match the search criteria: The code example below demonstrates how we can retrieve a specific Product object, update two of its properties, and then save the changes back to the database: EF Code First handles all of the change-tracking and data persistence work for us, and allows us to focus on our application and business logic as opposed to having to worry about data access plumbing. Built-in Model Validation EF Code First allows you to use any validation approach you want when implementing business rules with your model layer.  This enables a great deal of flexibility and power. Starting with this week’s CTP5 release, EF Code First also now includes built-in support for both the DataAnnotation and IValidatorObject validation support built-into .NET 4.  This enables you to easily implement validation rules on your models, and have these rules automatically be enforced by EF Code First whenever you save your model layer.  It provides a very convenient “out of the box” way to enable validation within your applications. Applying DataAnnotations to our Northwind Model The code example below demonstrates how we could add some declarative validation rules to two of the properties of our “Product” model: We are using the [Required] and [Range] attributes above.  These validation attributes live within the System.ComponentModel.DataAnnotations namespace that is built-into .NET 4, and can be used independently of EF.  The error messages specified on them can either be explicitly defined (like above) – or retrieved from resource files (which makes localizing applications easy). Validation Enforcement on SaveChanges() EF Code-First (starting with CTP5) now automatically applies and enforces DataAnnotation rules when a model object is updated or saved.  You do not need to write any code to enforce this – this support is now enabled by default.  This new support means that the below code – which violates our above rules – will automatically throw an exception when we call the “SaveChanges()” method on our Northwind DbContext: The DbEntityValidationException that is raised when the SaveChanges() method is invoked contains a “EntityValidationErrors” property that you can use to retrieve the list of all validation errors that occurred when the model was trying to save.  This enables you to easily guide the user on how to fix them.  Note that EF Code-First will abort the entire transaction of changes if a validation rule is violated – ensuring that our database is always kept in a valid, consistent state. EF Code First’s validation enforcement works both for the built-in .NET DataAnnotation attributes (like Required, Range, RegularExpression, StringLength, etc), as well as for any custom validation rule you create by sub-classing the System.ComponentModel.DataAnnotations.ValidationAttribute base class. UI Validation Support A lot of our UI frameworks in .NET also provide support for DataAnnotation-based validation rules. For example, ASP.NET MVC, ASP.NET Dynamic Data, and Silverlight (via WCF RIA Services) all provide support for displaying client-side validation UI that honor the DataAnnotation rules applied to model objects. The screen-shot below demonstrates how using the default “Add-View” scaffold template within an ASP.NET MVC 3 application will cause appropriate validation error messages to be displayed if appropriate values are not provided: ASP.NET MVC 3 supports both client-side and server-side enforcement of these validation rules.  The error messages displayed are automatically picked up from the declarative validation attributes – eliminating the need for you to write any custom code to display them. Keeping things DRY The “DRY Principle” stands for “Do Not Repeat Yourself”, and is a best practice that recommends that you avoid duplicating logic/configuration/code in multiple places across your application, and instead specify it only once and have it apply everywhere. EF Code First CTP5 now enables you to apply declarative DataAnnotation validations on your model classes (and specify them only once) and then have the validation logic be enforced (and corresponding error messages displayed) across all applications scenarios – including within controllers, views, client-side scripts, and for any custom code that updates and manipulates model classes. This makes it much easier to build good applications with clean code, and to build applications that can rapidly iterate and evolve. Other EF Code First Improvements New to CTP5 EF Code First CTP5 includes a bunch of other improvements as well.  Below are a few short descriptions of some of them: Fluent API Improvements EF Code First allows you to override an “OnModelCreating()” method on the DbContext class to further refine/override the schema mapping rules used to map model classes to underlying database schema.  CTP5 includes some refinements to the ModelBuilder class that is passed to this method which can make defining mapping rules cleaner and more concise.  The ADO.NET Team blogged some samples of how to do this here. Pluggable Conventions Support EF Code First CTP5 provides new support that allows you to override the “default conventions” that EF Code First honors, and optionally replace them with your own set of conventions. New Change Tracking API EF Code First CTP5 exposes a new set of change tracking information that enables you to access Original, Current & Stored values, and State (e.g. Added, Unchanged, Modified, Deleted).  This support is useful in a variety of scenarios. Improved Concurrency Conflict Resolution EF Code First CTP5 provides better exception messages that allow access to the affected object instance and the ability to resolve conflicts using current, original and database values.  Raw SQL Query/Command Support EF Code First CTP5 now allows raw SQL queries and commands (including SPROCs) to be executed via the SqlQuery and SqlCommand methods exposed off of the DbContext.Database property.  The results of these method calls can be materialized into object instances that can be optionally change-tracked by the DbContext.  This is useful for a variety of advanced scenarios. Full Data Annotations Support EF Code First CTP5 now supports all standard DataAnnotations within .NET, and can use them both to perform validation as well as to automatically create the appropriate database schema when EF Code First is used in a database creation scenario.  Summary EF Code First provides an elegant and powerful way to work with data.  I really like it because it is extremely clean and supports best practices, while also enabling solutions to be implemented very, very rapidly.  The code-only approach of the library means that model layers end up being flexible and easy to customize. This week’s CTP5 release further refines EF Code First and helps ensure that it will be really sweet when it ships early next year.  I recommend using NuGet to install and give it a try today.  I think you’ll be pleasantly surprised by how awesome it is. Hope this helps, Scott

    Read the article

  • LINQ Query using Multiple From and Multiple Collections

    1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5:  6: namespace ConsoleApplication2 7: { 8: class Program 9: { 10: static void Main(string[] args) 11: { 12: var emps = GetEmployees(); 13: var deps = GetDepartments(); 14:  15: var results = from e in emps 16: from d in deps 17: where e.EmpNo >= 1 && d.DeptNo <= 30 18: select new { Emp = e, Dept = d }; 19: 20: foreach (var item in results) 21: { 22: Console.WriteLine("{0},{1},{2},{3}", item.Dept.DeptNo, item.Dept.DName, item.Emp.EmpNo, item.Emp.EmpName); 23: } 24: } 25:  26: private static List<Emp> GetEmployees() 27: { 28: return new List<Emp>() { 29: new Emp() { EmpNo = 1, EmpName = "Smith", DeptNo = 10 }, 30: new Emp() { EmpNo = 2, EmpName = "Narayan", DeptNo = 20 }, 31: new Emp() { EmpNo = 3, EmpName = "Rishi", DeptNo = 30 }, 32: new Emp() { EmpNo = 4, EmpName = "Guru", DeptNo = 10 }, 33: new Emp() { EmpNo = 5, EmpName = "Priya", DeptNo = 20 }, 34: new Emp() { EmpNo = 6, EmpName = "Riya", DeptNo = 10 } 35: }; 36: } 37:  38: private static List<Department> GetDepartments() 39: { 40: return new List<Department>() { 41: new Department() { DeptNo=10, DName="Accounts" }, 42: new Department() { DeptNo=20, DName="Finance" }, 43: new Department() { DeptNo=30, DName="Travel" } 44: }; 45: } 46: } 47:  48: class Emp 49: { 50: public int EmpNo { get; set; } 51: public string EmpName { get; set; } 52: public int DeptNo { get; set; } 53: } 54:  55: class Department 56: { 57: public int DeptNo { get; set; } 58: public String DName { get; set; } 59: } 60: } span.fullpost {display:none;}

    Read the article

  • ODI 11g - Dynamic and Flexible Code Generation

    - by David Allan
    ODI supports conditional branching at execution time in its code generation framework. This is a little used, little known, but very powerful capability - this let's one piece of template code behave dynamically based on a runtime variable's value for example. Generally knowledge module's are free of any variable dependency. Using variable's within a knowledge module for this kind of dynamic capability is a valid use case - definitely in the highly specialized area. The example I will illustrate is much simpler - how to define a filter (based on mapping here) that may or may not be included depending on whether at runtime a certain value is defined for a variable. I define a variable V_COND, if I set this variable's value to 1, then I will include the filter condition 'EMP.SAL > 1' otherwise I will just use '1=1' as the filter condition. I use ODIs substitution tags using a special tag '<$' which is processed just prior to execution in the runtime code - so this code is included in the ODI scenario code and it is processed after variables are substituted (unlike the '<?' tag).  So the lines below are not equal ... <$ if ( "#V_COND".equals("1")  ) { $> EMP.SAL > 1 <$ } else { $> 1 = 1 <$ } $> <? if ( "#V_COND".equals("1")  ) { ?> EMP.SAL > 1 <? } else { ?> 1 = 1 <? } ?> When the <? code is evaluated the code is executed without variable substitution - so we do not get the desired semantics, must use the <$ code. You can see the jython (java) code in red is the conditional if statement that drives whether the 'EMP.SAL > 1' or '1=1' is included in the generated code. For this illustration you need at least the ODI 11.1.1.6 release - with the vanilla 11.1.1.5 release it didn't work for me (may be patches?). As I mentioned, normally KMs don't have dependencies on variables - since any users must then have these variables defined etc. but it does afford a lot of runtime flexibility if such capabilities are required - something to keep in mind, definitely.

    Read the article

  • Use Expressions with LINQ to Entities

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Recently I've been putting together a generic approach for paging the response from a WCF service. Paging changes the service signature, so it's not as simple as adding a behavior to an existing service in config, but the complexity of the paging is isolated in a generic base class. We're using the Entity Framework talking to SQL Server, so when we ask for a page using LINQ's .Take() method we get a nice efficient SQL query for just the rows we want, with minimal impact on SQL Server and network traffic. We use the maximum ID of the record returned as a high-water mark (rather than using .Skip() to go to the next record), so the approach caters for records being deleted between page requests. In the paged response we include a HasMorePages indicator, computed by comparing the max ID in the page of results to the max ID for the whole resultset - if the latter is bigger, then there are more pages. In some quick performance testing, the paged version of the service performed much more slowly than the unpaged version, which was unexpected. We narrowed it down to the code which gets the max ID for the full resultset - instead of building an efficient MAX() SQL query, EF was returning the whole resultset and then computing the max ID in the service layer. It's easy to reproduce - take this AdventureWorks query:             var context = new AdventureWorksEntities();             var query = from od in context.SalesOrderDetail                         where od.ModifiedDate >= modified                          && od.SalesOrderDetailID.CompareTo(id) > 0                         orderby od.SalesOrderDetailID                         select od;   We can find the maximum SalesOrderDetailID like this:             var maxIdEfficiently = query.Max(od => od.SalesOrderDetailID);   which produces our efficient MAX() SQL query. If we're doing this generically and we already have the ID function in a Func:             Func<SalesOrderDetail, int> idFunc = od => od.SalesOrderDetailID;             var maxIdInefficiently = query.Max(idFunc);   This fetches all the results from the query and then runs the Max() function in code. If you look at the difference in Reflector, the first call passes an Expression to the Max(), while the second call passes a Func. So it's an easy fix - wrap the Func in an Expression:             Expression<Func<SalesOrderDetail, int>> idExpression = od => od.SalesOrderDetailID;             var maxIdEfficientlyAgain = query.Max(idExpression);   - and we're back to running an efficient MAX() statement. Evidently the EF provider can dissect an Expression and build its equivalent in SQL, but it can't do that with Funcs.

    Read the article

< Previous Page | 105 106 107 108 109 110 111 112 113 114 115 116  | Next Page >