Search Results

Search found 20970 results on 839 pages for 'properties settings'.

Page 109/839 | < Previous Page | 105 106 107 108 109 110 111 112 113 114 115 116  | Next Page >

  • How to automatically remove Flash history/privacy trail? Or stop Flash from storing it?

    - by Arjan van Bentem
    Many people have heard about third-party cookies, and some browsers even block those by default. Some people may even be using Private Browsing modes. However, only few seem to realise that Adobe's Flash player also leaves a cross-browser trail on your local hard drive, and allows for sending cookie-like information back to the server, including third-party sites. And because it is a plugin, Flash does not take any of the browser's privacy settings into account. Sorry for the long post, but first some details about why using Flash raises a privacy concern, followed by the results of my tests: The Flash player keeps a cross-browser history of the domain names of the Flash-sites your computer has visited. Unlike your browser's history, this history is not limited to a certain number of days. History is also recorded while using so-called Private Browsing modes. It is stored on your hard drive (though, as described below, without going to Adobe's site you won't know what is stored). I am not sure if any date and time information is kept about each visit, but to see the domain names: right-click on some Flash content, open the settings dialog, and click the Help icon or click the Advanced button within the Privacy tab. This opens a browser to the help pages on Adobe.com, where one can click through to the Website Storage Settings panel. One can clear the existing list, but one cannot stop it from being recorded again. Flash allows for storing data on your local hard drive, using so-called Local Shared Objects (aka "Flash Cookies"). Just like HTTP cookies, this data can be sent back to the server, for tracking purposes. They are cross-browser, have no expiration date, and no user defined maximum lifetime can be set in the Flash preferences either. These not being HTTP cookies, they are (of course) not blocked by a browser's cookies preferences and are not removed when the normal HTTP cookies are deleted. Adobe has announced that version 10.1 will obey Private Browsing in most popular browsers, but unfortunately no word about also removing the data whenever normal cookies are deleted manually. And its implementation might be confusing: [..] if the browser is in normal browsing mode when the Flash Player instance is created, then that particular instance will forever be in normal browsing mode (private browsing is turned off). Accordingly, toggling private browsing on or off without refreshing the page or closing the private browsing window will not impact Flash Player. Local Shared Objects are not limited to the site you visit, and third-party storage is enabled by default. At the Global Storage Settings panel one can deselect the default Allow third-party Flash content to store data on your computer. Because of the cross-browser and expiration-less nature (and the fact that few people know about it), I feel that the cross-browser third-party Flash Cookies are more dangerous for visitor tracking than third-party normal HTTP cookies. They are even used to restore plain HTTP cookies that the user tried to delete: "All advertisers, websites and networks use cookies for targeted advertising, but cookies are under attack. According to current research they are being erased by 40% of users creating serious problems," says Mookie Tenembaum, founder of United Virtualities. "From simple frequency capping to the more sophisticated behavioral targeting, cookies are an essential part of any online ad campaign. PIE ["Persistent Identification Element"] will give publishers and third-party providers a persistent backup to cookies effectively rendering them unassailable", adds Tenembaum. [..] To justify this tracking mechanism, UV's Tenembaum said, "The user is not proficient enough in technology to know if the cookie is good or bad, or how it works." When selecting None (zero KB) for Specify the amount of disk space that website websites that you haven't yet visited can use to store information on your computer, and checking Never ask again then some sites do not work. However, the same site might work when setting it to None but without selecting Never ask again, and then choose Deny whenever prompted. Both options would result in zero KB of data being allowed, but the behaviour differs. The plugin also provides a Flash Player cache for Adobe-signed files. I guess these files are not an issue. So: how to automatically delete that information? On a Mac, one can find a settings.sol file and a folder for each visited Flash-website in: $HOME/Library/Preferences/Macromedia/Flash Player/macromedia.com/support/flashplayer/sys/ Deleting the settings.sol file and all the folders in sys, removes the trail from the settings panels. However, the actual Local Shared Ojects are elsewhere (see Wikipedia for locations on other operating systems), in a randomly named subfolder of: $HOME/Library/Preferences/Macromedia/Flash Player/#SharedObjects But then: how to remove this automatically? Simply removing the folders and the settings.sol file every now and then (like by using launchd or Windows' Task Scheduler) may interfere with active browsers. Or is it safe to assume that, given the cross-browser nature, the plugin would not care if things are removed while it is active? Only clearing during log-off may not work for those who hibernate all the time. Firefox users can install BetterPrivacy or Objection to delete the Local Shared Objects (for all others browsers as well). I don't know if that also deletes the trail of website domain names. Or: how to stop Flash from storing a history trail? Change of plans: I'm currently testing prohibiting Flash to write to its own sys and #SharedObjects folders. So far, Flash has not tried to restore permissions (though, when deleting the folders, Flash will of course recreate them). I've not encountered any problems but this may take some while to validate, using multiple browsers and sites. I've not yet found a log that reports errors. On a Mac: cd "$HOME/Library/Preferences/Macromedia/Flash Player/macromedia.com/support/flashplayer" rm -r sys/* chmod u-w sys cd "$HOME/Library/Preferences/Macromedia/Flash Player" # preserve the randomly named subfolders (only preserving the latest would suffice; see below) rm -r \#SharedObjects/*/* chmod -R u-w \#SharedObjects I guess the above chmods cannot be achieved on an old Windows system (I'm not sure about XP and Vista?). Though maybe on Windows one could replace the folders sys and #SharedObjects with dummy files with the same names? Anyone? Obviously, keeping Flash from storing those Local Shared Objects for all sites may cause problems. Some test results (Flash 10 on Mac OS X): When blocking the sys folder (even when leaving the #SharedObjects folder writable) then YouTube won't remember your volume settings while viewing multiple videos. Temporarily allowing write access to the blocked folders while visiting trusted sites (to only create folders for domains you like, maybe including references in settings.sol) solves that. This way, for YouTube, Flash could be allowed to write to sys/#s.ytimg.com and #SharedObjects/s.ytimg.com, while Flash could not create new folders for other domains. One may also need to make settings.sol read-only afterwards, or delete it again. When blocking both the sys and #SharedObjects folders, YouTube and Vimeo work fine (though they might not remember any settings). However, Bits on the Run refuses to even show the video player. This is solved by temporarily unblocking the #SharedObjects folder, to allow Flash to create a subfolder with some random name. Within this folder, it would create yet another folder for the current Flash website (content.bitsontherun.com). Removing that website-specific folder, and blocking both #SharedObjects and the randomly named subfolder, still seems to allow Bits on the Run to operate, even though it still cannot write anything to disk. So: the existence of the randomly named subfolder (even when write protected) is important for some sites. When I first found the #SharedObjects folder, it held many subfolders with random names, some created on the very same day. I wonder when Flash decides it wants a new folder, and how it determines (and remembers) that random name. For a moment I considered not blocking write access for sys and #SharedObjects, but explicitly creating read-only folders for well-known third-party tracking domains (like based on a list from, for example, AdBlock Plus). That way, any other domain could still create Local Shared Objects. But the list would be long, and the domains from AdBlock Plus are probably all third-party domains anyway, so disabling Allow third-party Flash content to store data on your computer might have the very same result. Any experience anyone? (Final notes: if the above links to the settings panels do not work in the future, then use the URL that is known to Flash player as a starting point: www.adobe.com/go/settingsmanager. See also "You Deleted Your Cookies? Think Again" at Wired.com -- which uses Flash cookies itself as well... For the very suspicious using Time Machine: you may want to exclude both folders, for each user, and remove the trace that is already on your backup.)

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Metro: Declarative Data Binding

    - by Stephen.Walther
    The goal of this blog post is to describe how declarative data binding works in the WinJS library. In particular, you learn how to use both the data-win-bind and data-win-bindsource attributes. You also learn how to use calculated properties and converters to format the value of a property automatically when performing data binding. By taking advantage of WinJS data binding, you can use the Model-View-ViewModel (MVVM) pattern when building Metro style applications with JavaScript. By using the MVVM pattern, you can prevent your JavaScript code from spinning into chaos. The MVVM pattern provides you with a standard pattern for organizing your JavaScript code which results in a more maintainable application. Using Declarative Bindings You can use the data-win-bind attribute with any HTML element in a page. The data-win-bind attribute enables you to bind (associate) an attribute of an HTML element to the value of a property. Imagine, for example, that you want to create a product details page. You want to show a product object in a page. In that case, you can create the following HTML page to display the product details: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Product Details</h1> <div class="field"> Product Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Product Price: <span data-win-bind="innerText:price"></span> </div> <div class="field"> Product Picture: <br /> <img data-win-bind="src:photo;alt:name" /> </div> </body> </html> The HTML page above contains three data-win-bind attributes – one attribute for each product property displayed. You use the data-win-bind attribute to set properties of the HTML element associated with the data-win-attribute. The data-win-bind attribute takes a semicolon delimited list of element property names and data source property names: data-win-bind=”elementPropertyName:datasourcePropertyName; elementPropertyName:datasourcePropertyName;…” In the HTML page above, the first two data-win-bind attributes are used to set the values of the innerText property of the SPAN elements. The last data-win-bind attribute is used to set the values of the IMG element’s src and alt attributes. By the way, using data-win-bind attributes is perfectly valid HTML5. The HTML5 standard enables you to add custom attributes to an HTML document just as long as the custom attributes start with the prefix data-. So you can add custom attributes to an HTML5 document with names like data-stephen, data-funky, or data-rover-dog-is-hungry and your document will validate. The product object displayed in the page above with the data-win-bind attributes is created in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000, photo: "/images/TeslaPhoto.png" }; WinJS.Binding.processAll(null, product); } }; app.start(); })(); In the code above, a product object is created with a name, price, and photo property. The WinJS.Binding.processAll() method is called to perform the actual binding (Don’t confuse WinJS.Binding.processAll() and WinJS.UI.processAll() – these are different methods). The first parameter passed to the processAll() method represents the root element for the binding. In other words, binding happens on this element and its child elements. If you provide the value null, then binding happens on the entire body of the document (document.body). The second parameter represents the data context. This is the object that has the properties which are displayed with the data-win-bind attributes. In the code above, the product object is passed as the data context parameter. Another word for data context is view model.  Creating Complex View Models In the previous section, we used the data-win-bind attribute to display the properties of a simple object: a single product. However, you can use binding with more complex view models including view models which represent multiple objects. For example, the view model in the following default.js file represents both a customer and a product object. Furthermore, the customer object has a nested address object: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone", address: { street: "1 Rocky Way", city: "Bedrock", country: "USA" } }, product: { name: "Bowling Ball", price: 34.55 } }; WinJS.Binding.processAll(null, viewModel); } }; app.start(); })(); The following page displays the customer (including the customer address) and the product. Notice that you can use dot notation to refer to child objects in a view model such as customer.address.street. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:customer.firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:customer.lastName"></span> </div> <div class="field"> Address: <address> <span data-win-bind="innerText:customer.address.street"></span> <br /> <span data-win-bind="innerText:customer.address.city"></span> <br /> <span data-win-bind="innerText:customer.address.country"></span> </address> </div> <h1>Product</h1> <div class="field"> Name: <span data-win-bind="innerText:product.name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:product.price"></span> </div> </body> </html> A view model can be as complicated as you need and you can bind the view model to a view (an HTML document) by using declarative bindings. Creating Calculated Properties You might want to modify a property before displaying the property. For example, you might want to format the product price property before displaying the property. You don’t want to display the raw product price “80000”. Instead, you want to display the formatted price “$80,000”. You also might need to combine multiple properties. For example, you might need to display the customer full name by combining the values of the customer first and last name properties. In these situations, it is tempting to call a function when performing binding. For example, you could create a function named fullName() which concatenates the customer first and last name. Unfortunately, the WinJS library does not support the following syntax: <span data-win-bind=”innerText:fullName()”></span> Instead, in these situations, you should create a new property in your view model that has a getter. For example, the customer object in the following default.js file includes a property named fullName which combines the values of the firstName and lastName properties: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", get fullName() { return this.firstName + " " + this.lastName; } }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); The customer object has a firstName, lastName, and fullName property. Notice that the fullName property is defined with a getter function. When you read the fullName property, the values of the firstName and lastName properties are concatenated and returned. The following HTML page displays the fullName property in an H1 element. You can use the fullName property in a data-win-bind attribute in exactly the same way as any other property. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1 data-win-bind="innerText:fullName"></h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </body> </html> Creating a Converter In the previous section, you learned how to format the value of a property by creating a property with a getter. This approach makes sense when the formatting logic is specific to a particular view model. If, on the other hand, you need to perform the same type of formatting for multiple view models then it makes more sense to create a converter function. A converter function is a function which you can apply whenever you are using the data-win-bind attribute. Imagine, for example, that you want to create a general function for displaying dates. You always want to display dates using a short format such as 12/25/1988. The following JavaScript file – named converters.js – contains a shortDate() converter: (function (WinJS) { var shortDate = WinJS.Binding.converter(function (date) { return date.getMonth() + 1 + "/" + date.getDate() + "/" + date.getFullYear(); }); // Export shortDate WinJS.Namespace.define("MyApp.Converters", { shortDate: shortDate }); })(WinJS); The file above uses the Module Pattern, a pattern which is used through the WinJS library. To learn more about the Module Pattern, see my blog entry on namespaces and modules: http://stephenwalther.com/blog/archive/2012/02/22/windows-web-applications-namespaces-and-modules.aspx The file contains the definition for a converter function named shortDate(). This function converts a JavaScript date object into a short date string such as 12/1/1988. The converter function is created with the help of the WinJS.Binding.converter() method. This method takes a normal function and converts it into a converter function. Finally, the shortDate() converter is added to the MyApp.Converters namespace. You can call the shortDate() function by calling MyApp.Converters.shortDate(). The default.js file contains the customer object that we want to bind. Notice that the customer object has a firstName, lastName, and birthday property. We will use our new shortDate() converter when displaying the customer birthday property: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", birthday: new Date("12/1/1988") }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); We actually use our shortDate converter in the HTML document. The following HTML document displays all of the customer properties: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/converters.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> <div class="field"> Birthday: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> </div> </body> </html> Notice the data-win-bind attribute used to display the birthday property. It looks like this: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> The shortDate converter is applied to the birthday property when the birthday property is bound to the SPAN element’s innerText property. Using data-win-bindsource Normally, you pass the view model (the data context) which you want to use with the data-win-bind attributes in a page by passing the view model to the WinJS.Binding.processAll() method like this: WinJS.Binding.processAll(null, viewModel); As an alternative, you can specify the view model declaratively in your markup by using the data-win-datasource attribute. For example, the following default.js script exposes a view model with the fully-qualified name of MyWinWebApp.viewModel: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { // Create view model var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone" }, product: { name: "Bowling Ball", price: 12.99 } }; // Export view model to be seen by universe WinJS.Namespace.define("MyWinWebApp", { viewModel: viewModel }); // Process data-win-bind attributes WinJS.Binding.processAll(); } }; app.start(); })(); In the code above, a view model which represents a customer and a product is exposed as MyWinWebApp.viewModel. The following HTML page illustrates how you can use the data-win-bindsource attribute to bind to this view model: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div data-win-bindsource="MyWinWebApp.viewModel.customer"> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </div> <h1>Product</h1> <div data-win-bindsource="MyWinWebApp.viewModel.product"> <div class="field"> Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> The data-win-bindsource attribute is used twice in the page above: it is used with the DIV element which contains the customer details and it is used with the DIV element which contains the product details. If an element has a data-win-bindsource attribute then all of the child elements of that element are affected. The data-win-bind attributes of all of the child elements are bound to the data source represented by the data-win-bindsource attribute. Summary The focus of this blog entry was data binding using the WinJS library. You learned how to use the data-win-bind attribute to bind the properties of an HTML element to a view model. We also discussed several advanced features of data binding. We examined how to create calculated properties by including a property with a getter in your view model. We also discussed how you can create a converter function to format the value of a view model property when binding the property. Finally, you learned how to use the data-win-bindsource attribute to specify a view model declaratively.

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • WPF ListView as a DataGrid – Part 3

    - by psheriff
    I have had a lot of great feedback on the blog post about turning the ListView into a DataGrid by creating GridViewColumn objects on the fly. So, in the last 2 parts, I showed a couple of different methods for accomplishing this. Let’s now look at one more and that is use Reflection to extract the properties from a Product, Customer, or Employee object to create the columns. Yes, Reflection is a slower approach, but you could create the columns one time then cache the View object for re-use. Another potential drawback is you may have columns in your object that you do not wish to display on your ListView. But, just because so many people asked, here is how to accomplish this using Reflection.   Figure 1: Use Reflection to create GridViewColumns. Using Reflection to gather property names is actually quite simple. First you need to pass any type (Product, Customer, Employee, etc.) to a method like I did in my last two blog posts on this subject. Below is the method that I created in the WPFListViewCommon class that now uses reflection. C#public static GridView CreateGridViewColumns(Type anyType){  // Create the GridView  GridView gv = new GridView();  GridViewColumn gvc;   // Get the public properties.  PropertyInfo[] propInfo =          anyType.GetProperties(BindingFlags.Public |                                BindingFlags.Instance);   foreach (PropertyInfo item in propInfo)  {    gvc = new GridViewColumn();    gvc.DisplayMemberBinding = new Binding(item.Name);    gvc.Header = item.Name;    gvc.Width = Double.NaN;    gv.Columns.Add(gvc);  }   return gv;} VB.NETPublic Shared Function CreateGridViewColumns( _  ByVal anyType As Type) As GridView  ' Create the GridView   Dim gv As New GridView()  Dim gvc As GridViewColumn   ' Get the public properties.   Dim propInfo As PropertyInfo() = _    anyType.GetProperties(BindingFlags.Public Or _                          BindingFlags.Instance)   For Each item As PropertyInfo In propInfo    gvc = New GridViewColumn()    gvc.DisplayMemberBinding = New Binding(item.Name)    gvc.Header = item.Name    gvc.Width = [Double].NaN    gv.Columns.Add(gvc)  Next   Return gvEnd Function The key to using Relection is using the GetProperties method on the type you pass in. When you pass in a Product object as Type, you can now use the GetProperties method and specify, via flags, which properties you wish to return. In the code that I wrote, I am just retrieving the Public properties and only those that are Instance properties. I do not want any static/Shared properties or private properties. GetProperties returns an array of PropertyInfo objects. You can loop through this array and build your GridViewColumn objects by reading the Name property from the PropertyInfo object. Build the Product Screen To populate the ListView shown in Figure 1, you might write code like the following: C#private void CollectionSample(){  Product prod = new Product();   // Setup the GridView Columns  lstData.View =      WPFListViewCommon.CreateGridViewColumns(typeOf(Product));  lstData.DataContext = prod.GetProducts();} VB.NETPrivate Sub CollectionSample()  Dim prod As New Product()   ' Setup the GridView Columns  lstData.View = WPFListViewCommon.CreateGridViewColumns( _       GetType(Product))  lstData.DataContext = prod.GetProducts()End Sub All you need to do now is to pass in a Type object from your Product class that you can get by using the typeOf() function in C# or the GetType() function in VB. That’s all there is to it! Summary There are so many different ways to approach the same problem in programming. That is what makes programming so much fun! In this blog post I showed you how to create ListView columns on the fly using Reflection. This gives you a lot of flexibility without having to write extra code as was done previously. NOTE: You can download the complete sample code (in both VB and C#) at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "WPF ListView as a DataGrid – Part 3" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".  

    Read the article

  • 8 Backup Tools Explained for Windows 7 and 8

    - by Chris Hoffman
    Backups on Windows can be confusing. Whether you’re using Windows 7 or 8, you have quite a few integrated backup tools to think about. Windows 8 made quite a few changes, too. You can also use third-party backup software, whether you want to back up to an external drive or back up your files to online storage. We won’t cover third-party tools here — just the ones built into Windows. Backup and Restore on Windows 7 Windows 7 has its own Backup and Restore feature that lets you create backups manually or on a schedule. You’ll find it under Backup and Restore in the Control Panel. The original version of Windows 8 still contained this tool, and named it Windows 7 File Recovery. This allowed former Windows 7 users to restore files from those old Windows 7 backups or keep using the familiar backup tool for a little while. Windows 7 File Recovery was removed in Windows 8.1. System Restore System Restore on both Windows 7 and 8 functions as a sort of automatic system backup feature. It creates backup copies of important system and program files on a schedule or when you perform certain tasks, such as installing a hardware driver. If system files become corrupted or your computer’s software becomes unstable, you can use System Restore to restore your system and program files from a System Restore point. This isn’t a way to back up your personal files. It’s more of a troubleshooting feature that uses backups to restore your system to its previous working state. Previous Versions on Windows 7 Windows 7′s Previous Versions feature allows you to restore older versions of files — or deleted files. These files can come from backups created with Windows 7′s Backup and Restore feature, but they can also come from System Restore points. When Windows 7 creates a System Restore point, it will sometimes contain your personal files. Previous Versions allows you to extract these personal files from restore points. This only applies to Windows 7. On Windows 8, System Restore won’t create backup copies of your personal files. The Previous Versions feature was removed on Windows 8. File History Windows 8 replaced Windows 7′s backup tools with File History, although this feature isn’t enabled by default. File History is designed to be a simple, easy way to create backups of your data files on an external drive or network location. File History replaces both Windows 7′s Backup and Previous Versions features. Windows System Restore won’t create copies of personal files on Windows 8. This means you can’t actually recover older versions of files until you enable File History yourself — it isn’t enabled by default. System Image Backups Windows also allows you to create system image backups. These are backup images of your entire operating system, including your system files, installed programs, and personal files. This feature was included in both Windows 7 and Windows 8, but it was hidden in the preview versions of Windows 8.1. After many user complaints, it was restored and is still available in the final version of Windows 8.1 — click System Image Backup on the File History Control Panel. Storage Space Mirroring Windows 8′s Storage Spaces feature allows you to set up RAID-like features in software. For example, you can use Storage Space to set up two hard disks of the same size in a mirroring configuration. They’ll appear as a single drive in Windows. When you write to this virtual drive, the files will be saved to both physical drives. If one drive fails, your files will still be available on the other drive. This isn’t a good long-term backup solution, but it is a way of ensuring you won’t lose important files if a single drive fails. Microsoft Account Settings Backup Windows 8 and 8.1 allow you to back up a variety of system settings — including personalization, desktop, and input settings. If you’re signing in with a Microsoft account, OneDrive settings backup is enabled automatically. This feature can be controlled under OneDrive > Sync settings in the PC settings app. This feature only backs up a few settings. It’s really more of a way to sync settings between devices. OneDrive Cloud Storage Microsoft hasn’t been talking much about File History since Windows 8 was released. That’s because they want people to use OneDrive instead. OneDrive — formerly known as SkyDrive — was added to the Windows desktop in Windows 8.1. Save your files here and they’ll be stored online tied to your Microsoft account. You can then sign in on any other computer, smartphone, tablet, or even via the web and access your files. Microsoft wants typical PC users “backing up” their files with OneDrive so they’ll be available on any device. You don’t have to worry about all these features. Just choose a backup strategy to ensure your files are safe if your computer’s hard disk fails you. Whether it’s an integrated backup tool or a third-party backup application, be sure to back up your files.

    Read the article

  • How to Reuse Your Old Wi-Fi Router as a Network Switch

    - by Jason Fitzpatrick
    Just because your old Wi-Fi router has been replaced by a newer model doesn’t mean it needs to gather dust in the closet. Read on as we show you how to take an old and underpowered Wi-Fi router and turn it into a respectable network switch (saving your $20 in the process). Image by mmgallan. Why Do I Want To Do This? Wi-Fi technology has changed significantly in the last ten years but Ethernet-based networking has changed very little. As such, a Wi-Fi router with 2006-era guts is lagging significantly behind current Wi-Fi router technology, but the Ethernet networking component of the device is just as useful as ever; aside from potentially being only 100Mbs instead of 1000Mbs capable (which for 99% of home applications is irrelevant) Ethernet is Ethernet. What does this matter to you, the consumer? It means that even though your old router doesn’t hack it for your Wi-Fi needs any longer the device is still a perfectly serviceable (and high quality) network switch. When do you need a network switch? Any time you want to share an Ethernet cable among multiple devices, you need a switch. For example, let’s say you have a single Ethernet wall jack behind your entertainment center. Unfortunately you have four devices that you want to link to your local network via hardline including your smart HDTV, DVR, Xbox, and a little Raspberry Pi running XBMC. Instead of spending $20-30 to purchase a brand new switch of comparable build quality to your old Wi-Fi router it makes financial sense (and is environmentally friendly) to invest five minutes of your time tweaking the settings on the old router to turn it from a Wi-Fi access point and routing tool into a network switch–perfect for dropping behind your entertainment center so that your DVR, Xbox, and media center computer can all share an Ethernet connection. What Do I Need? For this tutorial you’ll need a few things, all of which you likely have readily on hand or are free for download. To follow the basic portion of the tutorial, you’ll need the following: 1 Wi-Fi router with Ethernet ports 1 Computer with Ethernet jack 1 Ethernet cable For the advanced tutorial you’ll need all of those things, plus: 1 copy of DD-WRT firmware for your Wi-Fi router We’re conducting the experiment with a Linksys WRT54GL Wi-Fi router. The WRT54 series is one of the best selling Wi-Fi router series of all time and there’s a good chance a significant number of readers have one (or more) of them stuffed in an office closet. Even if you don’t have one of the WRT54 series routers, however, the principles we’re outlining here apply to all Wi-Fi routers; as long as your router administration panel allows the necessary changes you can follow right along with us. A quick note on the difference between the basic and advanced versions of this tutorial before we proceed. Your typical Wi-Fi router has 5 Ethernet ports on the back: 1 labeled “Internet”, “WAN”, or a variation thereof and intended to be connected to your DSL/Cable modem, and 4 labeled 1-4 intended to connect Ethernet devices like computers, printers, and game consoles directly to the Wi-Fi router. When you convert a Wi-Fi router to a switch, in most situations, you’ll lose two port as the “Internet” port cannot be used as a normal switch port and one of the switch ports becomes the input port for the Ethernet cable linking the switch to the main network. This means, referencing the diagram above, you’d lose the WAN port and LAN port 1, but retain LAN ports 2, 3, and 4 for use. If you only need to switch for 2-3 devices this may be satisfactory. However, for those of you that would prefer a more traditional switch setup where there is a dedicated WAN port and the rest of the ports are accessible, you’ll need to flash a third-party router firmware like the powerful DD-WRT onto your device. Doing so opens up the router to a greater degree of modification and allows you to assign the previously reserved WAN port to the switch, thus opening up LAN ports 1-4. Even if you don’t intend to use that extra port, DD-WRT offers you so many more options that it’s worth the extra few steps. Preparing Your Router for Life as a Switch Before we jump right in to shutting down the Wi-Fi functionality and repurposing your device as a network switch, there are a few important prep steps to attend to. First, you want to reset the router (if you just flashed a new firmware to your router, skip this step). Following the reset procedures for your particular router or go with what is known as the “Peacock Method” wherein you hold down the reset button for thirty seconds, unplug the router and wait (while still holding the reset button) for thirty seconds, and then plug it in while, again, continuing to hold down the rest button. Over the life of a router there are a variety of changes made, big and small, so it’s best to wipe them all back to the factory default before repurposing the router as a switch. Second, after resetting, we need to change the IP address of the device on the local network to an address which does not directly conflict with the new router. The typical default IP address for a home router is 192.168.1.1; if you ever need to get back into the administration panel of the router-turned-switch to check on things or make changes it will be a real hassle if the IP address of the device conflicts with the new home router. The simplest way to deal with this is to assign an address close to the actual router address but outside the range of addresses that your router will assign via the DHCP client; a good pick then is 192.168.1.2. Once the router is reset (or re-flashed) and has been assigned a new IP address, it’s time to configure it as a switch. Basic Router to Switch Configuration If you don’t want to (or need to) flash new firmware onto your device to open up that extra port, this is the section of the tutorial for you: we’ll cover how to take a stock router, our previously mentioned WRT54 series Linksys, and convert it to a switch. Hook the Wi-Fi router up to the network via one of the LAN ports (consider the WAN port as good as dead from this point forward, unless you start using the router in its traditional function again or later flash a more advanced firmware to the device, the port is officially retired at this point). Open the administration control panel via  web browser on a connected computer. Before we get started two things: first,  anything we don’t explicitly instruct you to change should be left in the default factory-reset setting as you find it, and two, change the settings in the order we list them as some settings can’t be changed after certain features are disabled. To start, let’s navigate to Setup ->Basic Setup. Here you need to change the following things: Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable Save with the “Save Settings” button and then navigate to Setup -> Advanced Routing: Operating Mode: Router This particular setting is very counterintuitive. The “Operating Mode” toggle tells the device whether or not it should enable the Network Address Translation (NAT)  feature. Because we’re turning a smart piece of networking hardware into a relatively dumb one, we don’t need this feature so we switch from Gateway mode (NAT on) to Router mode (NAT off). Our next stop is Wireless -> Basic Wireless Settings: Wireless SSID Broadcast: Disable Wireless Network Mode: Disabled After disabling the wireless we’re going to, again, do something counterintuitive. Navigate to Wireless -> Wireless Security and set the following parameters: Security Mode: WPA2 Personal WPA Algorithms: TKIP+AES WPA Shared Key: [select some random string of letters, numbers, and symbols like JF#d$di!Hdgio890] Now you may be asking yourself, why on Earth are we setting a rather secure Wi-Fi configuration on a Wi-Fi router we’re not going to use as a Wi-Fi node? On the off chance that something strange happens after, say, a power outage when your router-turned-switch cycles on and off a bunch of times and the Wi-Fi functionality is activated we don’t want to be running the Wi-Fi node wide open and granting unfettered access to your network. While the chances of this are next-to-nonexistent, it takes only a few seconds to apply the security measure so there’s little reason not to. Save your changes and navigate to Security ->Firewall. Uncheck everything but Filter Multicast Firewall Protect: Disable At this point you can save your changes again, review the changes you’ve made to ensure they all stuck, and then deploy your “new” switch wherever it is needed. Advanced Router to Switch Configuration For the advanced configuration, you’ll need a copy of DD-WRT installed on your router. Although doing so is an extra few steps, it gives you a lot more control over the process and liberates an extra port on the device. Hook the Wi-Fi router up to the network via one of the LAN ports (later you can switch the cable to the WAN port). Open the administration control panel via web browser on the connected computer. Navigate to the Setup -> Basic Setup tab to get started. In the Basic Setup tab, ensure the following settings are adjusted. The setting changes are not optional and are required to turn the Wi-Fi router into a switch. WAN Connection Type: Disabled Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable In addition to disabling the DHCP server, also uncheck all the DNSMasq boxes as the bottom of the DHCP sub-menu. If you want to activate the extra port (and why wouldn’t you), in the WAN port section: Assign WAN Port to Switch [X] At this point the router has become a switch and you have access to the WAN port so the LAN ports are all free. Since we’re already in the control panel, however, we might as well flip a few optional toggles that further lock down the switch and prevent something odd from happening. The optional settings are arranged via the menu you find them in. Remember to save your settings with the save button before moving onto a new tab. While still in the Setup -> Basic Setup menu, change the following: Gateway/Local DNS : [IP address of primary router, e.g. 192.168.1.1] NTP Client : Disable The next step is to turn off the radio completely (which not only kills the Wi-Fi but actually powers the physical radio chip off). Navigate to Wireless -> Advanced Settings -> Radio Time Restrictions: Radio Scheduling: Enable Select “Always Off” There’s no need to create a potential security problem by leaving the Wi-Fi radio on, the above toggle turns it completely off. Under Services -> Services: DNSMasq : Disable ttraff Daemon : Disable Under the Security -> Firewall tab, uncheck every box except “Filter Multicast”, as seen in the screenshot above, and then disable SPI Firewall. Once you’re done here save and move on to the Administration tab. Under Administration -> Management:  Info Site Password Protection : Enable Info Site MAC Masking : Disable CRON : Disable 802.1x : Disable Routing : Disable After this final round of tweaks, save and then apply your settings. Your router has now been, strategically, dumbed down enough to plod along as a very dependable little switch. Time to stuff it behind your desk or entertainment center and streamline your cabling.     

    Read the article

  • Using CMS for App Configuration - Part 1, Deploying Umbraco

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2014/06/04/using-cms-for-app-configurationndashpart-1-deploy-umbraco.aspxSince my last post on using CMS for semi-static API content, How about a new platform for your next API… a CMS?, I’ve been using the idea for centralized app configuration, and this post is the first in a series that will walk through how to do that, step-by-step. The approach gives you a platform-independent, easily configurable way to specify your application configuration for different environments, with a built-in approval workflow, change auditing and the ability to easily rollback to previous settings. It’s like Azure Web and Worker Roles where you can specify settings that change at runtime, but it's not specific to Azure - you can use it for any app that needs changeable config, provided it can access the Internet. The series breaks down into four posts: Deploying Umbraco – the CMS that will store your configurable settings and the current values; Publishing your config – create a document type that encapsulates your settings and a template to expose them as JSON; Consuming your config – in .NET, a simple client that uses dynamic objects to access settings; Config lifecycle management – how to publish, audit, and rollback settings. Let’s get started. Deploying Umbraco There’s an Umbraco package on Azure Websites, so deploying your own instance is easy – but there are a couple of things to watch out for, so this step-by-step will put you in a good place. Create From Gallery The easiest way to get started is with an Azure subscription, navigate to add a new Website and then Create From Gallery. Under CMS, you’ll see an Umbraco package (currently at version 7.1.3): Configure Your App For high availability and scale, you’ll want your CMS on separate kit from anything else you have in Azure, so in the configuration of Umbraco I’d create a new SQL Azure database – which Umbraco will use to store all its content: You can use the free 20mb database option if you don’t have demanding NFRs, or if you’re just experimenting. You’ll need to specify a password for a SQL Server account which the Umbraco service will use, and changing from the default username umbracouser is probably wise. Specify Database Settings You can create a new database on an existing server if you have one, or create new. If you create a new server *do not* use the same username for the database server login as you used for the Umbraco account. If you do, the deployment will fail later. Think of this as the SQL Admin account that you can use for managing the db, the previous account was the service account Umbraco uses to connect. Make Tea If you have a fast kettle. It takes about two minutes for Azure to create and provision the website and the database. Install Umbraco So far we’ve deployed an empty instance of Umbraco using the Azure package, and now we need to browse to the site and complete installation. My Website was called my-app-config, so to complete installation I browse to http://my-app-config.azurewebsites.net:   Enter the credentials you want to use to login – this account will have full admin rights to the Umbraco instance. Note that between deploying your new Umbraco instance and completing installation in this step, anyone can browse to your website and complete the installation themselves with their own credentials, if they know the URL. Remote possibility, but it’s there. From this page *do not* click the big green Install button. If you do, Umbraco will configure itself with a local SQL Server CE database (.sdf file on the Web server), and ignore the SQL Azure database you’ve carefully provisioned and may be paying for. Instead, click on the Customize link and: Configure Your Database You need to enter your SQL Azure database details here, so you’ll have to get the server name from the Azure Management Console. You don’t need to explicitly grant access to your Umbraco website for the database though. Click Continue and you’ll be offered a “starter” website to install: If you don’t know Umbraco at all (but you are familiar with ASP.NET MVC) then a starter website is worthwhile to see how it all hangs together. But after a while you’ll have a bunch of artifacts in your CMS that you don’t want and you’ll have to work out which you can safely delete. So I’d click “No thanks, I do not want to install a starter website” and give yourself a clean Umbraco install. When it completes, the installation will log you in to the welcome screen for managing Umbraco – which you can access from http://my-app-config.azurewebsites.net/umbraco: That’s It Easy. Umbraco is installed, using a dedicated SQL Azure instance that you can separately scale, sync and backup, and ready for your content. In the next post, we’ll define what our app config looks like, and publish some settings for the dev environment.

    Read the article

  • #twitter for Windows Phone 7 protips (#wp7)

    - by Laurent Bugnion
    I started tweeting a list of “protips” (or whatever you want to call that) related to the Twitter for Windows Phone 7 application. Since I worked as integrator on this app, my tasks involved integrating design assets in all screens, and so I had an insider view on all the screens (and that is really a LOT of screens :) Seeing some comments about the app made me understand that most users out there don’t realize how rich the application is, and how many features are available. So without further ado, here we go, a list of Twitter for WP7 protips: (note: I will extend the list if I think of new stuff, and maybe add some screenshots later). Check the dark theme in the application settings! Select a tweet, menu, Translate. Search, Nearby looks for tweets near you Custom searches can be saved. They synch up with web twitter too! Multi language support, independant from OS. supports EN, FR, DE, IT, ES Multiple accounts are supported, simply define them in the Settings Even without a Twitter account, experience is super rich. Trends, Suggested, Nearby, searches etc... Select a tweet, then press Replies To to see the whole conversation Compose, menu, Hashtags. Enter a hashtag and press Add. List is saved for the next time. Select a tweet with location info (like my own). Press the location name to see all Nearby tweets Want to remove location information just for one tweet? Press on the Places button in app bar then Clear Place Settings, General to toggle between Username/Fullname display, Relative/Absolute date/time and more Upload a picture directly from compose screen to TwitPic, yFrog or TweetPhoto (service selection in Settings) Settings, About, Support to see a log of app errors and email it to support (use wisely please) Tap your username to see your profile. Then Menu, Edit Profile to edit your info, including your picture Tap on any user's name to see his profile, tweets, mentions and favorites in a Pivot Happy Tweeting! Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • Web.Config is Cached

    - by SGWellens
    There was a question from a student over on the Asp.Net forums about improving site performance. The concern was that every time an app setting was read from the Web.Config file, the disk would be accessed. With many app settings and many users, it was believed performance would suffer. Their intent was to create a class to hold all the settings, instantiate it and fill it from the Web.Config file on startup. Then, all the settings would be in RAM. I knew this was not correct and didn't want to just say so without any corroboration, so I did some searching. Surprisingly, this is a common misconception. I found other code postings that cached the app settings from Web.Config. Many people even thanked the posters for the code. In a later post, the student said their text book recommended caching the Web.Config file. OK, here's the deal. The Web.Config file is already cached. You do not need to re-cache it. From this article http://msdn.microsoft.com/en-us/library/aa478432.aspx It is important to realize that the entire <appSettings> section is read, parsed, and cached the first time we retrieve a setting value. From that point forward, all requests for setting values come from an in-memory cache, so access is quite fast and doesn't incur any subsequent overhead for accessing the file or parsing the XML. The reason the misconception is prevalent may be because it's hard to search for Web.Config and cache without getting a lot of hits on how to setup caching in the Web.Config file. So here's a string for search engines to index on: "Is the Web.Config file Cached?" A follow up question was, are the connection strings cached? Yes. http://msdn.microsoft.com/en-us/library/ms178683.aspx At run time, ASP.NET uses the Web.Config files to hierarchically compute a unique collection of configuration settings for each incoming URL request. These settings are calculated only once and then cached on the server. And, as everyone should know, if you modify the Web.Config file, the web application will restart. I hope this helps people to NOT write code! Steve WellensCodeProject

    Read the article

  • Web.Config is Cached

    - by SGWellens
    There was a question from a student over on the Asp.Net forums about improving site performance. The concern was that every time an app setting was read from the Web.Config file, the disk would be accessed. With many app settings and many users, it was believed performance would suffer. Their intent was to create a class to hold all the settings, instantiate it and fill it from the Web.Config file on startup. Then, all the settings would be in RAM. I knew this was not correct and didn't want to just say so without any corroboration, so I did some searching. Surprisingly, this is a common misconception. I found other code postings that cached the app settings from Web.Config. Many people even thanked the posters for the code. In a later post, the student said their text book recommended caching the Web.Config file. OK, here's the deal. The Web.Config file is already cached. You do not need to re-cache it. From this article http://msdn.microsoft.com/en-us/library/aa478432.aspx It is important to realize that the entire <appSettings> section is read, parsed, and cached the first time we retrieve a setting value. From that point forward, all requests for setting values come from an in-memory cache, so access is quite fast and doesn't incur any subsequent overhead for accessing the file or parsing the XML. The reason the misconception is prevalent may be because it's hard to search for Web.Config and cache without getting a lot of hits on how to setup caching in the Web.Config file. So here's a string for search engines to index on: "Is the Web.Config file Cached?" A follow up question was, are the connection strings cached? Yes. http://msdn.microsoft.com/en-us/library/ms178683.aspx At run time, ASP.NET uses the Web.Config files to hierarchically compute a unique collection of configuration settings for each incoming URL request. These settings are calculated only once and then cached on the server. And, as everyone should know, if you modify the Web.Config file, the web application will restart. I hope this helps people to NOT write code!   Steve WellensCodeProject

    Read the article

  • Using the new CSS Analyzer in JavaFX Scene Builder

    - by Jerome Cambon
    As you know, JavaFX provides from the API many properties that you can set to customize or make your components to behave as you want. For instance, for a Button, you can set its font, or its max size.Using Scene Builder, these properties can be explored and modified using the inspector. However, JavaFX also provides many other properties to have a fine grained customization of your components : the css properties. These properties are typically set from a css stylesheet. For instance, you can set a background image on a Button, change the Button corners, etc... Using Scene Builder, until now, you could set a css property using the inspector Style and Stylesheet editors. But you had to go to the JavaFX css documentation to know the css properties that can be applied to a given component. Hopefully, Scene Builder 1.1 added recently a very interesting new feature : the CSS Analyzer.It allows you to explore all the css properties available for a JavaFX component, and helps you to build your css rules. A very simple example : make a Button rounded Let’s take a very simple example:you would like to customize your Buttons to make them rounded. First, enable the CSS Analyzer, using the ‘View->Show CSS Analyzer’ menu. Grow the main window, and the CSS Analyzer to get more room: Then, drop a Button from the Library to the ContentView: the CSS Analyzer is now showing the Button css properties: As you can see, there is a ‘-fx-background-radius’ css property that allow to define the radius of the background (note that you can get the associated css documentation by clicking on the property name). You can then experiment this by setting the Button style property from the inspector: As you can see in the css doc, one can set the same radius for the 4 corners by a simple number. Once the style value is applied, the Button is now rounded, as expected.Look at the CSS Analyzer: the ‘-fx-background-radius’ property has now 2 entries: the default one, and the one we just entered from the Style property. The new value “win”: it overrides the default one, and become the actual value (to highlight this, the cell background becomes blue). Now, you will certainly prefer to apply this new style to all the Buttons of your FXML document, and have a css rule for this.To do this, save you document first, and create a css file in the same directory than the new document.Create an empty css file (e.g. test.css), and attach it the the root AnchorPane, by first selecting the AnchorPane, then using the Stylesheets editor from the inspector: Add the corresponding css rule to your new test.css file, from your preferred editor (Netbeans for me ;-) and save it. .button { -fx-background-radius: 10px;} Now, select your Button and have a look at the CSS Analyzer. As you can see, the Button is inheriting the css rule (since the Button is a child of the AnchorPane), and still have its inline Style. The Inline style “win”, since it has precedence on the stylesheet. The CSS Analyzer columns are displayed by precedence order.Note the small right-arrow icons, that allow to jump to the source of the value (either test.css, or the inspector in this case).Of course, unless you want to set a specific background radius for this particular Button, you can remove the inline Style from the inspector. Changing the color of a TitledPane arrow In some cases, it can be useful to be able to select the inner element you want to style directly from the Content View . Drop a TitledPane to the Content View. Then select from the CSS Analyzer the CSS cursor (the other cursor on the left allow you to come back to ‘standard’ selection), that will allow to select an inner element: height: 62px;" align="LEFT" border="0"> … and select the TitledPane arrow, that will get a yellow background: … and the Styleable Path is updated: To define a new css rule, you can first copy the Styleable path : .. then paste it in your test.css file. Then, add an entry to set the -fx-background-color to red. You should have something like: .titled-pane:expanded .title .arrow-button .arrow { -fx-background-color : red;} As soon as the test.css is saved, the change is taken into account in Scene Builder. You can also use the Styleable Path to discover all the inner elements of TitledPane, by clicking on the arrow icon: More details You can see the CSS Analyzer in action (and many other features) from the Java One BOF: BOF4279 - In-Depth Layout and Styling with the JavaFX Scene Builder presented by my colleague Jean-Francois Denise. On the right hand, click on the Media link to go to the video (streaming) of the presa. The Scene Builder support of CSS starts at 9:20 The CSS Analyzer presentation starts at 12:50

    Read the article

  • Windows XP: Nvidia GeForce 6100 Brightness

    - by ExProG
    Hello, I have an Nvidia GeForce 6100 and using XP. I also have a SmartBoard. my brightness settings are completely changed and are not good. I tried changing the settings at the Nvidia GeForce 6100 nForce 430 color correction settings. I cannot get any ideal, it's just way to bright, what do i have to do? I already tried my monitor brightness settings and the smartboard brightness settings. it does not matter. I think there are problems with the pixels. How can i fix this? Is there something wrong with my video card?

    Read the article

  • how to reset gnome panel?

    - by Matt
    I think my gnome-panel is messed up because I alt+right click it and nothing pops up. I'm on 12.04, classic gnome desktop. so I used locate and found gnome-panel in .gconf somewhere, how do I clear just gnome-panel's settings so that I can add things to my panel again? edit: matt: ~/.gconf $ find|grep -iw panel ./desktop/ibus/panel ./desktop/ibus/panel/%gconf.xml ./apps/gnome-settings/gnome-panel ./apps/gnome-settings/gnome-panel/%gconf.xml

    Read the article

  • Experience your music in a whole new way with Zune for PC

    - by Matthew Guay
    Tired of the standard Media Player look and feel, and want something new and innovative?  Zune offers a fresh, new way to enjoy your music, videos, pictures, and podcasts, whether or not you own a Zune device. Microsoft started out on a new multimedia experience for PCs and mobile devices with the launch of the Zune several years ago.  The Zune devices have been well received and noted for their innovative UI, and the Zune HD’s fluid interface is the foundation for the widely anticipated Windows Phone 7.  But regardless of whether or not you have a Zune Device, you can still use the exciting new UI and services directly from your PC.  Zune for Windows is a very nice media player that offers a music and video store and wide support for multimedia formats including those used in Apple products.  And if you enjoy listening to a wide variety of music, it also offers the Zune Pass which lets you stream an unlimited number of songs to your computer and download 10 songs for keeps per month for $14.99/month. Or you can do a pre-paid music card as well.  It does all this using the new Metro UI which beautifully shows information using text in a whole new way.  Here’s a quick look at setting up and using Zune on your PC. Getting Started Download the installer (link below), and run it to begin setup.  Please note that Zune offers a separate version for computers running the 64 bit version of Windows Vista or 7, so choose it if your computer is running these. Once your download is finished, run the installer to setup Zune on your computer.  Accept the EULA when prompted. If there are any updates available, they will automatically download and install during the setup.  So, if you’re installing Zune from a disk (for example, one packaged with a Zune device), you don’t have to worry if you have the latest version.  Zune will proceed to install on your computer.   It may prompt you to restart your computer after installation; click Restart Now so you can proceed with your Zune setup.  The reboot appears to be for Zune device support, and the program ran fine otherwise without rebooting, so you could possibly skip this step if you’re not using a Zune device.  However, to be on the safe side, go ahead and reboot. After rebooting, launch Zune.  It will play a cute introduction video on first launch; press skip if you don’t want to watch it. Zune will now ask you if you want to keep the default settings or change them.  Choose Start to keep the defaults, or Settings to customize to your wishes.  Do note that the default settings will set Zune as your default media player, so click Settings if you wish to change this. If you choose to change the default settings, you can change how Zune finds and stores media on your computer.  In Windows 7, Zune will by default use your Windows 7 Libraries to manage your media, and will in fact add a new Podcasts library to Windows 7. If your media is stored on another location, such as on a server, then you can add this to the Library.  Please note that this adds the location to your system-wide library, not just the Zune player. There’s one last step.  Enter three of your favorite artists, and Zune will add Smart DJ mixes to your Quickplay list based on these.  Some less famous or popular artists may not be recognized, so you may have to try another if your choice isn’t available.  Or, you can click Skip if you don’t want to do this right now. Welcome to Zune!  This is the default first page, QuickPlay, where you can easily access your pinned and new items.   If you have a Zune account, or would like to create a new one, click Sign In on the top. Creating a new account is quick and simple, and if you’re new to Zune, you can try out a 14 day trial of Zune Pass for free if you want. Zune allows you to share your listening habits and favorites with friends or the world, but you can turn this off or change it if you like. Using Zune for Windows To access your media, click the Collection link on the top left.  Zune will show all the media you already have stored on your computer, organized by artist and album. Right-click on any album, and you choose to have Zune find album art or do a variety of other tasks with the media.   When playing media, you can view it in several unique ways.  First, the default Mix view will show related tracks to the music you’re playing from Smart DJ.  You can either play these fully if you’re a Zune Pass subscriber, or otherwise you can play 30 second previews. Then, for many popular artists, Zune will change the player background to show pictures and information in a unique way while the music is playing.  The information may range from history about the artist to the popularity of the song being played.   Zune also works as a nice viewer for the pictures on your computer. Start a slideshow, and Zune will play your pictures with nice transition effects and music from your library. Zune Store The Zune Store offers a wide variety of music, TV shows, and videos for purchase.  If you’re a Zune Pass subscriber, you can listen to or download any song without purchasing it; otherwise, you can preview a 30 second clip first. Zune also offers a wide selection of Podcasts you can subscribe to for free. Using Zune for PC with a Zune Device If you have a Zune device attached to your computer, you can easily add media files to it by simply dragging them to the Zune device icon in the left corner.  In the future, this will also work with Windows Phone 7 devices. If you have a Zune HD, you can also download and add apps to your device. Here’s the detailed information window for the weather app.  Click Download to add it to your device.   Mini Mode The Zune player generally takes up a large portion of your screen, and is actually most impressive when run maximized.  However, if you’re simply wanting to enjoy your tunes while you’re using your computer, you can use the Mini mode to still view music info and control Zune in a smaller mode.  Click the Mini Player button near the window control buttons in the top right to activate it. Now Zune will take up much less of your desktop.  This window will stay on top of other windows so you can still easily view and control it. Zune will display an image of the artist if one is available, and this shows up in Mini mode more often than it does in the full mode. And, in Windows 7, you could simply minimize Zune as you can control it directly from the taskbar thumbnail preview.   Even more controls are available from Zune’s jumplist in Windows 7.  You can directly access your Quickplay links or choose to shuffle all music without leaving the taskbar. Settings Although Zune is designed to be used without confusing menus and settings, you can tweak the program to your liking from the settings panel.  Click Settings near the top left of the window. Here you can change file storage, types, burn, metadata, and many more settings.  You can also setup Zune to stream media to your XBOX 360 if you have one.   You can also customize Zune’s look with a variety of modern backgrounds and gradients. Conclusion If you’re ready for a fresh way to enjoy your media, Zune is designed for you.  It’s innovative UI definitely sets it apart from standard media players, and is very pleasing to use.  Zune is especially nice if your computer is using XP, Vista Home Basic, or 7 Starter as these versions of Windows don’t include Media Center.  Additionally, the mini player mode is a nice touch that brings a feature of Windows 7’s Media Player to XP and Vista.  Zune is definitely one of our favorite music apps.  Try it out, and get a fresh view of your music today! Link Download Zune for Windows Similar Articles Productive Geek Tips Redeem Pre-paid Zune Card Points for Zune Marketplace MediaUpdate Your Zune Player SoftwaredoubleTwist is an iTunes Alternative that Supports Several DevicesFind Free or Cheap Indie Music at Amie StreetAmie Street Downloader Makes Purchasing Music Easier TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 The Ultimate Guide For YouTube Lovers Will it Blend? iPad Edition Penolo Lets You Share Sketches On Twitter Visit Woolyss.com for Old School Games, Music and Videos Add a Custom Title in IE using Spybot or Spyware Blaster When You Need to Hail a Taxi in NYC

    Read the article

  • Amazon Web Services (AWS) Plug-in for Oracle Enterprise Manager

    - by Anand Akela
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Contributed by Sunil Kunisetty and Daniel Chan Introduction and ArchitectureAs more and more enterprises deploy some of their non-critical workload on Amazon Web Services (AWS), it’s becoming critical to monitor those public AWS resources along side with their on-premise resources. Oracle recently announced Oracle Enterprise Manager Plug-in for Amazon Web Services (AWS) allows you to achieve that goal. The on-premise Oracle Enterprise Manager (EM12c) acts as a single tool to get a comprehensive view of your public AWS resources as well as your private cloud resources.  By deploying the plug-in within your Cloud Control environment, you gain the following management features: Monitor EBS, EC2 and RDS instances on Amazon Web Services Gather performance metrics and configuration details for AWS instances Raise alerts and violations based on thresholds set on monitoring Generate reports based on the gathered data Users of this Plug-in can leverage the rich Enterprise Manager features such as system promotion, incident generation based on thresholds, integration with 3rd party ticketing applications etc. AWS Monitoring via this Plug-in is enabled via Amazon CloudWatch API and the users of this Plug-in are responsible for supplying credentials for accessing AWS and the CloudWatch API. This Plug-in can only be deployed on an EM12C R2 platform and agent version should be at minimum 12c R2.Here is a pictorial view of the overall architecture: Amazon Elastic Block Store (EBS) Amazon Elastic Compute Cloud (EC2) Amazon Relational Database Service (RDS) Here are a few key features: Rich and exhaustive list of metrics. Metrics can be gathered from an Agent running outside AWS. Critical configuration information. Custom Home Pages with charts and AWS configuration information. Generate incidents based on thresholds set on monitoring data. Discovery and Monitoring AWS instances can be added to EM12C either via the EM12c User Interface (UI) or the EM12c Command Line Interface ( EMCLI)  by providing the AWS credentials (Secret Key and Access Key Id) as well as resource specific properties as target properties. Here is a quick mapping of target types and properties for each AWS resources AWS Resource Type Target Type Resource specific properties EBS Resource Amazon EBS Service CloudWatch base URI, EC2 Base URI, Period, Volume Id, Proxy Server and Port EC2 Resource Amazon EC2 Service CloudWatch base URI, EC2 Base URI, Period, Instance  Id, Proxy Server and Port RDS Resource Amazon RDS Service CloudWatch base URI, RDS Base URI, Period, Instance  Id, Proxy Server and Port Proxy server and port are optional and are only needed if the agent is within the firewall. Here is an emcli example to add an EC2 target. Please read the Installation and Readme guide for more details and step-by-step instructions to deploy  the plugin and adding the AWS the instances. ./emcli add_target \       -name="<target name>" \       -type="AmazonEC2Service" \       -host="<host>" \       -properties="ProxyHost=<proxy server>;ProxyPort=<proxy port>;EC2_BaseURI=http://ec2.<region>.amazonaws.com;BaseURI=http://monitoring.<region>.amazonaws.com;InstanceId=<EC2 instance Id>;Period=<data point periond>"  \     -subseparator=properties="=" ./emcli set_monitoring_credential \                 -set_name="AWSKeyCredentialSet"  \                 -target_name="<target name>"  \                 -target_type="AmazonEC2Service" \                 -cred_type="AWSKeyCredential"  \                 -attributes="AccessKeyId:<access key id>;SecretKey:<secret key>" Emcli utility is found under the ORACLE_HOME of EM12C install. Once the instance is discovered, the target will show up under the ‘All Targets’ list under “Amazon EC2 Service’. Once the instances are added, one can navigate to the custom homepages for these resource types. The custom home pages not only include critical metrics, but also vital configuration parameters and incidents raised for these instances.  By mapping the configuration parameters as instance properties, we can slice-and-dice and group various AWS instance by leveraging the EM12C Config search feature. The following configuration properties and metrics are collected for these Resource types. Resource Type Configuration Properties Metrics EBS Resource Volume Id, Volume Type, Device Name, Size, Availability Zone Response: Status Utilization: QueueLength, IdleTime Volume Statistics: ReadBrandwith, WriteBandwidth, ReadThroughput, WriteThroughput Operation Statistics: ReadSize, WriteSize, ReadLatency, WriteLatency EC2 Resource Instance ID, Owner Id, Root Device type, Instance Type. Availability Zone Response: Status CPU Utilization: CPU Utilization Disk I/O:  DiskReadBytes, DiskWriteBytes, DiskReadOps, DiskWriteOps, DiskReadRate, DiskWriteRate, DiskIOThroughput, DiskReadOpsRate, DiskWriteOpsRate, DiskOperationThroughput Network I/O : NetworkIn, NetworkOut, NetworkInRate, NetworkOutRate, NetworkThroughput RDS Resource Instance ID, Database Engine Name, Database Engine Version, Database Instance Class, Allocated Storage Size, Availability Zone Response: Status Disk I/O:  ReadIOPS, WriteIOPS, ReadLatency, WriteLatency, ReadThroughput, WriteThroughput DB Utilization:  BinLogDiskUsage, CPUUtilization, DatabaseConnections, FreeableMemory, ReplicaLag, SwapUsage Custom Home Pages As mentioned above, we have custom home pages for these target types that include basic configuration information,  last 24 hours availability, top metrics and the incidents generated. Here are few snapshots. EBS Instance Home Page: EC2 Instance Home Page: RDS Instance Home Page: Further Reading: 1)      AWS Plugin download 2)      Installation and  Read Me. 3)      Screenwatch on SlideShare 4)      Extensibility Programmer's Guide 5)      Amazon Web Services

    Read the article

  • SharePoint 2010 BDC Model Deployment Issue: “The default web application could not be determined.”

    - by Jan Tielens
    Yesterday I tried to deploy a Business Data Connectivity Model project created in Visual Studio 2010 to my SharePoint 2010 test server (all RTM versions), but during the deployment of the solution, SharePoint threw my following error: Add Solution:  Adding solution 'BCSDemo2.wsp'...  Deploying solution 'BCSDemo2.wsp'...Error occurred in deployment step 'Add Solution': The default web application could not be determined. Set the SiteUrl property in feature BCSDemo2_Feature1 to the URL of the desired site and retry activation.Parameter name: properties A little bit of searching on the internet taught me that I was not the only one having this issue, actually Paul Andrew describes how to solve it in this post. Although Paul describes what to do, his explanation is not, let’s say, very elaborate. :-) So let’s describe the steps a little bit more in detail: Create a new Business Data Connectivity Model project in Visual Studio 2010 and (optionally) implement all your code, change the model etc. When you try to deploy you get the error mentioned above. To fix it, in the Solution Explorer, navigate to and open the Feature1.Template.xml file (the name could be different if you decided to give your feature a different name of course). Add the following XML in the Feature element that’s already there (replace the Value with the URL of your site of course):  <Properties>    <Property Key='SiteUrl' Value='http://spf.u2ucourse.com'/>  </Properties>The resulting XML should look like:<?xml version="1.0" encoding="utf-8" ?><Feature xmlns="http://schemas.microsoft.com/sharepoint/">  <Properties>    <Property Key='SiteUrl' Value='http://spf.u2ucourse.com'/>  </Properties></Feature> Deploy the solution, now without any issues. :-) What happens now, is that when Visual Studio creates the SharePoint Solution (the WSP file), it will use the Feature template XML to generate the Feature manifest, which will now include the missing property.

    Read the article

  • MPI Project Template for VS2010

    If you are developing MS MPI applications with Visual Studio 2010, you are probably tired of following some tedious steps for every new C++ project that you create, similar to the following:1. In Solution Explorer, right-click YourProjectName, then click Properties to open the Property Pages dialog box.2. Expand Configuration Properties and then under VC++ Directories place the cursor at the beginning of the list that appears in the Include Directories text box and then specify the location of the MS MPI C header files, followed by a semicolon, e.g.C:\Program Files\Microsoft HPC Pack 2008 SDK\Include;3. Still under Configuration Properties and under VC++ Directories place the cursor at the beginning of the list that appears in the Library Directories text box and then specify the location of the Microsoft HPC Pack 2008 SDK library file, followed by a semicolon, e.g.if you want to build/debug 32bit application:C:\Program Files\Microsoft HPC Pack 2008 SDK\Lib\i386;if you want to build/debug 64bit application:C:\Program Files\Microsoft HPC Pack 2008 SDK\Lib\amd64;4. Under Configuration Properties and then under Linker, select Input and place the cursor at the beginning of the list that appears in the Additional Dependencies text box and then type the name of the MS MPI library, i.e.msmpi.lib;5. In the code file#include "mpi.h"6. To debug the MPI project you have just setup, under Configuration Properties select Debugging and then switch the Debugger to launch combo value from Local Windows Debugger to MPI Cluster Debugger.Wouldn't it be great if at C++ project creation time you could choose an MPI Project Template that included the steps/configurations above? If you answered "yes", I have good news for you courtesy of a developer on our team (Qing). Feel free to download from Visual Studio gallery the MPI Project Template. Comments about this post welcome at the original blog.

    Read the article

  • Having fun with Reflection

    - by Nick Harrison
    I was once asked in a technical interview what I could tell them about Reflection.   My response, while a little tongue in cheek was that "I can tell you it is one of my favorite topics to talk about" I did get a laugh out of that and it was a great ice breaker.    Reflection may not be the answer for everything, but it often can be, or maybe even should be.     I have posted in the past about my favorite CopyTo method.   It can come in several forms and is often very useful.   I explain it further and expand on the basic idea here  The basic idea is to allow reflection to loop through the properties of two objects and synchronize the ones that are in common.   I love this approach for data binding and passing data across the layers in an application. Recently I have been working on a project leveraging Data Transfer Objects to pass data through WCF calls.   We won't go into how the architecture got this way, but in essence there is a partial duplicate inheritance hierarchy where there is a related Domain Object for each Data Transfer Object.     The matching objects do not share a common ancestor or common interface but they will have the same properties in common.    By passing the problems with this approach, let's talk about how Reflection and our friendly CopyTo could make the most of this bad situation without having to change too much. One of the problems is keeping the two sets of objects in synch.   For this particular project, the DO has all of the functionality and the DTO is used to simply transfer data back and forth.    Both sets of object have parallel hierarchies with the same properties being defined at the corresponding levels.   So we end with BaseDO,  BaseDTO, GenericDO, GenericDTO, ProcessAreaDO,  ProcessAreaDTO, SpecializedProcessAreaDO, SpecializedProcessAreaDTO, TableDo, TableDto. and so on. Without using Reflection and a CopyTo function, tremendous care and effort must be made to keep the corresponding objects in synch.    New properties can be added at any level in the inheritance and must be kept in synch at all subsequent layers.    For this project we have come up with a clever approach of calling a base GetDo or UpdateDto making sure that the same method at each level of inheritance is called.    Each level is responsible for updating the properties at that level. This is a lot of work and not keeping it in synch can create all manner of problems some of which are very difficult to track down.    The other problem is the type of code that this methods tend to wind up with. You end up with code like this: Transferable dto = new Transferable(); base.GetDto(dto); dto.OfficeCode = GetDtoNullSafe(officeCode); dto.AccessIndicator = GetDtoNullSafe(accessIndicator); dto.CaseStatus = GetDtoNullSafe(caseStatus); dto.CaseStatusReason = GetDtoNullSafe(caseStatusReason); dto.LevelOfService = GetDtoNullSafe(levelOfService); dto.ReferralComments = referralComments; dto.Designation = GetDtoNullSafe(designation); dto.IsGoodCauseClaimed = GetDtoNullSafe(isGoodCauseClaimed); dto.GoodCauseClaimDate = goodCauseClaimDate;       One obvious problem is that this is tedious code.   It is error prone code.    Adding helper functions like GetDtoNullSafe help out immensely, but there is still an easier way. We can bypass the tedious code, by pass the complex inheritance tricks, and reduce all of this to a single method in the base class. TransferObject dto = new TransferObject(); CopyTo (this, dto); return dto; In the case of this one project, such a change eliminated the need for 20% of the total code base and a whole class of unit test cases that made sure that all of the properties were in synch. The impact of such a change also needs to include the on going time savings and the improvements in quality that can arise from them.    Developers who are not worried about keeping the properties in synch across mirrored object hierarchies are freed to worry about more important things like implementing business requirements.

    Read the article

  • (Blogger) Map GoDaddy Domain For Blogger Custom Domain

    - by zulhfreelancer
    I just bought a new domain from GoDaddy (nurayka.net) and I want to use it for my .blogspot.com blog now. Here is my Blogger settings. And here is my GoDaddy DNS settings. After more than 24 hours, I still can't view my blog with that custom domain. It seems that it might be something wrong with my DNS settings. Does my DNS settings correct? Does GoDaddy Domain Forwarding should be enabled from 'nurayka.net' to 'www.nurayka.net'? Note: Before this, I have go through the GoDaddy Blogger DNS Setup and CNAME Tutorial. In the GoDaddy Blogger DNS Setup, I entered 'www.nurayka.net' and in the CNAME record (www), I entered 'ghs.google.com'. Thank You!

    Read the article

  • Calculating Screen Resolutions Using WPF

    - by Jeff Ferguson
    WPF measures all elements in device independent pixels (DIPs). These DIPs equate to device pixels if the current display monitor is set to the default of 96 DPI. However, for monitors set to a DPI setting that is different than 96 DPI, then WPF DIPs will not correspond directly to monitor pixels. Consider, for example, the WPF properties SystemParameters.PrimaryScreenHeight and SystemParameters.PrimaryScreenWidth. If your monitor resolution is set to 1024 pixels wide by 768 pixels high, and your monitor is set to 96 DPI, then WPF will report the value of SystemParameters.PrimaryScreenHeight as 768 and the value of SystemParameters.PrimaryScreenWidth as 1024. No problem. This aligns nicely because the WPF device independent pixel value (96) matches your monitor's DPI setting (96). However, if your monitor is not set to display pixels at 96 DPI, then SystemParameters.PrimaryScreenHeight and SystemParameters.PrimaryScreenWidth will not return what you expect. The values returned by these properties may be greater than or less than what you expect, depending on whether or not your monitor's DPI value is less than or greater than 96. Since the SystemParameters.PrimaryScreenHeight and SystemParameters.PrimaryScreenWidth properties are WPF properties, their values are measured in WPF DIPs, rather than taking monitor DPI into effect. Once again: WPF measures all elements in device independent pixels (DIPs). To combat this issue, you must take your monitor's DPI settings into effect if you're looking for the monitor's width and height using the monitor's DPI settings. The handy code block below will help you calculate these values regardless of the DPI setting on your monitor: Window MainWindow = Application.Current.MainWindow; PresentationSource MainWindowPresentationSource = PresentationSource.FromVisual(MainWindow); Matrix m = MainWindowPresentationSource.CompositionTarget.TransformToDevice; DpiWidthFactor = m.M11; DpiHeightFactor = m.M22; double ScreenHeight = SystemParameters.PrimaryScreenHeight * DpiHeightFactor; double ScreenWidth = SystemParameters.PrimaryScreenWidth * DpiWidthFactor; The values of ScreenHeight and ScreenWidth should, after this code is executed, match the resolution that you see in the display's Properties window.

    Read the article

  • Developing custom MBeans to manage J2EE Applications (Part III)

    - by philippe Le Mouel
    This is the third and final part in a series of blogs, that demonstrate how to add management capability to your own application using JMX MBeans. In Part I we saw: How to implement a custom MBean to manage configuration associated with an application. How to package the resulting code and configuration as part of the application's ear file. How to register MBeans upon application startup, and unregistered them upon application stop (or undeployment). How to use generic JMX clients such as JConsole to browse and edit our application's MBean. In Part II we saw: How to add localized descriptions to our MBean, MBean attributes, MBean operations and MBean operation parameters. How to specify meaningful name to our MBean operation parameters. We also touched on future enhancements that will simplify how we can implement localized MBeans. In this third and last part, we will re-write our MBean to simplify how we added localized descriptions. To do so we will take advantage of the functionality we already described in part II and that is now part of WebLogic 10.3.3.0. We will show how to take advantage of WebLogic's localization support to localize our MBeans based on the client's Locale independently of the server's Locale. Each client will see MBean descriptions localized based on his/her own Locale. We will show how to achieve this using JConsole, and also using a sample programmatic JMX Java client. The complete code sample and associated build files for part III are available as a zip file. The code has been tested against WebLogic Server 10.3.3.0 and JDK6. To build and deploy our sample application, please follow the instruction provided in Part I, as they also apply to part III's code and associated zip file. Providing custom descriptions take II In part II we localized our MBean descriptions by extending the StandardMBean class and overriding its many getDescription methods. WebLogic 10.3.3.0 similarly to JDK 7 can automatically localize MBean descriptions as long as those are specified according to the following conventions: Descriptions resource bundle keys are named according to: MBean description: <MBeanInterfaceClass>.mbean MBean attribute description: <MBeanInterfaceClass>.attribute.<AttributeName> MBean operation description: <MBeanInterfaceClass>.operation.<OperationName> MBean operation parameter description: <MBeanInterfaceClass>.operation.<OperationName>.<ParameterName> MBean constructor description: <MBeanInterfaceClass>.constructor.<ConstructorName> MBean constructor parameter description: <MBeanInterfaceClass>.constructor.<ConstructorName>.<ParameterName> We also purposely named our resource bundle class MBeanDescriptions and included it as part of the same package as our MBean. We already followed the above conventions when creating our resource bundle in part II, and our default resource bundle class with English descriptions looks like: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "MBean used to manage persistent application properties"}, {"PropertyConfigMXBean.attribute.Properties", "Properties associated with the running application"}, {"PropertyConfigMXBean.operation.setProperty", "Create a new property, or change the value of an existing property"}, {"PropertyConfigMXBean.operation.setProperty.key", "Name that identify the property to set."}, {"PropertyConfigMXBean.operation.setProperty.value", "Value for the property being set"}, {"PropertyConfigMXBean.operation.getProperty", "Get the value for an existing property"}, {"PropertyConfigMXBean.operation.getProperty.key", "Name that identify the property to be retrieved"} }; } } We have now also added a resource bundle with French localized descriptions: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions_fr extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "Manage proprietes sauvegarde dans un fichier disque."}, {"PropertyConfigMXBean.attribute.Properties", "Proprietes associee avec l'application en cour d'execution"}, {"PropertyConfigMXBean.operation.setProperty", "Construit une nouvelle proprietee, ou change la valeur d'une proprietee existante."}, {"PropertyConfigMXBean.operation.setProperty.key", "Nom de la propriete dont la valeur est change."}, {"PropertyConfigMXBean.operation.setProperty.value", "Nouvelle valeur"}, {"PropertyConfigMXBean.operation.getProperty", "Retourne la valeur d'une propriete existante."}, {"PropertyConfigMXBean.operation.getProperty.key", "Nom de la propriete a retrouver."} }; } } So now we can just remove the many getDescriptions methods from our MBean code, and have a much cleaner: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Map; import java.util.HashMap; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig extends StandardMBean implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; private static Map operationsParamNames_ = null; static { operationsParamNames_ = new HashMap(); operationsParamNames_.put("setProperty", new String[] {"key", "value"}); operationsParamNames_.put("getProperty", new String[] {"key"}); } public PropertyConfig(String relativePath) throws Exception { super(PropertyConfigMXBean.class , true); props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} protected String getParameterName(MBeanOperationInfo op, MBeanParameterInfo param, int sequence) { return operationsParamNames_.get(op.getName())[sequence]; } } The only reason we are still extending the StandardMBean class, is to override the default values for our operations parameters name. If this isn't a concern, then one could just write the following code: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; public PropertyConfig(String relativePath) throws Exception { props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} } Note: The above would also require changing the operations parameters name in the resource bundle classes. For instance: PropertyConfigMXBean.operation.setProperty.key would become: PropertyConfigMXBean.operation.setProperty.p0 Client based localization When accessing our MBean using JConsole started with the following command line: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -debug We see that our MBean descriptions are localized according to the WebLogic's server Locale. English in this case: Note: Consult Part I for information on how to use JConsole to browse/edit our MBean. Now if we specify the client's Locale as part of the JConsole command line as follow: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -J-Dweblogic.management.remote.locale=fr-FR -debug We see that our MBean descriptions are now localized according to the specified client's Locale. French in this case: We use the weblogic.management.remote.locale system property to specify the Locale that should be associated with the cient's JMX connections. The value is composed of the client's language code and its country code separated by the - character. The country code is not required, and can be omitted. For instance: -Dweblogic.management.remote.locale=fr We can also specify the client's Locale using a programmatic client as demonstrated below: package blog.wls.jmx.appmbean.client; import javax.management.MBeanServerConnection; import javax.management.ObjectName; import javax.management.MBeanInfo; import javax.management.remote.JMXConnector; import javax.management.remote.JMXServiceURL; import javax.management.remote.JMXConnectorFactory; import java.util.Hashtable; import java.util.Set; import java.util.Locale; public class JMXClient { public static void main(String[] args) throws Exception { JMXConnector jmxCon = null; try { JMXServiceURL serviceUrl = new JMXServiceURL( "service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime"); System.out.println("Connecting to: " + serviceUrl); // properties associated with the connection Hashtable env = new Hashtable(); env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); String[] credentials = new String[2]; credentials[0] = "weblogic"; credentials[1] = "weblogic"; env.put(JMXConnector.CREDENTIALS, credentials); // specifies the client's Locale env.put("weblogic.management.remote.locale", Locale.FRENCH); jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env); jmxCon.connect(); MBeanServerConnection con = jmxCon.getMBeanServerConnection(); Set mbeans = con.queryNames( new ObjectName( "blog.wls.jmx.appmbean:name=myAppProperties,type=PropertyConfig,*"), null); for (ObjectName mbeanName : mbeans) { System.out.println("\n\nMBEAN: " + mbeanName); MBeanInfo minfo = con.getMBeanInfo(mbeanName); System.out.println("MBean Description: "+minfo.getDescription()); System.out.println("\n"); } } finally { // release the connection if (jmxCon != null) jmxCon.close(); } } } The above client code is part of the zip file associated with this blog, and can be run using the provided client.sh script. The resulting output is shown below: $ ./client.sh Connecting to: service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime MBEAN: blog.wls.jmx.appmbean:type=PropertyConfig,name=myAppProperties MBean Description: Manage proprietes sauvegarde dans un fichier disque. $ Miscellaneous Using Description annotation to specify MBean descriptions Earlier we have seen how to name our MBean descriptions resource keys, so that WebLogic 10.3.3.0 automatically uses them to localize our MBean. In some cases we might want to implicitly specify the resource key, and resource bundle. For instance when operations are overloaded, and the operation name is no longer sufficient to uniquely identify a single operation. In this case we can use the Description annotation provided by WebLogic as follow: import weblogic.management.utils.Description; @Description(resourceKey="myapp.resources.TestMXBean.description", resourceBundleBaseName="myapp.resources.MBeanResources") public interface TestMXBean { @Description(resourceKey="myapp.resources.TestMXBean.threshold.description", resourceBundleBaseName="myapp.resources.MBeanResources" ) public int getthreshold(); @Description(resourceKey="myapp.resources.TestMXBean.reset.description", resourceBundleBaseName="myapp.resources.MBeanResources") public int reset( @Description(resourceKey="myapp.resources.TestMXBean.reset.id.description", resourceBundleBaseName="myapp.resources.MBeanResources", displayNameKey= "myapp.resources.TestMXBean.reset.id.displayName.description") int id); } The Description annotation should be applied to the MBean interface. It can be used to specify MBean, MBean attributes, MBean operations, and MBean operation parameters descriptions as demonstrated above. Retrieving the Locale associated with a JMX operation from the MBean code There are several cases where it is necessary to retrieve the Locale associated with a JMX call from the MBean implementation. For instance this can be useful when localizing exception messages. This can be done as follow: import weblogic.management.mbeanservers.JMXContextUtil; ...... // some MBean method implementation public String setProperty(String key, String value) throws IOException { Locale callersLocale = JMXContextUtil.getLocale(); // use callersLocale to localize Exception messages or // potentially some return values such a Date .... } Conclusion With this last part we conclude our three part series on how to write MBeans to manage J2EE applications. We are far from having exhausted this particular topic, but we have gone a long way and are now capable to take advantage of the latest functionality provided by WebLogic's application server to write user friendly MBeans.

    Read the article

  • How do I make changes to /proc/acpi/wakeup permanent?

    - by Jolan
    I had a problem with my Ubuntu 12.04 waking up immediately after going into suspend. I solved the problem by changing the settings in /proc/acpi/wakeup, as suggested in this question: How do I prevent immediate wake up from suspend?. After changing the settings, the system goes flawlessly into suspend and stays suspended, but after I wake it back up, the settings in /proc/acpi/wakeup are different from what I set them to. Before going to suspend: cat /proc/acpi/wakeup Device S-state Status Sysfs node SMB0 S4 *disabled pci:0000:00:03.2 PBB0 S4 *disabled pci:0000:00:09.0 HDAC S4 *disabled pci:0000:00:08.0 XVR0 S4 *disabled pci:0000:00:0c.0 XVR1 S4 *disabled P0P5 S4 *disabled P0P6 S4 *disabled pci:0000:00:15.0 GLAN S4 *enabled pci:0000:03:00.0 P0P7 S4 *disabled pci:0000:00:16.0 P0P8 S4 *disabled P0P9 S4 *disabled USB0 S3 *disabled pci:0000:00:04.0 USB2 S3 *disabled pci:0000:00:04.1 US15 S3 *disabled pci:0000:00:06.0 US12 S3 *disabled pci:0000:00:06.1 PWRB S4 *enabled SLPB S4 *enabled I tell the system to suspend, and it works as it should. But later after waking it up, the settings are changed to either: USB0 S3 *disabled pci:0000:00:04.0 USB2 S3 *enabled pci:0000:00:04.1 US15 S3 *disabled pci:0000:00:06.0 US12 S3 *enabled pci:0000:00:06.1 or USB0 S3 *enabled pci:0000:00:04.0 USB2 S3 *enabled pci:0000:00:04.1 US15 S3 *enabled pci:0000:00:06.0 US12 S3 *enabled pci:0000:00:06.1 Any ideas? Thank you for your response. Unfortunately it did not solve my problem. all of /sys/bus/usb/devices/usb1/power/wakeup /sys/bus/usb/devices/usb2/power/wakeup /sys/bus/usb/devices/usb3/power/wakeup /sys/bus/usb/devices/usb4/power/wakeup as well as /sys/bus/usb/devices/3-1/power/wakeup are set to disabled, and the notebook still wakes up by itself right after going to sleep. The only thing it seems to react to are the settings in /proc/acpi/wakeup, which keep changing (resetting) every time i power off/restart my notebook.

    Read the article

  • 3 Ways to Make Steam Even Faster

    - by Chris Hoffman
    Have you ever noticed how slow Steam’s built-in web browser can be? Do you struggle with slow download speeds? Or is Steam just slow in general? These tips will help you speed it up. Steam isn’t a game itself, so there are no 3D settings to change to achieve maximum performance. But there are some things you can do to speed it up dramatically. Speed Up the Steam Web Browser Steam’s built-in web browser — used in both the Steam store and in Steam’s in-game overlay to provide a web browser you can quickly use within games – can be frustratingly slow on many systems. Rather than the typical speed we’ve come to expect from Chrome, Firefox, or even Internet Explorer, Steam seems to struggle. When you click a link or go to a new page, there’s a noticeable delay before the new page appears — something that doesn’t happen in desktop browsers. Many people seem to have made peace with this slowness, accepting that Steam’s built-in browser is just bad. However, there’s a trick that will eliminate this delay on many systems and make the Steam web browser fast. This problem seems to arise from an incompatibility with the Automatically Detect Proxy Settings option, which is enabled by default on Windows. This is a compatibility option that very few people should actually need, so it’s safe to disable it. To disable this option, open the Internet Options dialog — press the Windows key to access the Start menu or Start screen, type Internet Options, and click the Internet Options shortcut. Select the Connections tab in the Internet Options window and click the LAN settings button. Uncheck the Automatically detect settings option here, then click OK to save your settings. If you experienced a significant delay every time a web page loaded in Steam’s web browser, it should now be gone. In the unlikely event that you encounter some sort of problem with your network connection, you could always re-enable this option. Increase Steam’s Game Download Speed Steam attempts to automatically select the nearest download server to your location. However, it may not always select the ideal download server. Or, in the case of high-traffic events like big seasonal sales and huge game launches, you may benefit from selecting a less-congested server. To do this, open Steam’s settings by clicking the Steam menu in Steam and selecting Settings. Click over to the Downloads tab and select the closest download server from the Download Region box. You should also ensure that Steam’s download bandwidth isn’t limited from here. You may want to restart Steam and see if your download speeds improve after changing this setting. In some cases, the closest server might not be the fastest. One a bit farther away could be faster if your local server is more congested, for example. Steam once provided information about content server load, which allowed you to select a regional server that wasn’t under high-load, but this information no longer seems to be available. Steam still provides a page that shows you the amount of download activity happening in different regions, including statistics about the difference in download speeds in different US states, but this information isn’t as useful. Accelerate Steam and Your Games One way to speed up all your games — and Steam itself —  is by getting a solid-state drive and installing Steam to it. Steam allows you to easily move your Steam folder — at C:\Program Files (x86)\Steam by default — to another hard drive. Just move it like you would any other folder. You can then launch the Steam.exe program as if you had never moved Steam’s files. Steam also allows you to configure multiple game library folders. This means that you can set up a Steam library folder on a solid-state drive and one on your larger magnetic hard drive. Install your most frequently played games to the solid-state drive for maximum speed and your less frequently played ones to the slower magnetic hard drive to save SSD space. To set up additional library folders, open Steam’s Settings window and click the Downloads tab. You’ll find the Steam Library Folders option here. Click the Add Library Folder button and create a new game library on another hard drive. When you install a game in Steam, you’ll be asked which library folder you want to install it to. With the proxy compatibility option disabled, the correct download server chosen, and Steam installed to a fast SSD, it should be a speed demon. There’s not much more you can do to speed up Steam, short of upgrading other hardware like your computer’s CPU. Image Credit: Andrew Nash on Flickr     

    Read the article

< Previous Page | 105 106 107 108 109 110 111 112 113 114 115 116  | Next Page >