Search Results

Search found 754 results on 31 pages for 'aggregate'.

Page 11/31 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • CQRS - Benefits

    - by Dylan Smith
    Thanks to all the comments and feedback from the last post I think I have a better understanding now of the benefits of CQRS (separate from the benefits of Event Sourcing). I’m going to try and sum it up here, and point out some areas where I could still use some advice: CQRS Benefits Sounds like the primary benefit of CQRS as an architecture is it allows you to create a simpler domain model by sucking out everything related to queries. I can definitely see the benefit to this, in general the domain logic related to commands is the high-value behavior in the software, but the logic required to service the queries would add a lot of low-value “noise” to the domain model that would dilute the high-value (command) behavior – sorting, paging, filtering, pre-fetch paths, etc. Also the most appropriate domain structure for implementing commands might not be the most optimal for implementing queries. To paraphrase Greg, this usually results in a domain model that is mediocre at both, piss-poor at one, or more likely piss-poor at both commands and queries. Not only will you be able to simplify your domain model by pulling out all the query logic, but at least a handful of commands in most systems will probably be “pass-though” type commands with little to no logic that just generate events. If these can be implemented directly in the command-handler and never touch the domain model, this allows you to slim down the domain model even more. Also, if you were to do event sourcing without CQRS, you no longer have a database containing the current state (only the domain model would) which makes it difficult (or impossible) to support ad-hoc querying and/or reporting that is common in most business software. Of course CQRS provides some great scalability benefits, not only scalability but I have to assume that it provides extremely low latency for most operations, especially if you have an asynchronous event bus. I know Greg says that you get a 3x scaling (Commands, Queries, Client) of your ability to perform parallel development, but IMHO, it seems like it only provides 1.5x scaling since even without CQRS you’re going to have your client loosely coupled to your domain - which is still a great benefit to be able to realize. Questions / Concerns If all the queries against an aggregate get pulled out to the Query layer, what if the only commands for that aggregate can be handled in a “pass-through” manner with the command handler directly generating events. Is it possible to have an aggregate that isn’t modeled in the domain model? Are there any issues or downsides to this? I know in the feedback from my previous posts it was suggested that having one domain model handling both commands and queries requires implementing a lot of traversals between objects that wouldn’t be necessary if it was only servicing commands. My question is, do you include traversals in your domain model based on the needs of the code, or based on the conceptual domain model? If none of my Commands require a Customer.Orders traversal, but the conceptual domain includes the concept of a set of orders belonging to a customer – should I model that in my domain model or not? I like the idea of using the Query side of the architecture as a place to put junior devs where the risk of them screwing something up has minimal impact. But I’m not sold on the idea that you can actually outsource it. Like I said in one of my comments on my previous post, the code to handle a query and generate DTO’s is going to be dead simple, but the code to process events and apply them to the tables on the query side is going to require a significant amount of domain knowledge to know which events to listen for to update each of the de-normalized tables (and what changes need to be made when each event is processed). I don’t know about everybody else, but having Indian/Russian/whatever outsourced developers have to do anything that requires significant domain knowledge has never been successful in my experience. And if you need to spec out for each new query which events to listen to and what to do with each one, well that’s probably going to be just as much work to document as it would be to just implement it. Greg made the point in a comment that doing an aggregate query like “Total Sales By Customer” is going to be inefficient if you use event sourcing but not CQRS. I don’t understand why that would be the case. I imagine in that case you’d simply have a method/property on the Customer object that calculated total sales for that customer by enumerating over the Orders collection. Then the application services layer would generate DTO’s off of the Customers collection that included say the CustomerID, CustomerName, TotalSales, or whatever the case may be. As long as you use a snapshotting implementation, I don’t see why that would be anymore inefficient in a DDD+Event Sourcing implementation than in a typical DDD implementation. Like I mentioned in my last post I still have some questions about query logic that haven’t been answered yet, but before I start asking those I want to make sure I have a strong grasp on what benefits CQRS provides.  My main concern with the query logic was that I know I could just toss it all into the query side, but I was concerned that I would be losing the benefits of using CQRS in the first place if I did that.  I want to elaborate more on this though with some example situations in an upcoming post.

    Read the article

  • Polite busy-waiting with WRPAUSE on SPARC

    - by Dave
    Unbounded busy-waiting is an poor idea for user-space code, so we typically use spin-then-block strategies when, say, waiting for a lock to be released or some other event. If we're going to spin, even briefly, then we'd prefer to do so in a manner that minimizes performance degradation for other sibling logical processors ("strands") that share compute resources. We want to spin politely and refrain from impeding the progress and performance of other threads — ostensibly doing useful work and making progress — that run on the same core. On a SPARC T4, for instance, 8 strands will share a core, and that core has its own L1 cache and 2 pipelines. On x86 we have the PAUSE instruction, which, naively, can be thought of as a hardware "yield" operator which temporarily surrenders compute resources to threads on sibling strands. Of course this helps avoid intra-core performance interference. On the SPARC T2 our preferred busy-waiting idiom was "RD %CCR,%G0" which is a high-latency no-nop. The T4 provides a dedicated and extremely useful WRPAUSE instruction. The processor architecture manuals are the authoritative source, but briefly, WRPAUSE writes a cycle count into the the PAUSE register, which is ASR27. Barring interrupts, the processor then delays for the requested period. There's no need for the operating system to save the PAUSE register over context switches as it always resets to 0 on traps. Digressing briefly, if you use unbounded spinning then ultimately the kernel will preempt and deschedule your thread if there are other ready threads than are starving. But by using a spin-then-block strategy we can allow other ready threads to run without resorting to involuntary time-slicing, which operates on a long-ish time scale. Generally, that makes your application more responsive. In addition, by blocking voluntarily we give the operating system far more latitude regarding power management. Finally, I should note that while we have OS-level facilities like sched_yield() at our disposal, yielding almost never does what you'd want or naively expect. Returning to WRPAUSE, it's natural to ask how well it works. To help answer that question I wrote a very simple C/pthreads benchmark that launches 8 concurrent threads and binds those threads to processors 0..7. The processors are numbered geographically on the T4, so those threads will all be running on just one core. Unlike the SPARC T2, where logical CPUs 0,1,2 and 3 were assigned to the first pipeline, and CPUs 4,5,6 and 7 were assigned to the 2nd, there's no fixed mapping between CPUs and pipelines in the T4. And in some circumstances when the other 7 logical processors are idling quietly, it's possible for the remaining logical processor to leverage both pipelines. Some number T of the threads will iterate in a tight loop advancing a simple Marsaglia xor-shift pseudo-random number generator. T is a command-line argument. The main thread loops, reporting the aggregate number of PRNG steps performed collectively by those T threads in the last 10 second measurement interval. The other threads (there are 8-T of these) run in a loop busy-waiting concurrently with the T threads. We vary T between 1 and 8 threads, and report on various busy-waiting idioms. The values in the table are the aggregate number of PRNG steps completed by the set of T threads. The unit is millions of iterations per 10 seconds. For the "PRNG step" busy-waiting mode, the busy-waiting threads execute exactly the same code as the T worker threads. We can easily compute the average rate of progress for individual worker threads by dividing the aggregate score by the number of worker threads T. I should note that the PRNG steps are extremely cycle-heavy and access almost no memory, so arguably this microbenchmark is not as representative of "normal" code as it could be. And for the purposes of comparison I included a row in the table that reflects a waiting policy where the waiting threads call poll(NULL,0,1000) and block in the kernel. Obviously this isn't busy-waiting, but the data is interesting for reference. _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } _td { border: 1px green solid; } _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } Aggregate progress T = #worker threads Wait Mechanism for 8-T threadsT=1T=2T=3T=4T=5T=6T=7T=8 Park thread in poll() 32653347334833483348334833483348 no-op 415 831 124316482060249729303349 RD %ccr,%g0 "pause" 14262429269228623013316232553349 PRNG step 412 829 124616702092251029303348 WRPause(8000) 32443361333133483349334833483348 WRPause(4000) 32153308331533223347334833473348 WRPause(1000) 30853199322432513310334833483348 WRPause(500) 29173070315032223270330933483348 WRPause(250) 26942864294930773205338833483348 WRPause(100) 21552469262227902911321433303348

    Read the article

  • How to track many in-game statistics

    - by Alex Schearer
    I am looking to track many in-game events, e.g. the score of each move, how many moves are taken, what types of moves, etc. A lot of stats can simply be tracked with a counter. In some cases I need to aggregate data in order to calculate the value (e.g. most common move). How are you tracking in-game stats for your games? How do you avoid creating a class with tens or hundreds of fields? How do you avoid littering the code with tracking invocations? How do you abstract the aggregate data so as to avoid rewriting it for each scenario?

    Read the article

  • Applying DDD principles in a RESTish web service

    - by Andy
    I am developing an RESTish web service. I think I got the idea of the difference between aggregation and composition. Aggregation does not enforce lifecycle/scope on the objects it references. Composition does enforce lifecycle/scope on the objects it contain/own. If I delete a composite object then all the objects it contain/own are deleted as well, while the deleting an aggregate root does not delete referenced objects. 1) If it is true that deleting aggregate roots does not necessary delete referenced objects, what sense does it make to not have a repository for the references objects? Or are aggregate roots as a term referring to what is known as composite object? 2) When you create an web service you will have multiple endpoints, in my case I have one entity Book and another named Comment. It does not make sense to leave the comments in my application if the book is deleted. Therefore, book is a composite object. I guess I should not have a repository for comments since that would break the enforcement of lifecycle and rules that the book class may have. However I have URL such as (examples only): GET /books/1/comments POST /books/1/comments Now, if I do not have a repository for comments, does that mean I have to load the book object and then return the referenced comments? Am I allowed to return a list of Comment entities from the BookRepository, does that make sense? The repository for Book may eventually become rather big with all sorts of methods. Am I allowed to write JPQL (JPA queries) that targets comments and not books inside the repository? What about pagination and filtering of comments. When adding a new comment triggered by the POST endpoint, do you need to load the book, add the comment to the book, and then update the whole book object? What I am currently doing is having a own CommentRepository, even though the comments are deleted with the book. I could need some direction on how to do it correct. Since you are exposing not only root objects in RESTish services I wonder how to handle this at the backend. I am using Hibernate and Spring.

    Read the article

  • Architecture for dashbaord showing aggregated stats

    - by soulnafein
    I'm trying to find the best architecture for an application that shows a dashboard with aggregated stats that come from another one (e.g. number of sales in the last 12 months, current sales this month, a fairly complex score, performance of users over last 30 days, etc.) There is a fair bit of business logic that lives in Application 1 but the aggregated data gets saved in Application 2 (dashboard). What's the best way to create the aggregate data? 1) Pull data directly from Application 1 database and duplicate business logic for score calculation etc. 2) Push data from Application 1 to Application 2 somehow 3) Aggregate data in Application 1 on the fly and provide and api for Application 2 4) Other (probably) Please suggest solutions, Thanks.

    Read the article

  • Script to calculate the Median value for SQL Server data

    The standard SQL language has a number of aggregate functions like: SUM, MIN, MAX, AVG, but a common statistics function that SQL Server does not have is a built-in aggregate function for median. The median is the value that falls in the middle of a sorted resultset with equal parts that are smaller and equal parts that are greater. Since there is no built-in implementation for the median, the following is a simple solution I put together to find the median. Get smart with SQL Backup ProPowerful centralised management, encryption and more.SQL Backup Pro was the smartest kid at school. Discover why.

    Read the article

  • DDD: service contains two repository

    - by tikhop
    Does it correct way to have two repository inside one service and will it be an application or domain service? Suppose I have a Passenger object that should contains Passport (government id) object. I am getting Passenger from PassengerRepository. PassengerRepository create request to server and obtain data (json) than parse received data and store inside repository. I have confused because I want to store Passport as Entity and put it to PassportRepository but all information about password contains inside json than i received above. I guess that I should create a PassengerService that will be include PassengerRepository and PassportRepository with several methods like removePassport, addPassport, getAllPassenger and etc. UPDATE: So I guess that the better way is represent Passport as VO and store all passports inside Passenger aggregate. However there is another question: Where I should put the methods (methods calls server api) for management passenger's passport. I think the better place is so within Passenger aggregate.

    Read the article

  • DDD Modeling questions : student, classroom, seats and a favorite seat for a student.

    - by Erik Ashepa
    Hi, i'm not sure how to model this relationship... A classroom contains many seats, every student studies in a classroom and have a favorite seat within it. The way i see it, i have two aggregate roots: classroom and student, seats a are entities aggregatged by classroom... And for a student to have a fovorite seat, it must hold a reference to it (seat isn't an aggregate root). Any suggestions? Thanks in advance, Erik.

    Read the article

  • What is an efficient method for partitioning and aggregating intervals from timestamped rows in a da

    - by mattrepl
    From a data frame with timestamped rows (strptime results), what is the best method for aggregating statistics for intervals? Intervals could be an hour, a day, etc. I've found the aggregate function, but that doesn't help with assigning each row to an interval. I'm planning on adding a column to the data frame that denotes interval and using that with aggregate, but if there's a better solution it'd be great to hear it. Thanks for any pointers!

    Read the article

  • How to convert row data into columns in SQL

    - by iHeartDucks
    Hi, I have looked into pivot but I think it requires an aggregate function which I do not need (I think). The result of my query is this Name Property Name PropertyValue ---------- ---------- ---------- lorem Work Phone 000.111.2020 ipsum Email [email protected] To Name Work Phone Email ---------- ---------- ---------- lorem 000.111.2020 [email protected] ipsum 001.101.2010 [email protected] I don't think I should use pivot here because I don't need to aggregate anything, I just want the row data to become a column.

    Read the article

  • Design pattern for adding / removing elements

    - by de3
    Wikipedia's definition for Iterator pattern design: the Iterator pattern is a design pattern in which iterators are used to access the elements of an aggregate object sequentially without exposing its underlying implementation. Iterator interface in java provides the following methods hasNext() next() remove() Is there a pattern design, or a java interface for inserting / deleting elements, and getting length of the aggregate object, in addition to iterating them? I know remove() is an optional method that can be used once per call to next(), but I am implementing a circular FIFO array and need a method delete() independent of iterator's next().

    Read the article

  • SQL query to get most

    - by chama
    I have a database with the following tables: Employee (EmpID, FirstName, LastName, RegionID) EmployeeSkills(EmpID, SkillID) [this is a linking table for the M:N relationship between Employees and skills] Skills(SkillID, Description) I need to list the name of the skill that most employees have. I tried doing a max(count(skillID)), sqlserver said that you can't do an aggregate function on an aggregate function. Any other ideas? Thank you in advance!

    Read the article

  • How can I work around SQL Server - Inline Table Value Function execution plan variation based on par

    - by Ovidiu Pacurar
    Here is the situation: I have a table value function with a datetime parameter ,lest's say tdf(p_date) , that filters about two million rows selecting those with column date smaller than p_date and computes some aggregate values on other columns. It works great but if p_date is a custom scalar value function (returning the end of day in my case) the execution plan is altered an the query goes from 1 sec to 1 minute execution time. A proof of concept table - 1K products, 2M rows: CREATE TABLE [dbo].[POC]( [Date] [datetime] NOT NULL, [idProduct] [int] NOT NULL, [Quantity] [int] NOT NULL ) ON [PRIMARY] The inline table value function: CREATE FUNCTION tdf (@p_date datetime) RETURNS TABLE AS RETURN ( SELECT idProduct, SUM(Quantity) AS TotalQuantity, max(Date) as LastDate FROM POC WHERE (Date < @p_date) GROUP BY idProduct ) The scalar value function: CREATE FUNCTION [dbo].[EndOfDay] (@date datetime) RETURNS datetime AS BEGIN DECLARE @res datetime SET @res=dateadd(second, -1, dateadd(day, 1, dateadd(ms, -datepart(ms, @date), dateadd(ss, -datepart(ss, @date), dateadd(mi,- datepart(mi,@date), dateadd(hh, -datepart(hh, @date), @date)))))) RETURN @res END Query 1 - Working great SELECT * FROM [dbo].[tdf] (getdate()) The end of execution plan: Stream Aggregate Cost 13% <--- Clustered Index Scan Cost 86% Query 2 - Not so great SELECT * FROM [dbo].[tdf] (dbo.EndOfDay(getdate())) The end of execution plan: Stream Aggregate Cost 4% <--- Filter Cost 12% <--- Clustered Index Scan Cost 86%

    Read the article

  • Why Enumerable.Range is faster than a direct yield loop?

    - by Morgan Cheng
    Below code is checking performance of three different ways to do same solution. public static void Main(string[] args) { // for loop { Stopwatch sw = Stopwatch.StartNew(); int accumulator = 0; for (int i = 1; i <= 100000000; ++i) { accumulator += i; } sw.Stop(); Console.WriteLine("time = {0}; result = {1}", sw.ElapsedMilliseconds, accumulator); } //Enumerable.Range { Stopwatch sw = Stopwatch.StartNew(); var ret = Enumerable.Range(1, 100000000).Aggregate(0, (accumulator, n) => accumulator + n); sw.Stop(); Console.WriteLine("time = {0}; result = {1}", sw.ElapsedMilliseconds, ret); } //self-made IEnumerable<int> { Stopwatch sw = Stopwatch.StartNew(); var ret = GetIntRange(1, 100000000).Aggregate(0, (accumulator, n) => accumulator + n); sw.Stop(); Console.WriteLine("time = {0}; result = {1}", sw.ElapsedMilliseconds, ret); } } private static IEnumerable<int> GetIntRange(int start, int count) { int end = start + count; for (int i = start; i < end; ++i) { yield return i; } } } The result is like this: time = 306; result = 987459712 time = 1301; result = 987459712 time = 2860; result = 987459712 It is not surprising that "for loop" is faster than the other two solutions, because Enumerable.Aggregate takes more method invocations. However, it really surprises that "Enumerable.Range" is faster than the "self-made IEnumerable". I thought that Enumerable.Range will take more overhead than the simple GetIntRange method. What is the possible reason for this?

    Read the article

  • Munin Aggregated Graphs Configuration Error

    - by Sparsh Gupta
    I tried making some Munin Aggregated graphs but somehow I am unable to make the configuration work. I think I have followed the instructions but since its not working, I would love some assistance or guidance as to what I am doing wrong. I want to Aggregate (sum) the total number of requests / second all my nginx servers are doing combined together. The configuration looks like [TRAFFIC.AGGREGATED] update no requests.graph_title nGinx requests requests.graph_vlabel nGinx requests per second requests.draw LINE2 requests.graph_args --base 1000 requests.graph_category nginx requests.label req/sec requests.type DERIVE requests.min 0 requests.graph_order output requests.output.sum \ lb1.visualwebsiteoptimizer.com:nginx_request_lb1.visualwebsiteoptimizer.com_request.request \ lb3.visualwebsiteoptimizer.com:nginx_request_lb2.visualwebsiteoptimizer.com_request.request \ lb3.visualwebsiteoptimizer.com:nginx_request_lb3.visualwebsiteoptimizer.com_request.request The munin graph I want to aggregate is http://exchange.munin-monitoring.org/plugins/nginx_request/details Thanks Sparsh Gupta

    Read the article

  • Hex Dump using LINQ (in 7 lines of code)

    - by Fabrice Marguerie
    Eric White has posted an interesting LINQ query on his blog that shows how to create a Hex Dump in something like 7 lines of code.Of course, this is not production grade code, but it's another good example that demonstrates the expressiveness of LINQ.Here is the code:byte[] ba = File.ReadAllBytes("test.xml");int bytesPerLine = 16;string hexDump = ba.Select((c, i) => new { Char = c, Chunk = i / bytesPerLine })    .GroupBy(c => c.Chunk)    .Select(g => g.Select(c => String.Format("{0:X2} ", c.Char))        .Aggregate((s, i) => s + i))    .Select((s, i) => String.Format("{0:d6}: {1}", i * bytesPerLine, s))    .Aggregate("", (s, i) => s + i + Environment.NewLine);Console.WriteLine(hexDump); Here is a sample output:000000: FF FE 3C 00 3F 00 78 00 6D 00 6C 00 20 00 76 00000016: 65 00 72 00 73 00 69 00 6F 00 6E 00 3D 00 22 00000032: 31 00 2E 00 30 00 22 00 20 00 65 00 6E 00 63 00000048: 6F 00 64 00 69 00 6E 00 67 00 3D 00 22 00 75 00000064: 3E 00Eric White reports that he typically notices that declarative code is only 20% as long as imperative code. Cross-posted from http://linqinaction.net

    Read the article

  • Building Queries Systematically

    - by Jeremy Smyth
    The SQL language is a bit like a toolkit for data. It consists of lots of little fiddly bits of syntax that, taken together, allow you to build complex edifices and return powerful results. For the uninitiated, the many tools can be quite confusing, and it's sometimes difficult to decide how to go about the process of building non-trivial queries, that is, queries that are more than a simple SELECT a, b FROM c; A System for Building Queries When you're building queries, you could use a system like the following:  Decide which fields contain the values you want to use in our output, and how you wish to alias those fields Values you want to see in your output Values you want to use in calculations . For example, to calculate margin on a product, you could calculate price - cost and give it the alias margin. Values you want to filter with. For example, you might only want to see products that weigh more than 2Kg or that are blue. The weight or colour columns could contain that information. Values you want to order by. For example you might want the most expensive products first, and the least last. You could use the price column in descending order to achieve that. Assuming the fields you've picked in point 1 are in multiple tables, find the connections between those tables Look for relationships between tables and identify the columns that implement those relationships. For example, The Orders table could have a CustomerID field referencing the same column in the Customers table. Sometimes the problem doesn't use relationships but rests on a different field; sometimes the query is looking for a coincidence of fact rather than a foreign key constraint. For example you might have sales representatives who live in the same state as a customer; this information is normally not used in relationships, but if your query is for organizing events where sales representatives meet customers, it's useful in that query. In such a case you would record the names of columns at either end of such a connection. Sometimes relationships require a bridge, a junction table that wasn't identified in point 1 above but is needed to connect tables you need; these are used in "many-to-many relationships". In these cases you need to record the columns in each table that connect to similar columns in other tables. Construct a join or series of joins using the fields and tables identified in point 2 above. This becomes your FROM clause. Filter using some of the fields in point 1 above. This becomes your WHERE clause. Construct an ORDER BY clause using values from point 1 above that are relevant to the desired order of the output rows. Project the result using the remainder of the fields in point 1 above. This becomes your SELECT clause. A Worked Example   Let's say you want to query the world database to find a list of countries (with their capitals) and the change in GNP, using the difference between the GNP and GNPOld columns, and that you only want to see results for countries with a population greater than 100,000,000. Using the system described above, we could do the following:  The Country.Name and City.Name columns contain the name of the country and city respectively.  The change in GNP comes from the calculation GNP - GNPOld. Both those columns are in the Country table. This calculation is also used to order the output, in descending order To see only countries with a population greater than 100,000,000, you need the Population field of the Country table. There is also a Population field in the City table, so you'll need to specify the table name to disambiguate. You can also represent a number like 100 million as 100e6 instead of 100000000 to make it easier to read. Because the fields come from the Country and City tables, you'll need to join them. There are two relationships between these tables: Each city is hosted within a country, and the city's CountryCode column identifies that country. Also, each country has a capital city, whose ID is contained within the country's Capital column. This latter relationship is the one to use, so the relevant columns and the condition that uses them is represented by the following FROM clause:  FROM Country JOIN City ON Country.Capital = City.ID The statement should only return countries with a population greater than 100,000,000. Country.Population is the relevant column, so the WHERE clause becomes:  WHERE Country.Population > 100e6  To sort the result set in reverse order of difference in GNP, you could use either the calculation, or the position in the output (it's the third column): ORDER BY GNP - GNPOld or ORDER BY 3 Finally, project the columns you wish to see by constructing the SELECT clause: SELECT Country.Name AS Country, City.Name AS Capital,        GNP - GNPOld AS `Difference in GNP`  The whole statement ends up looking like this:  mysql> SELECT Country.Name AS Country, City.Name AS Capital, -> GNP - GNPOld AS `Difference in GNP` -> FROM Country JOIN City ON Country.Capital = City.ID -> WHERE Country.Population > 100e6 -> ORDER BY 3 DESC; +--------------------+------------+-------------------+ | Country            | Capital    | Difference in GNP | +--------------------+------------+-------------------+ | United States | Washington | 399800.00 | | China | Peking | 64549.00 | | India | New Delhi | 16542.00 | | Nigeria | Abuja | 7084.00 | | Pakistan | Islamabad | 2740.00 | | Bangladesh | Dhaka | 886.00 | | Brazil | Brasília | -27369.00 | | Indonesia | Jakarta | -130020.00 | | Russian Federation | Moscow | -166381.00 | | Japan | Tokyo | -405596.00 | +--------------------+------------+-------------------+ 10 rows in set (0.00 sec) Queries with Aggregates and GROUP BY While this system might work well for many queries, it doesn't cater for situations where you have complex summaries and aggregation. For aggregation, you'd start with choosing which columns to view in the output, but this time you'd construct them as aggregate expressions. For example, you could look at the average population, or the count of distinct regions.You could also perform more complex aggregations, such as the average of GNP per head of population calculated as AVG(GNP/Population). Having chosen the values to appear in the output, you must choose how to aggregate those values. A useful way to think about this is that every aggregate query is of the form X, Y per Z. The SELECT clause contains the expressions for X and Y, as already described, and Z becomes your GROUP BY clause. Ordinarily you would also include Z in the query so you see how you are grouping, so the output becomes Z, X, Y per Z.  As an example, consider the following, which shows a count of  countries and the average population per continent:  mysql> SELECT Continent, COUNT(Name), AVG(Population)     -> FROM Country     -> GROUP BY Continent; +---------------+-------------+-----------------+ | Continent     | COUNT(Name) | AVG(Population) | +---------------+-------------+-----------------+ | Asia          |          51 |   72647562.7451 | | Europe        |          46 |   15871186.9565 | | North America |          37 |   13053864.8649 | | Africa        |          58 |   13525431.0345 | | Oceania       |          28 |    1085755.3571 | | Antarctica    |           5 |          0.0000 | | South America |          14 |   24698571.4286 | +---------------+-------------+-----------------+ 7 rows in set (0.00 sec) In this case, X is the number of countries, Y is the average population, and Z is the continent. Of course, you could have more fields in the SELECT clause, and  more fields in the GROUP BY clause as you require. You would also normally alias columns to make the output more suited to your requirements. More Complex Queries  Queries can get considerably more interesting than this. You could also add joins and other expressions to your aggregate query, as in the earlier part of this post. You could have more complex conditions in the WHERE clause. Similarly, you could use queries such as these in subqueries of yet more complex super-queries. Each technique becomes another tool in your toolbox, until before you know it you're writing queries across 15 tables that take two pages to write out. But that's for another day...

    Read the article

  • How to capture a Header or Trailer Count Value in a Flat File and Assign to a Variable

    - by Compudicted
    Recently I had several questions concerning how to process files that carry a header and trailer in them. Typically those files are a product of data extract from non Microsoft products e.g. Oracle database encompassing various tables data where every row starts with an identifier. For example such a file data record could look like: HDR,INTF_01,OUT,TEST,3/9/2011 11:23 B1,121156789,DATA TEST DATA,2011-03-09 10:00:00,Y,TEST 18 10:00:44,2011-07-18 10:00:44,Y B2,TEST DATA,2011-03-18 10:00:44,Y B3,LEG 1 TEST DATA,TRAN TEST,N B4,LEG 2 TEST DATA,TRAN TEST,Y FTR,4,TEST END,3/9/2011 11:27 A developer is normally able to break the records using a Conditional Split Transformation component by employing an expression similar to Output1 -- SUBSTRING(Output1,1,2) == "B1" and so on, but often a verification is required after this step to check if the number of data records read corresponds to the number specified in the trailer record of the file. This portion sometimes stumbles some people so I decided to share what I came up with. As an aside, I want to mention that the approach I use is slightly more portable than some others I saw because I use a separate DFT that can be copied and pasted into a new SSIS package designer surface or re-used within the same package again and it can survive several trailer/footer records (!). See how a ready DFT can look: The first step is to create a Flat File Connection Manager and make sure you get the row split into columns like this: After you are done with the Flat File connection, move onto adding an aggregate which is in use to simply assign a value to a variable (here the aggregate is used to handle the possibility of multiple footers/headers): The next step is adding a Script Transformation as destination that requires very little coding. First, some variable setup: and finally the code: As you can see it is important to place your code into the appropriate routine in the script, otherwise the end result may not be as expected. As the last step you would use the regular Script Component to compare the variable value obtained from the DFT above to a package variable value obtained say via a Row Count component to determine if the file being processed has the right number of rows.

    Read the article

  • juicy couture handbag 2012 has a complete abrogating

    - by user109129
    Washington admissionory approximate animosity Law "will use the activityable angleableware, or added activityable IT bargains of online writing afirely accurate as activityable acts, regardbelow of the activityable IT is acclimated in the achieve of the artecompleteity or business, this law applies. This new law, including IT companies, accomplisheditects, companies,juicy couture handbag online or the admissionory apostle acclimatized can sue for activityable IT and its online writing in Washington admissionory adjustment companies in the breadth of approximate animosity. In November 2011, the topest magistrates of the admissionory governments, the 39 apostle acclimatized ambrosial a aggregate letter to Juicy Couture accoutrements the Federal adjustment bureau, beforehand federal agencies to crop a boxlikeer bases to corruption those who use activityable IT companies for approximate animosity in the final appraisement, it is out of bread-and-adulate interests. The use of activityable IT has alively afflicted the directness of animosity in industries outadmissionory the IT industry, and ultimately affect the able bread-and-adulate acreage. In this backbreaking bread-and-adulate times, American companies are all adverse presconstant to completeize accoutrement opportaccessionies for the administrateing of the admissionory governments to beappear added acerbic in acclimatizement to enconstant fair animosity a allotment of admissionpdispatchs. The abrogating appulse of the use of activityable IT and activity is not apprenticed to the associated admissionorys, it is not apprenticed to bookish Juicy Couture acreage owners. The bread-and-adulate aggregate is asable a affliction for the Chinese abbreviation. juicy couture handbag 2012 has a complete abrogating bread-and-adulate appulse of the Chinese accomplisheditects to ascribe in fair animosity and acadding for bookish acreage activity consulting abutting anterior activity, afresh appear a assay abode, IT piracy affliction to an ceremony draft of honest accomplisheditects $ 837 amateur, ie draft of $ 4.18 billion in the angleableware specific to the five-year activity aeon. The aadvancedmentioned time, the proactivityration of the use of activityable and pirated angleableware admission asable hindered the aapprenticedth of IT and angleableware industry to allay the achievement of a blossomy bookish acreage arabuttalsments admission a abrogating appulse on the admissionion ambiance.

    Read the article

  • Architecture for dashboard showing aggregated stats [on hold]

    - by soulnafein
    I'd like to know what are common architectural pattern for the following problem. Web application A has information on sales, users, responsiveness score, etc. Some of this information are computationally intensive and or have a complex business logic (e.g. responsiveness score). I'm building a separate application (B) for internal admin tasks that modifies data in web application A and report on data from web application A. For writing I'm planning to use a restful api. E.g. create a new entity, update entity, etc. In application B I'd like to show some graphs and other aggregate data for the previous 12 months. I'm planning to store the aggregate data for each month in redis. Some data should update more often, e.g every 10 minutes. I can think of 3 ways of doing this. A scheduled task in app B that connects to an api of app A that provides some aggregated data. Then app B stores it in Redis and use that to visualise pages. Cons: it makes complex calculation within a web request, requires lot's of work e.g. api server and client, storing, etc., pros: business logic still lives in app A. A scheduled task in app A that aggregates data in an non-web process and stores it directly in Redis to be accessed by app B. A scheduled task in app A that aggregates data in a non-web process and uses an api in app B to save it. I'd like to know if there is a well known architectural solution to this type of problems and if not what are other pros/cons for the solution I've suggested?

    Read the article

  • Content Query Web Part and the Yes/No Field

    - by Bil Simser
    The Content Query Web Part (CQWP) is a pretty powerful beast. It allows you to do multiple site queries and aggregate the results. This is great for rolling up content and doing some summary type reporting. Here’s a trick to remember about Yes/No fields and using the CQWP. If you’re building a news style site and want to aggregate say all the announcements that people tag a certain way, up onto the home page this might be a solution. First we need to allow a way for users of all our sites to mark an announcement for inclusion on our Intranet Home Page. We’ll do this by just modifying the Announcement Content type and adding a Yes/No field to it. There are alternate ways of doing this like building a new Announcement type or stapling a feature to all sites to add our column but this is pretty low impact and only affects our current site collection so let’s go with it for now, okay? You can berate me in the comments about the proper way I should have done this part. Go to the Site Settings for the Site Collection and click on Site Content Types under the Galleries. This takes you to the gallery for this site and all subsites. Scroll down until you see the List Content Types and click on Announcements. Now we’re modifying the Announcement content type which affects all those announcement lists that are created by default if you’re building sites using the Team Site template (or creating a new Announcements list on any site for that matter). Click on Add from new site column under the Column list. This will allow us to create a new Yes/No field that users will see in Announcement items. This field will allow the user to flag the announcement for inclusion on the home page. Feel free to modify the fields as you see fit for your environment, this is just an example. Now that we’ve added the column to our Announcements Content type we can go into any site that has an announcement list, modify that announcement and flag it to be included on our home page. See the new Featured column? That was the result of modifying our Announcements Content Type on this site collection. Now we can move onto the dirty part, displaying it in a CQWP on the home page. And here is where the fun begins (and the head scratching should end). On our home page we want to drop a Content Query Web Part and aggregate any Announcement that’s been flagged as Featured by the users (we could also add the filter to handle Expires so we don’t show old content so go ahead and do that if you want). First add a CQWP to the page then modify the settings for the web part. In the first section, Query, we want the List Type to be set to Announcements and the Content type to be Announcement so set your options like this: Click Apply and you’ll see the results display all Announcements from any site in the site collection. I have five team sites created each with a unique announcement added to them. Now comes the filtering. We don’t want to include every announcement, only ones users flag using that Featured column we added. At first blush you might scroll down to the Additional Filters part of the Query options and set the Featured column to be equal to Yes: This seems correct doesn’t it? After all, the column is a Yes/No column and looking at an announcement in the site, it displays the field as Yes or No: However after applying the filter you get this result: (I have the announcements from Team Site 1 and Team Site 4 flagged as Featured) Huh? It’s BACKWARDS! Let’s confirm that. Go back in and change the Additional Filters section from Yes to No and hit Apply and you get this: Wait a minute? Shouldn’t I see Team Site 1 and 4 if the logic is backwards? Why am I seeing the same thing as before. What gives… For whatever reason, unknown to me, a Yes/No field (even though it displays as such) really uses 1 and 0 behind the scenes. Yeah, someone was stuck on using integer values for booleans when they wrote SharePoint (probably after a long night of white boarding ways to mess with developers heads) and came up with this. The solution is pretty simple but not very discoverable. Set the filter to include your flagged items like so: And it will filter the items marked as Featured correctly giving you this result: This kind of solution could also be extended and enhanced. Here are a few suggestions and ideas: Modify the ItemStyle.xsl file to add a new style for this aggregation which would include the first few paragraphs of the body (or perhaps add another field to the Content type called Excerpt or Summary and display that instead) Add an Image column to the Announcement Content type to include a Picture field and display it in the summary Add a Category choice field (Employee News, Current Events, Headlines, etc.) and add multiple CQWPs to the home page filtering each one on a different category I know some may find this topic old and dusty but I didn’t see a lot out there specifically on filtering the Yes/No fields and the whole 1/0 trick was a little wonky, so I figured a few pictures would help walk through overcoming yet another SharePoint weirdness. With a little work and some creative juices you can easily us the power of aggregation and the CQWP to build a news site from content on your team sites.

    Read the article

  • NHibernate mapping with optimistic-lock="version" and dynamic-update="true" is generating invalid up

    - by SteveBering
    I have an entity "Group" with an assigned ID which is added to an aggregate in order to persist it. This causes an issue because NHibernate can't tell if it is new or existing. To remedy this issue, I changed the mapping to make the Group entity use optimistic locking on a sql timestamp version column. This caused a new issue. Group has a bag of sub objects. So when NHibernate flushes a new group to the database, it first creates the Group record in the Groups table, then inserts each of the sub objects, then does an update of the Group records to update the timestamp value. However, the sql that is generated to complete the update is invalid when the mapping is both dynamic-update="true" and optimistic-lock="version". Here is the mapping: <class xmlns="urn:nhibernate-mapping-2.2" dynamic-update="true" mutable="true" optimistic-lock="version" name="Group" table="Groups"> <id name="GroupNumber" type="System.String, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <column name="GroupNumber" length="5" /> <generator class="assigned" /> </id> <version generated="always" name="Timestamp" type="BinaryBlob" unsaved-value="null"> <column name="TS" not-null="false" sql-type="timestamp" /> </version> <property name="UID" update="false" type="System.Guid, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <column name="GroupUID" unique="true" /> </property> <property name="Description" type="AnsiString"> <column name="GroupDescription" length="25" not-null="true" /> </property> <bag access="field.camelcase-underscore" cascade="all" inverse="true" lazy="true" name="Assignments" mutable="true" order-by="GroupAssignAssignment"> <key foreign-key="fk_Group_Assignments"> <column name="GroupNumber" /> </key> <one-to-many class="Assignment" /> </bag> <many-to-one class="Aggregate" name="Aggregate"> <column name="GroupParentID" not-null="true" /> </many-to-one> </class> </hibernate-mapping> When the mapping includes both the dynamic update and the optimistic lock, the sql generated is: UPDATE groups SET WHERE GroupNumber = 11111 AND TS=0x00000007877 This is obviously invalid as there are no SET statements. If I remove the dynamic update part, everything gets updated during this update statement instead. This makes the statement valid, but rather unnecessary. Has anyone seen this issue before? Am I missing something? Thanks, Steve

    Read the article

  • Creating Ada record with one field

    - by ada hater
    I've define a type: type Foo is record bar : Positive; end record; I want to create a function that returns an instance of the record: function get_foo return Foo is return (1); end get_foo; But Ada won't let me, saying "positional aggregate cannot have one argument". Stupidly trying, I've added another dumb field to the record, and then return (1, DOESNT_MATTER); works! How do I tell Ada that's not a positional aggregate, but an attempt to create a record?

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >