Search Results

Search found 2129 results on 86 pages for 'bound'.

Page 11/86 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • NSPopupButton Bindings with Value Transformer

    - by rdelmar
    I don't know if what I see with a popup button populated by bindings with a value transformer is the way it's supposed to be or not -- the unusual thing I'm seeing (at least with respect to what I've seen with value transformers and table views) is that the "value" parameter in the transformedValue: method is the whole array bound to the array controller, not the individual strings in the array. When I've done this with table views, the transformer is called once for each displayed row in the table, and the "value" parameter is whatever object is bound to that row and column, not the whole array that serves as the content array for the array controller. I have a very simple app to test this. In the app delegate there is this: +(void)initialize { RDTransformer *transformer = [[RDTransformer alloc] init]; [NSValueTransformer setValueTransformer:transformer forName:@"testTransformer"]; } - (void)applicationDidFinishLaunching:(NSNotification *)aNotification { self.theData = @[@{@"name":@"William", @"age":@"24"},@{@"name":@"Thomas", @"age":@"23"},@{@"name":@"Alexander", @"age":@"64"},@{@"name":@"James", @"age":@"47"}]; } In the RDTransformer class is this: + (Class)transformedValueClass { return [NSString class]; } +(BOOL)allowsReverseTransformation { return NO; } -(id)transformedValue:(id)value { NSLog(@"%@",value); return value; } In IB, I added an NSPopupButton to the window and an array controller to the objects list. The content array of the controller is bound to App Delegate.theData, and the Content Values of the popup button is bound to Array Controller.arrangedObjects.name with the value transformer, testTransformer. When I run the program, the log from the transformedValue: method is this: 2012-09-19 20:31:39.975 PopupBindingWithTransformer[793:303] ( ) 2012-09-19 20:31:40.019 PopupBindingWithTransformer[793:303] ( William, Thomas, Alexander, James ) This doesn't seem to be other people's experience from what I can see on SO. Is there something I'm doing wrong with either the bindings or the value transformer?

    Read the article

  • Accessing global variables of custom controls in ASP.NET

    - by CL4NCY
    Hi, I have built lots of custom asp.net controls which work really well separately but I want to somehow allow global access to all their variables from anywhere on the page. I have a central control called the ContentManager which I can use to store these variables. The problem I have is that all the controls are bound at different times so I only want the variables available after they're bound. For example I have many custom repeaters on the page which when bound I want to add a reference in the content manager so all their variables are then available to use. <Custom:ContentManager ID="cm" runat="server"/> <Custom:Repeater ID="r1" runat="server"/> <Custom:Repeater ID="r2" runat="server"/> <Custom:Repeater ID="r3" runat="server"/> Then I want a tag which can access all variables from any of these controls. <%= cm.controls["r1"].Items[0]["name"] %> The problem with this is that the variable isn't available until the repeater is bound so I might need to use events to push out the value to tags on the page like so: <Custom:Var ID="v1" control="r1" value="Items[0]["name"]" runat="server"/> Is this possible or can you recommend a better approach?

    Read the article

  • BizTalk: Internals: the Partner Direct Ports and the Orchestration Chains

    - by Leonid Ganeline
    Partner Direct Port is one of the BizTalk hidden gems. It opens simple ways to the several messaging patterns. This article based on the Kevin Lam’s blog article. The article is pretty detailed but it still leaves several unclear pieces. So I have created a sample and will show how it works from different perspectives. Requirements We should create an orchestration chain where the messages should be routed from the first stage to the second stage. The messages should not be modified. All messages has the same message type. Common artifacts Source code can be downloaded here. It is interesting but all orchestrations use only one port type. It is possible because all ports are one-way ports and use only one operation. I have added a B orchestration. It helps to test the sample, showing all test messages in channel. The Receive shape Filter is empty. A Receive Port (R_Shema1Direct) is a plain Direct Port. As you can see, a subscription expression of this direct port has only one part, the MessageType for our test schema: A Filer is empty but, as you know, a link from the Receive shape to the Port creates this MessageType expression. I use only one Physical Receive File port to send a message to all processes. Each orchestration outputs a Trace.WriteLine(“<Orchestration Name>”). Forward Binding This sample has three orchestrations: A_1, A_21 and A_22. A_1 is a sender, A_21 and A_22 are receivers. Here is a subscription of the A_1 orchestration: It has two parts A MessageType. The same was for the B orchestration. A ReceivePortID. There was no such parameter for the B orchestration. It was created because I have bound the orchestration port with Physical Receive File port. This binding means the PortID parameter is added to the subscription. How to set up the ports? All ports involved in the message exchange should be the same port type. It forces us to use the same operation and the same message type for the bound ports. This step as absolutely contra-intuitive. We have to choose a Partner Orchestration parameter for the sending orchestration, A_1. The first strange thing is it is not a partner orchestration we have to choose but an orchestration port. But the most strange thing is we have to choose exactly this orchestration and exactly this port.It is not a port from the partner, receive orchestrations, A_21 or A_22, but it is A_1 orchestration and S_SentFromA_1 port. Now we have to choose a Partner Orchestration parameter for the received orchestrations, A_21 and A_22. Nothing strange is here except a parameter name. We choose the port of the sender, A_1 orchestration and S_SentFromA_1 port. As you can see the Partner Orchestration parameter for the sender and receiver orchestrations is the same. Testing I dropped a test file in a file folder. There we go: A dropped file was received by B and by A_1 A_1 sent a message forward. A message was received by B, A_21, A_22 Let’s look at a context of a message sent by A_1 on the second step: A MessageType part. It is quite expected. A PartnerService, a ParnerPort, an Operation. All those parameters were set up in the Partner Orchestration parameter on both bound ports.     Now let’s see a subscription of the A_21 and A_22 orchestrations. Now it makes sense. That’s why we have chosen such a strange value for the Partner Orchestration parameter of the sending orchestration. Inverse Binding This sample has three orchestrations: A_11, A_12 and A_2. A_11 and A_12 are senders, A_2 is receiver. How to set up the ports? All ports involved in the message exchange should be the same port type. It forces us to use the same operation and the same message type for the bound ports. This step as absolutely contra-intuitive. We have to choose a Partner Orchestration parameter for a receiving orchestration, A_2. The first strange thing is it is not a partner orchestration we have to choose but an orchestration port. But the most strange thing is we have to choose exactly this orchestration and exactly this port.It is not a port from the partner, sent orchestrations, A_11 or A_12, but it is A_2 orchestration and R_SentToA_2 port. Now we have to choose a Partner Orchestration parameter for the sending orchestrations, A_11 and A_12. Nothing strange is here except a parameter name. We choose the port of the sender, A_2 orchestration and R_SentToA_2 port. Testing I dropped a test file in a file folder. There we go: A dropped file was received by B, A_11 and by A_12 A_11 and A_12 sent two messages forward. The messages were received by B, A_2 Let’s see what was a context of a message sent by A_1 on the second step: A MessageType part. It is quite expected. A PartnerService, a ParnerPort, an Operation. All those parameters were set up in the Partner Orchestration parameter on both bound ports. Here is a subscription of the A_2 orchestration. Models I had a hard time trying to explain the Partner Direct Ports in simple terms. I have finished with this model: Forward Binding Receivers know a Sender. Sender doesn’t know Receivers. Publishers know a Subscriber. Subscriber doesn’t know Publishers. 1 –> 1 1 –> M Inverse Binding Senders know a Receiver. Receiver doesn’t know Senders. Subscribers know a Publisher. Publisher doesn’t know Subscribers. 1 –> 1 M –> 1 Notes   Orchestration chain It’s worth to note, the Partner Direct Port Binding creates a chain opened from one side and closed from another. The Forward Binding: A new Receiver can be added at run-time. The Sender can not be changed without design-time changes in Receivers. The Inverse Binding: A new Sender can be added at run-time. The Receiver can not be changed without design-time changes in Senders.

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • windows 2003 server : can't find a primary authoritative dns server for the name srv.domain1.local [

    - by phill
    I originally tried to rejoin a computer to a network which led to a "cannot find domain" error. The username/password box don't even come up. some tests i ran: I can ping the server, however I can't ping the domain name domain1.local. nslookup can't find the domain either. It looks to the isp's dns instead of my own to resolve the local machines. So i go to the dns and run netdiag.exe and gives me this error. DNS test . . . . . . . . . . . . . : Failed [WARNING] Cannot find a primary authoritative DNS server for the name 'stmartinsrv.stmartin.local.'. [RCODE_SERVER_FAILURE] The name 'srv.domain1.local.' may not be registered in DNS. [WARNING] The DNS entries for this DC are not registered correctly on DNS se rver '68.94.156.1'. Please wait for 30 minutes for DNS server replication. [WARNING] The DNS entries for this DC are not registered correctly on DNS se rver '68.94.157.1'. Please wait for 30 minutes for DNS server replication. [FATAL] No DNS servers have the DNS records for this DC registered. Redir and Browser test . . . . . . : Passed List of NetBt transports currently bound to the Redir NetBT_Tcpip_{04BB0F6B-06AE-4D60-80C8-2A7A24C1D87B} The redir is bound to 1 NetBt transport. List of NetBt transports currently bound to the browser NetBT_Tcpip_{04BB0F6B-06AE-4D60-80C8-2A7A24C1D87B} The browser is bound to 1 NetBt transport. from previous postings, I've tried adding the domain suffix to the nic ip properties to both the client machine and the dc server which didn't help. any ideas? thanks in advance

    Read the article

  • Monit network availability checking

    - by viraptor
    Hi, I'd like to start a service with monit but only when I have the correct ip bound to the host. Can this be done somehow with the normal config? For example I want to start a process xxx with pidfile xxx.pid, but only if host currently has 10.0.0.1 bound to some interface.

    Read the article

  • OS X - forwarding external port to local loopback address

    - by Rory Fitzpatrick
    I have an HTTP service bound to port 8000 that I want to access from another computing on the network, but I can't seem to connect using the external IP address of the machine (e.g. 192.168.0.105). I've checked the OS X firewall isn't running, so I'm assuming the issue is the service is only bound to the IP address 127.0.0.1, and not the external IP address. What would be the easiest way to temporarily forward external connections on port 8000 to 127.0.0.1:8000?

    Read the article

  • I've got a ComboBox that's giving me grief in WPF using the MVVM pattern

    - by Mike
    Here's my code: <ComboBox Grid.Column="1" Grid.Row="9" ItemsSource="{Binding Path=PriorityEntries}" SelectedItem="{Binding Path=Priority,Mode=TwoWay}"/> The comboBox is bound properly with PriorityEntries, and when i change the value of the comboBox the "set" of the bound property(Priority) is called setting it to what it needs to be. However, when i close the UserControl that this combobox resides, it calls the set property again with a value of null and then sets what the selectedItem was to null. Why is the comboBox being bound again when I close the usercontrol. I tried setting the mode to OneTime, but that won't reflect any changes...

    Read the article

  • Inline javascript performance.

    - by Geromey
    I know it is better coding practice to avoid inline javascript like: <img id="the_image" onclick="do_this(true);return false;"/> I am thinking about switching this kind of stuff for bound jquery click events like: $("#the_image").bind("click",function(){ do_this(true); return false; }); Will I lose any performance if I bind a ton of click events? I am not worried about the time it takes to initially bind the events, but the response times between clicking and it happening. I bet if there is a difference, it is negligible, but I will have a ton of functions bound. I'm wondering if browsers treat the onclick attribute the same way as a bound event. Thanks

    Read the article

  • c arrays: setting size dynamically?

    - by user336994
    Hello, I am new to C programming. I am trying to set the size of the array using a variable but I am getting an error: Storage size of 'array' isn't constant !! 01 int bound = bound*4; 02 static GLubyte vertsArray[bound]; I have noticed that when I replace bounds (within the brackets on line 02) with the number say '20', the program would run with no problems. But I am trying to set the size of the array dynamically ... Any ideas why I am getting this error ? thanks much,

    Read the article

  • Does the jQuery .unbind() method only work on jQuery created events?

    - by Roberto Sebestyen
    I am trying to unbind all event handlers for all elements that are inside a particular container. Like a DIV. But those events have been bound/registered not using jQuery. Some are bound the manual way with onclick="...." or using regular native JavaScript. But when i do something like this $('#TheDivContainer').find('div,td,tr,tbody,table').unbind(); It does not appear to work. Which leads me to believe that the .unbind() only works if the events have been originally bound by jQuery. Is that true? Is there another way of unbinding all events from a group of elements ? Thanks!

    Read the article

  • Understanding "this" keyword

    - by Raffaele
    In this commit there is a change I cannot explain deferred.done.apply( deferred, arguments ).fail.apply( deferred, arguments ); becomes deferred.done( arguments ).fail( arguments ); AFAIK, when you invoke a function as a member of some object like obj.func(), inside the function this is bound to obj, so there would be no use invoking a function through apply() just to bound this to obj. Instead, according to the comments, this was required because of some preceding $.Callbacks.add implementation. My doubt is not about jQuery, but about the Javascript language itself: when you invoke a function like obj.func(), how can it be that inside func() the this keyword is not bound to obj?

    Read the article

  • Activate WPF command based on TextBox value

    - by zendar
    This is MVVM application. I have form and related view model class. There is TextBox, Button and ListBox on form. Button is bound to DelegateCommand that has CanExecute function. Idea is that user enters some data in text box, presses button and data is appended to list box. I would like to enable command (and button) when user enters correct data in TextBox. Things look like this now: CanExecute() contains code that checks if data in property bound to text box is correct. Text box is bound to property in view model UpdateSourceTrigger is set to PropertyChanged and property in view model is updated after each key user presses. Problem is that CanExecute() does not fire when user enters data in text box. It doesn't fire even when text box lose focus. How could I make this work?

    Read the article

  • Emacs: print key binding for a command or list all key bindings

    - by Yktula
    In Emacs (GNU 23.2, *nix), how can I: list the key sequences bound to a particular command? For example, how can we list all the key sequences that execute save-buffers-kill-emacs, with the output of key sequences bound to it? Assuming we can do this, listing the key sequences bound to goto-line should print the output: M-g g on a default install. list all key-bindings? Does C-h b do this? Would it print my own bindings? I am aware that executing the command directly can print a key sequence it can be activated with, but it doesn't always do so, and a few things happen, including: (1) the output doesn't remain for long, (2) the command is executed. I want a command that lists for me (preferably all) the bindings attached to a given command, without executing the command, or something like that.

    Read the article

  • DataSet binding problem

    - by Shaine
    I've got in-memory dataset with some table defined and I populate this table in a following way: for(...) ds.Fields.AddFieldsRow(++j, 0, heading, "Char", "", "", "Input", 0, "","",""); On the GUI I've got DataGridView bound to that table inside TabControl (bound through BindingSource). Very strange thing is happening: if I open tab pane with this grid and populate table with some data then I see changes in grid. On the other side if I'm at other tab, populate table, and then switch to tab with grid I've got following exception: "DataMember property 'Fields' cannot be found on the DataSource". In similar way I've got 2 tab panes with grid in each that are bound to the same datatable using different datasources and I open one of them, populate, see the changes, then switch to second tab and get crash. What am I missing?

    Read the article

  • Will an IO blocked process show 100% CPU utilization in 'top' output?

    - by Alex Stoddard
    I have an analysis that can be parallelized over a different number of processes. It is expected that things will be both IO and CPU intensive (very high throughput short-read DNA alignment if anyone is curious.) The system running this is a 48 core linux server. The question is how to determine the optimum number of processes such that total throughput is maximized. At some point the processes will presumably become IO bound such that adding more processes will be of no benefit and possibly detrimental. Can I tell from standard system monitoring tools when that point has been reached? Would the output of top (or maybe a different tool) enable me to distinguish between a IO bound and CPU bound process? I am suspicious that a process blocked on IO might still show 100% CPU utilization.

    Read the article

  • Best way to search a point across several polygons

    - by user1474341
    I have a requirement whereby I need to match a given point (lat,lon) against several polygons to decide if there is a match. The easiest way would be to iterative over each polygon and apply the point-in-polygon check algorithm, but that is prohibitively expensive. The next optimization that I did was to define a bounding rectangle for each polygon (upper bound, lower bound) and iteratively check the point against the bounding box (fewer comparisons as against checking all the points in the polygon). Is there any other optimization possible? Would a spatial index on the bound rectangle points or a geohash help ? Any guidance would be greatly appreciated. Thanks!

    Read the article

  • WPF Databinding- Not your fathers databinding Part 1-3

    - by Shervin Shakibi
    As Promised here is my advanced databinding presentation from South Florida Code camp and also Orlando Code camp. you can find the demo files here. http://ssccinc.com/wpfdatabinding.zip Here is a quick description of the first demos, there will be 2 other Blogposting in the next few days getting into more advance databinding topics.   Example00 Here we have 3 textboxes, The first textbox mySourceElement Second textbox has a binding to mySourceElement and Path= Text <Binding ElementName="mySourceElement" Path="Text"  />   Third textbox is also bound to the Text property but we use inline Binding <TextBlock Text="{Binding ElementName=mySourceElement,Path=Text }" Grid.Row="2" /> Here is the entire XAML     <Grid  >           <Grid.RowDefinitions >             <RowDefinition Height="*" />             <RowDefinition Height="*" />             <RowDefinition Height="*" />         </Grid.RowDefinitions>         <TextBox Name="mySourceElement" Grid.Row="0"                  TextChanged="mySourceElement_TextChanged">Hello Orlnado</TextBox>         <TextBlock Grid.Row="1">                        <TextBlock.Text>                 <Binding ElementName="mySourceElement" Path="Text"  />             </TextBlock.Text>         </TextBlock>         <TextBlock Text="{Binding ElementName=mySourceElement,Path=Text }" Grid.Row="2" />     </Grid> </Window> Example01 we have a slider control, then we have two textboxes bound to the value property of the slider. one has its text property bound, the second has its fontsize property bound. <Grid>      <Grid.RowDefinitions >          <RowDefinition Height="40px" />          <RowDefinition Height="40px" />          <RowDefinition Height="*" />      </Grid.RowDefinitions>      <Slider Name="fontSizeSlider" Minimum="5" Maximum="100"              Value="10" Grid.Row="0" />      <TextBox Name="SizeTextBox"                    Text="{Binding ElementName=fontSizeSlider, Path=Value}" Grid.Row="1"/>      <TextBlock Text="Example 01"                 FontSize="{Binding ElementName=SizeTextBox,  Path=Text}"  Grid.Row="2"/> </Grid> Example02 very much like the previous example but it also has a font dropdown <Grid>      <Grid.RowDefinitions >          <RowDefinition Height="20px" />          <RowDefinition Height="40px" />          <RowDefinition Height="40px" />          <RowDefinition Height="*" />      </Grid.RowDefinitions>      <ComboBox Name="FontNameList" SelectedIndex="0" Grid.Row="0">          <ComboBoxItem Content="Arial" />          <ComboBoxItem Content="Calibri" />          <ComboBoxItem Content="Times New Roman" />          <ComboBoxItem Content="Verdana" />      </ComboBox>      <Slider Name="fontSizeSlider" Minimum="5" Maximum="100" Value="10" Grid.Row="1" />      <TextBox Name="SizeTextBox"      Text="{Binding ElementName=fontSizeSlider, Path=Value}" Grid.Row="2"/>      <TextBlock Text="Example 01" FontFamily="{Binding ElementName=FontNameList, Path=Text}"                 FontSize="{Binding ElementName=SizeTextBox,  Path=Text}"  Grid.Row="3"/> </Grid> Example03 In this example we bind to an object Employee.cs Notice we added a directive to our xaml which is clr-namespace and the namespace for our employee Class xmlns:local="clr-namespace:Example03" In Our windows Resources we create an instance of our object <Window.Resources>     <local:Employee x:Key="MyEmployee" EmployeeNumber="145"                     FirstName="John"                     LastName="Doe"                     Department="Product Development"                     Title="QA Manager" /> </Window.Resources> then we bind our container to the that instance of the data <Grid DataContext="{StaticResource MyEmployee}">         <Grid.RowDefinitions>             <RowDefinition Height="*" />             <RowDefinition Height="*" />             <RowDefinition Height="*" />             <RowDefinition Height="*" />             <RowDefinition Height="*" />         </Grid.RowDefinitions>         <Grid.ColumnDefinitions >             <ColumnDefinition Width="130px" />             <ColumnDefinition Width="178*" />         </Grid.ColumnDefinitions>     </Grid> and Finally we have textboxes that will bind to that textbox         <Label Grid.Row="0" Grid.Column="0">Employee Number</Label>         <TextBox Grid.Row="0" Grid.Column="1" Text="{Binding Path=EmployeeNumber}"></TextBox>         <Label Grid.Row="1" Grid.Column="0">First Name</Label>         <TextBox Grid.Row="1" Grid.Column="1" Text="{Binding Path=FirstName}"></TextBox>         <Label Grid.Row="2" Grid.Column="0">Last Name</Label>         <TextBox Grid.Row="2" Grid.Column="1" Text="{Binding Path=LastName}" />         <Label Grid.Row="3" Grid.Column="0">Title</Label>         <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding Path=Title}"></TextBox>         <Label Grid.Row="4" Grid.Column="0">Department</Label>         <TextBox Grid.Row="4" Grid.Column="1" Text="{Binding Path=Department}" />

    Read the article

  • Commands in Task-It - Part 2

    Download Source Code NOTE: To run the source code provided you will need the recently released versions of Silverlight 4 and VisualStudio 2010, as well as WCF RIA Services. After downloading the source code be sure to set Commands2.Web as the StartUp Project and Default.aspx as the StartPage. In my last post, Commands in Task-It - Part 1, we looked at a very simple solution that demonstrated how a single command instance (SaveCommand) could be bound to two UI controls, a Button and a RadTreeViewItem. In this example we'll get more complex, binding a single command instance (MoveToCommand) will be bound to multiple RadMenuItems in a RadContextMenu that is tied to a RadGridView. This time we'll also set a separate CommandParameter on each RadMenuItem, so when the command is invoked, we will be able to use that parameter to determine what to do next. The user interface This screen ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Should one bind data with Eval on aspx or override ItemDataBound in code-behind?

    - by George Chang
    For data bound controls (Repeater, ListView, GridView, etc.), what's the preferred way of binding data? I've seen it where people use Eval() directly on the aspx/ascx inside the data bound control to pull the data field, but to me, it just seems so...inelegant. It seems particularly inelegant when the data needs to be manipulated so you wind up with shim methods like <%# FormatMyData(DataBinder.Eval(Container.DataItem, "DataField")) %> inside your control. Personally, I prefer to put in Literal controls (or other appropriate controls) and attach to the OnItemDataBound event for the control and populate all the data to their appropriate fields in the code-behind. Are there any advantages of doing one over the other? I prefer the latter, because to me it makes sense to compartmentalize the data binding logic and the presentation layer. But maybe that's just me.

    Read the article

  • WPF Databinding- Part 2 of 3

    - by Shervin Shakibi
    This is a follow up to my previous post WPF Databinding- Not your fathers databinding Part 1-3 you can download the source code here  http://ssccinc.com/wpfdatabinding.zip Example 04   In this example we demonstrate  the use of default properties and also binding to an instant of an object which is part of a collection bound to its container. this is actually not as complicated as it sounds. First of all, lets take a look at our Employee class notice we have overridden the ToString method, which will return employees First name , last name and employee number in parentheses, public override string ToString()        {            return String.Format("{0} {1} ({2})", FirstName, LastName, EmployeeNumber);        }   in our XAML we have set the itemsource of the list box to just  “Binding” and the Grid that contains it, has its DataContext set to a collection of our Employee objects. DataContext="{StaticResource myEmployeeList}"> ….. <ListBox Name="employeeListBox"  ItemsSource="{Binding }" Grid.Row="0" /> the ToString in the method for each instance will get executed and the following is a result of it. if we did not have a ToString the list box would look  like this: now lets take a look at the grid that will display the details when someone clicks on an Item, the Grid has the following DataContext DataContext="{Binding ElementName=employeeListBox,            Path=SelectedItem}"> Which means its bound to a specific instance of the Employee object. and within the gird we have textboxes that are bound to different Properties of our class. <TextBox Grid.Row="0" Grid.Column="1" Text="{Binding Path=FirstName}" /> <TextBox Grid.Row="1" Grid.Column="1" Text="{Binding Path=LastName}" /> <TextBox Grid.Row="2" Grid.Column="1" Text="{Binding Path=Title}" /> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding Path=Department}" />   Example 05   This project demonstrates use of the ObservableCollection and INotifyPropertyChanged interface. Lets take a look at Employee.cs first, notice it implements the INotifyPropertyChanged interface now scroll down and notice for each setter there is a call to the OnPropertyChanged method, which basically will will fire up the event notifying to the value of that specific property has been changed. Next EmployeeList.cs notice it is an ObservableCollection . Go ahead and set the start up project to example 05 and then run. Click on Add a new employee and the new employee should appear in the list box.   Example 06   This is a great example of IValueConverter its actuall a two for one deal, like most of my presentation demos I found this by “Binging” ( formerly known as g---ing) unfortunately now I can’t find the original author to give him  the credit he/she deserves. Before we look at the code lets run the app and look at the finished product, put in 0 in Celsius  and you should see Fahrenheit textbox displaying to 32 degrees, I know this is calculating correctly from my elementary school science class , also note the color changed to blue, now put in 100 in Celsius which should give us 212 Fahrenheit but now the color is red indicating it is hot, and finally put in 75 Fahrenheit and you should see 23.88 for Celsius and the color now should be black. Basically IValueConverter allows us different types to be bound, I’m sure you have had problems in the past trying to bind to Date values . First look at FahrenheitToCelciusConverter.cs first notice it implements IValueConverter. IValueConverter has two methods Convert and ConvertBack. In each method we have the code for converting Fahrenheit to Celsius and vice Versa. In our XAML, after we set a reference in our Windows.Resources section. and for txtCelsius we set the path to TxtFahrenheit and the converter to an instance our FahrenheitToCelciusConverter converter. no need to repeat this for TxtFahrenheit since we have a convert and ConvertBack. Text="{Binding  UpdateSourceTrigger=PropertyChanged,            Path=Text,ElementName=txtFahrenheit,            Converter={StaticResource myTemperatureConverter}}" As mentioned earlier this is a twofer Demo, in the second demo, we basically are converting a double datatype to a brush. Lets take a look at TemperatureToColorConverter, notice we in our Covert Method, if the value is less than our cold temperature threshold we return a blue brush and if it is higher than our hot temperature threshold we return a redbrush. since we don’t have to convert a brush to double value in our example the convert back is not being implemented. Take time and go through these three examples and I hope you have a better understanding   of databinding, ObservableCollection  and IValueConverter . Next blog posting we will talk about ValidationRule, DataTemplates and DataTemplate triggers.

    Read the article

  • Yippy &ndash; the F# MVVM Pattern

    - by MarkPearl
    I did a recent post on implementing WPF with F#. Today I would like to expand on this posting to give a simple implementation of the MVVM pattern in F#. A good read about this topic can also be found on Dean Chalk’s blog although my example of the pattern is possibly simpler. With the MVVM pattern one typically has 3 segments, the view, viewmodel and model. With the beauty of WPF binding one is able to link the state based viewmodel to the view. In my implementation I have kept the same principles. I have a view (MainView.xaml), and and a ViewModel (MainViewModel.fs).     What I would really like to illustrate in this posting is the binding between the View and the ViewModel so I am going to jump to that… In Program.fs I have the following code… module Program open System open System.Windows open System.Windows.Controls open System.Windows.Markup open myViewModels // Create the View and bind it to the View Model let myView = Application.LoadComponent(new System.Uri("/FSharpWPF;component/MainView.xaml", System.UriKind.Relative)) :?> Window myView.DataContext <- new MainViewModel() :> obj // Application Entry point [<STAThread>] [<EntryPoint>] let main(_) = (new Application()).Run(myView) You can see that I have simply created the view (myView) and then created an instance of my viewmodel (MainViewModel) and then bound it to the data context with the code… myView.DataContext <- new MainViewModel() :> obj If I have a look at my viewmodel (MainViewModel) it looks like this… module myViewModels open System open System.Windows open System.Windows.Input open System.ComponentModel open ViewModelBase type MainViewModel() = // private variables let mutable _title = "Bound Data to Textbox" // public properties member x.Title with get() = _title and set(v) = _title <- v // public commands member x.MyCommand = new FuncCommand ( (fun d -> true), (fun e -> x.ShowMessage) ) // public methods member public x.ShowMessage = let msg = MessageBox.Show(x.Title) () I have exposed a few things, namely a property called Title that is mutable, a command and a method called ShowMessage that simply pops up a message box when called. If I then look at my view which I have created in xaml (MainView.xaml) it looks as follows… <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="F# WPF MVVM" Height="350" Width="525"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="Auto"/> <RowDefinition Height="Auto"/> <RowDefinition Height="*"/> </Grid.RowDefinitions> <TextBox Text="{Binding Path=Title, Mode=TwoWay}" Grid.Row="0"/> <Button Command="{Binding MyCommand}" Grid.Row="1"> <TextBlock Text="Click Me"/> </Button> </Grid> </Window>   It is also very simple. It has a button that’s command is bound to the MyCommand and a textbox that has its text bound to the Title property. One other module that I have created is my ViewModelBase. Right now it is used to store my commanding function but I would look to expand on it at a later stage to implement other commonly used functions… module ViewModelBase open System open System.Windows open System.Windows.Input open System.ComponentModel type FuncCommand (canExec:(obj -> bool),doExec:(obj -> unit)) = let cecEvent = new DelegateEvent<EventHandler>() interface ICommand with [<CLIEvent>] member x.CanExecuteChanged = cecEvent.Publish member x.CanExecute arg = canExec(arg) member x.Execute arg = doExec(arg) Put this all together and you have a basic project that implements the MVVM pattern in F#. For me this is quite exciting as it turned out to be a lot simpler to do than I originally thought possible. Also because I have my view in XAML I can use the XAML designer to design forms in F# which I believe is a much cleaner way to go rather than implementing it all in code. Finally if I look at my viewmodel code, it is actually quite clean and compact…

    Read the article

  • Checking whether a specific key was pressed in enchantJS

    - by MxyL
    I am using enchantJS and would like to use the letters and numbers as well as numpad on a keyboard to do different things (eg: hotkeys). From this page http://users.csc.calpoly.edu/~foaad/enchant/guide/playerInput.html By default, enchant.js provides input listeners for six buttons: UP, DOWN, LEFT, RIGHT, A, and B. By default, the directions are bound to the arrow keys. Any of the six buttons may also be bound to any key with an ASCII value. We’ll address that later. So enchant provides the ability to bind keys to different input such as up, down, left, right...but how can I simply check whether the D or X key was pressed, and if so, perform certain actions based on that event?

    Read the article

  • creating a list of consecutive integers in c#

    - by Alex Bransky
    If there's already a way to get a List<int> of consecutive integers without a loop in C#, I don't know what it is, so I created a method for it.         public static List<int> GetIntegerListFromRange(int start, int end) {             if (end < start) {                 throw new ArgumentException("Faulty parameter(s) passed: lower bound cannot be less than upper bound.");                }             List<int> returnList = new List<int>(end - start + 1);             for(int i = start; i <= end; i++) {                 returnList.Add(i);             }             return returnList;         }

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >