Search Results

Search found 253 results on 11 pages for 'droid'.

Page 11/11 | < Previous Page | 7 8 9 10 11 

  • Android WebView not loading a JavaScript file, but Android Browser loads it fine.

    - by Justin
    I'm writing an application which connects to a back office site. The backoffice site contains a whole slew of JavaScript functions, at least 100 times the average site. Unfortunately it does not load them, and causes much of the functionality to not work properly. So I am running a test. I put a page out on my server which loads the FireBugLite javascript text. Its a lot of javascript and perfect to test and see if the Android WebView will load it. The WebView loads nothing, but the browser loads the Firebug Icon. What on earth would make the difference, why can it run in the browser and not in my WebView? Any suggestions. More background information, in order to get the stinking backoffice application available on a Droid (or any other platform except windows) I needed to trick the bakcoffice application to believe what's accessing the website is Internet Explorer. I do this by modifying the WebView User Agent. Also for this application I've slimmed my landing page, so I could give you the source to offer me aid. package ksc.myKMB; import android.app.Activity; import android.app.AlertDialog; import android.app.Dialog; import android.app.ProgressDialog; import android.content.DialogInterface; import android.graphics.Bitmap; import android.os.Bundle; import android.view.Menu; import android.view.MenuInflater; import android.view.MenuItem; import android.view.Window; import android.webkit.WebChromeClient; import android.webkit.WebView; import android.webkit.WebSettings; import android.webkit.WebViewClient; import android.widget.Toast; public class myKMB extends Activity { /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); /** Performs base set up */ /** Create a Activity of this Activity, IE myProcess */ myProcess = this; /*** Create global objects and web browsing objects */ HideDialogOnce = true; webview = new WebView(this) { }; webChromeClient = new WebChromeClient() { public void onProgressChanged(WebView view, int progress) { // Activities and WebViews measure progress with different scales. // The progress meter will automatically disappear when we reach 100% myProcess.setProgress((progress * 100)); //CreateMessage("Progress is : " + progress); } }; webViewClient = new WebViewClient() { public void onReceivedError(WebView view, int errorCode, String description, String failingUrl) { Toast.makeText(myProcess, MessageBegText + description + MessageEndText, Toast.LENGTH_SHORT).show(); } public void onPageFinished (WebView view, String url) { /** Hide dialog */ try { // loadingDialog.dismiss(); } finally { } //myProcess.setProgress(1000); /** Fon't show the dialog while I'm performing fixes */ //HideDialogOnce = true; view.loadUrl("javascript:document.getElementById('JTRANS011').style.visibility='visible';"); } public void onPageStarted(WebView view, String url, Bitmap favicon) { if (HideDialogOnce == false) { //loadingDialog = ProgressDialog.show(myProcess, "", // "One moment, the page is laoding...", true); } else { //HideDialogOnce = true; } } }; getWindow().requestFeature(Window.FEATURE_PROGRESS); webview.setWebChromeClient(webChromeClient); webview.setWebViewClient(webViewClient); setContentView(webview); /** Load the Keynote Browser Settings */ LoadSettings(); webview.loadUrl(LandingPage); } /** Get Menu */ @Override public boolean onCreateOptionsMenu(Menu menu) { MenuInflater inflater = getMenuInflater(); inflater.inflate(R.menu.menu, menu); return true; } /** an item gets pushed */ @Override public boolean onOptionsItemSelected(MenuItem item) { switch (item.getItemId()) { // We have only one menu option case R.id.quit: System.exit(0); break; case R.id.back: webview.goBack(); case R.id.refresh: webview.reload(); case R.id.info: //IncludeJavascript(""); } return true; } /** Begin Globals */ public WebView webview; public WebChromeClient webChromeClient; public WebViewClient webViewClient; public ProgressDialog loadingDialog; public Boolean HideDialogOnce; public Activity myProcess; public String OverideUserAgent_IE = "Mozilla/5.0 (Windows; MSIE 6.0; Android 1.6; en-US) AppleWebKit/525.10+ (KHTML, like Gecko) Version/3.0.4 Safari/523.12.2 myKMB/1.0"; public String LandingPage = "http://kscserver.com/main-leap-slim.html"; public String MessageBegText = "Problem making a connection, Details: "; public String MessageEndText = " For Support Call: (xxx) xxx - xxxx."; public void LoadSettings() { webview.getSettings().setUserAgentString(OverideUserAgent_IE); webview.getSettings().setJavaScriptEnabled(true); webview.getSettings().setBuiltInZoomControls(true); webview.getSettings().setSupportZoom(true); } /** Creates a message alert dialog */ public void CreateMessage(String message) { AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setMessage(message) .setCancelable(true) .setNegativeButton("Close", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { dialog.cancel(); } }); AlertDialog alert = builder.create(); alert.show(); } } My Application is running in the background, and as you can see no Firebug in the lower right hand corner. However the browser (the emulator on top) has the same page but shows the firebug. What am I doing wrong? I'm assuming its either not enough memory allocated to the application, process power allocation, or a physical memory thing. I can't tell, all I know is the results are strange. I get the same thing form my android device, the application shows no firebug but the browser shows the firebug.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Setting up a pc bluetooth server for android

    - by Del
    Alright, I've been reading a lot of topics the past two or three days and nothing seems to have asked this. I am writing a PC side server for my andriod device, this is for exchanging some information and general debugging. Eventually I will be connecting to a SPP device to control a microcontroller. I have managed, using the following (Android to pc) to connect to rfcomm channel 11 and exchange data between my android device and my pc. Method m = device.getClass().getMethod("createRfcommSocket", new Class[] { int.class }); tmp = (BluetoothSocket) m.invoke(device, Integer.valueOf(11)); I have attempted the createRfcommSocketToServiceRecord(UUID) method, with absolutely no luck. For the PC side, I have been using the C Bluez stack for linux. I have the following code which registers the service and opens a server socket: int main(int argc, char **argv) { struct sockaddr_rc loc_addr = { 0 }, rem_addr = { 0 }; char buf[1024] = { 0 }; char str[1024] = { 0 }; int s, client, bytes_read; sdp_session_t *session; socklen_t opt = sizeof(rem_addr); session = register_service(); s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM); loc_addr.rc_family = AF_BLUETOOTH; loc_addr.rc_bdaddr = *BDADDR_ANY; loc_addr.rc_channel = (uint8_t) 11; bind(s, (struct sockaddr *)&loc_addr, sizeof(loc_addr)); listen(s, 1); client = accept(s, (struct sockaddr *)&rem_addr, &opt); ba2str( &rem_addr.rc_bdaddr, buf ); fprintf(stderr, "accepted connection from %s\n", buf); memset(buf, 0, sizeof(buf)); bytes_read = read(client, buf, sizeof(buf)); if( bytes_read 0 ) { printf("received [%s]\n", buf); } sprintf(str,"to Android."); printf("sent [%s]\n",str); write(client, str, sizeof(str)); close(client); close(s); sdp_close( session ); return 0; } sdp_session_t *register_service() { uint32_t svc_uuid_int[] = { 0x00000000,0x00000000,0x00000000,0x00000000 }; uint8_t rfcomm_channel = 11; const char *service_name = "Remote Host"; const char *service_dsc = "What the remote should be connecting to."; const char *service_prov = "Your mother"; uuid_t root_uuid, l2cap_uuid, rfcomm_uuid, svc_uuid; sdp_list_t *l2cap_list = 0, *rfcomm_list = 0, *root_list = 0, *proto_list = 0, *access_proto_list = 0; sdp_data_t *channel = 0, *psm = 0; sdp_record_t *record = sdp_record_alloc(); // set the general service ID sdp_uuid128_create( &svc_uuid, &svc_uuid_int ); sdp_set_service_id( record, svc_uuid ); // make the service record publicly browsable sdp_uuid16_create(&root_uuid, PUBLIC_BROWSE_GROUP); root_list = sdp_list_append(0, &root_uuid); sdp_set_browse_groups( record, root_list ); // set l2cap information sdp_uuid16_create(&l2cap_uuid, L2CAP_UUID); l2cap_list = sdp_list_append( 0, &l2cap_uuid ); proto_list = sdp_list_append( 0, l2cap_list ); // set rfcomm information sdp_uuid16_create(&rfcomm_uuid, RFCOMM_UUID); channel = sdp_data_alloc(SDP_UINT8, &rfcomm_channel); rfcomm_list = sdp_list_append( 0, &rfcomm_uuid ); sdp_list_append( rfcomm_list, channel ); sdp_list_append( proto_list, rfcomm_list ); // attach protocol information to service record access_proto_list = sdp_list_append( 0, proto_list ); sdp_set_access_protos( record, access_proto_list ); // set the name, provider, and description sdp_set_info_attr(record, service_name, service_prov, service_dsc); int err = 0; sdp_session_t *session = 0; // connect to the local SDP server, register the service record, and // disconnect session = sdp_connect( BDADDR_ANY, BDADDR_LOCAL, SDP_RETRY_IF_BUSY ); err = sdp_record_register(session, record, 0); // cleanup //sdp_data_free( channel ); sdp_list_free( l2cap_list, 0 ); sdp_list_free( rfcomm_list, 0 ); sdp_list_free( root_list, 0 ); sdp_list_free( access_proto_list, 0 ); return session; } And another piece of code, in addition to 'sdptool browse local' which can verifty that the service record is running on the pc: int main(int argc, char **argv) { uuid_t svc_uuid; uint32_t svc_uuid_int[] = { 0x00000000,0x00000000,0x00000000,0x00000000 }; int err; bdaddr_t target; sdp_list_t *response_list = NULL, *search_list, *attrid_list; sdp_session_t *session = 0; str2ba( "01:23:45:67:89:AB", &target ); // connect to the SDP server running on the remote machine session = sdp_connect( BDADDR_ANY, BDADDR_LOCAL, SDP_RETRY_IF_BUSY ); // specify the UUID of the application we're searching for sdp_uuid128_create( &svc_uuid, &svc_uuid_int ); search_list = sdp_list_append( NULL, &svc_uuid ); // specify that we want a list of all the matching applications' attributes uint32_t range = 0x0000ffff; attrid_list = sdp_list_append( NULL, &range ); // get a list of service records that have UUID 0xabcd err = sdp_service_search_attr_req( session, search_list, \ SDP_ATTR_REQ_RANGE, attrid_list, &response_list); sdp_list_t *r = response_list; // go through each of the service records for (; r; r = r-next ) { sdp_record_t *rec = (sdp_record_t*) r-data; sdp_list_t *proto_list; // get a list of the protocol sequences if( sdp_get_access_protos( rec, &proto_list ) == 0 ) { sdp_list_t *p = proto_list; // go through each protocol sequence for( ; p ; p = p-next ) { sdp_list_t *pds = (sdp_list_t*)p-data; // go through each protocol list of the protocol sequence for( ; pds ; pds = pds-next ) { // check the protocol attributes sdp_data_t *d = (sdp_data_t*)pds-data; int proto = 0; for( ; d; d = d-next ) { switch( d-dtd ) { case SDP_UUID16: case SDP_UUID32: case SDP_UUID128: proto = sdp_uuid_to_proto( &d-val.uuid ); break; case SDP_UINT8: if( proto == RFCOMM_UUID ) { printf("rfcomm channel: %d\n",d-val.int8); } break; } } } sdp_list_free( (sdp_list_t*)p-data, 0 ); } sdp_list_free( proto_list, 0 ); } printf("found service record 0x%x\n", rec-handle); sdp_record_free( rec ); } sdp_close(session); } Output: $ ./search rfcomm channel: 11 found service record 0x10008 sdptool: Service Name: Remote Host Service Description: What the remote should be connecting to. Service Provider: Your mother Service RecHandle: 0x10008 Protocol Descriptor List: "L2CAP" (0x0100) "RFCOMM" (0x0003) Channel: 11 And for logcat I'm getting this: 07-22 15:57:06.087: ERROR/BTLD(215): ****************search UUID = 0000*********** 07-22 15:57:06.087: INFO//system/bin/btld(209): btapp_dm_GetRemoteServiceChannel() 07-22 15:57:06.087: INFO//system/bin/btld(209): ##### USerial_Ioctl: BT_Wake, 0x8003 #### 07-22 15:57:06.097: INFO/ActivityManager(88): Displayed activity com.example.socktest/.socktest: 79 ms (total 79 ms) 07-22 15:57:06.697: INFO//system/bin/btld(209): ##### USerial_Ioctl: BT_Sleep, 0x8004 #### 07-22 15:57:07.517: WARN/BTLD(215): ccb timer ticks: 2147483648 07-22 15:57:07.517: INFO//system/bin/btld(209): ##### USerial_Ioctl: BT_Wake, 0x8003 #### 07-22 15:57:07.547: WARN/BTLD(215): info:x10 07-22 15:57:07.547: INFO/BTL-IFS(215): send_ctrl_msg: [BTL_IFS CTRL] send BTLIF_DTUN_SIGNAL_EVT (CTRL) 10 pbytes (hdl 14) 07-22 15:57:07.547: DEBUG/DTUN_HCID_BZ4(253): dtun_dm_sig_link_up() 07-22 15:57:07.547: INFO/DTUN_HCID_BZ4(253): dtun_dm_sig_link_up: dummy_handle = 342 07-22 15:57:07.547: DEBUG/ADAPTER(253): adapter_get_device(00:02:72:AB:7C:EE) 07-22 15:57:07.547: ERROR/BluetoothEventLoop.cpp(88): pollData[0] is revented, check next one 07-22 15:57:07.547: ERROR/BluetoothEventLoop.cpp(88): event_filter: Received signal org.bluez.Device:PropertyChanged from /org/bluez/253/hci0/dev_00_02_72_AB_7C_EE 07-22 15:57:07.777: WARN/BTLD(215): process_service_search_attr_rsp 07-22 15:57:07.787: INFO/BTL-IFS(215): send_ctrl_msg: [BTL_IFS CTRL] send BTLIF_DTUN_SIGNAL_EVT (CTRL) 13 pbytes (hdl 14) 07-22 15:57:07.787: INFO/DTUN_HCID_BZ4(253): dtun_dm_sig_rmt_service_channel: success=0, service=00000000 07-22 15:57:07.787: ERROR/DTUN_HCID_BZ4(253): discovery unsuccessful! 07-22 15:57:08.497: INFO//system/bin/btld(209): ##### USerial_Ioctl: BT_Sleep, 0x8004 #### 07-22 15:57:09.507: INFO//system/bin/btld(209): ##### USerial_Ioctl: BT_Wake, 0x8003 #### 07-22 15:57:09.597: INFO/BTL-IFS(215): send_ctrl_msg: [BTL_IFS CTRL] send BTLIF_DTUN_SIGNAL_EVT (CTRL) 11 pbytes (hdl 14) 07-22 15:57:09.597: DEBUG/DTUN_HCID_BZ4(253): dtun_dm_sig_link_down() 07-22 15:57:09.597: INFO/DTUN_HCID_BZ4(253): dtun_dm_sig_link_down device = 0xf7a0 handle = 342 reason = 22 07-22 15:57:09.597: ERROR/BluetoothEventLoop.cpp(88): pollData[0] is revented, check next one 07-22 15:57:09.597: ERROR/BluetoothEventLoop.cpp(88): event_filter: Received signal org.bluez.Device:PropertyChanged from /org/bluez/253/hci0/dev_00_02_72_AB_7C_EE 07-22 15:57:09.597: DEBUG/BluetoothA2dpService(88): Received intent Intent { act=android.bluetooth.device.action.ACL_DISCONNECTED (has extras) } 07-22 15:57:10.107: INFO//system/bin/btld(209): ##### USerial_Ioctl: BT_Sleep, 0x8004 #### 07-22 15:57:12.107: DEBUG/BluetoothService(88): Cleaning up failed UUID channel lookup: 00:02:72:AB:7C:EE 00000000-0000-0000-0000-000000000000 07-22 15:57:12.107: ERROR/Socket Test(5234): connect() failed 07-22 15:57:12.107: DEBUG/ASOCKWRP(5234): asocket_abort [31,32,33] 07-22 15:57:12.107: INFO/BLZ20_WRAPPER(5234): blz20_wrp_shutdown: s 31, how 2 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): blz20_wrp_shutdown: fd (-1:31), bta -1, rc 0, wflags 0x0 07-22 15:57:12.107: INFO/BLZ20_WRAPPER(5234): __close_prot_rfcomm: fd 31 07-22 15:57:12.107: INFO/BLZ20_WRAPPER(5234): __close_prot_rfcomm: bind not completed on this socket 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): btlif_signal_event: fd (-1:31), bta -1, rc 0, wflags 0x0 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): btlif_signal_event: event BTLIF_BTS_EVT_ABORT matched 07-22 15:57:12.107: DEBUG/BTL_IFC_WRP(5234): wrp_close_s_only: wrp_close_s_only [31] (31:-1) [] 07-22 15:57:12.107: DEBUG/BTL_IFC_WRP(5234): wrp_close_s_only: data socket closed 07-22 15:57:12.107: DEBUG/BTL_IFC_WRP(5234): wsactive_del: delete wsock 31 from active list [ad3e1494] 07-22 15:57:12.107: DEBUG/BTL_IFC_WRP(5234): wrp_close_s_only: wsock fully closed, return to pool 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): btsk_free: success 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): blz20_wrp_write: wrote 1 bytes out of 1 on fd 33 07-22 15:57:12.107: DEBUG/ASOCKWRP(5234): asocket_destroy 07-22 15:57:12.107: DEBUG/ASOCKWRP(5234): asocket_abort [31,32,33] 07-22 15:57:12.107: INFO/BLZ20_WRAPPER(5234): blz20_wrp_shutdown: s 31, how 2 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): blz20_wrp_shutdown: btsk not found, normal close (31) 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): blz20_wrp_write: wrote 1 bytes out of 1 on fd 33 07-22 15:57:12.107: INFO/BLZ20_WRAPPER(5234): blz20_wrp_close: s 33 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): blz20_wrp_close: btsk not found, normal close (33) 07-22 15:57:12.107: INFO/BLZ20_WRAPPER(5234): blz20_wrp_close: s 32 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): blz20_wrp_close: btsk not found, normal close (32) 07-22 15:57:12.107: INFO/BLZ20_WRAPPER(5234): blz20_wrp_close: s 31 07-22 15:57:12.107: DEBUG/BLZ20_WRAPPER(5234): blz20_wrp_close: btsk not found, normal close (31) 07-22 15:57:12.157: DEBUG/Sensors(88): close_akm, fd=151 07-22 15:57:12.167: ERROR/CachedBluetoothDevice(477): onUuidChanged: Time since last connect14970690 07-22 15:57:12.237: DEBUG/Socket Test(5234): -On Stop- Sorry for bombarding you guys with what seems like a difficult question and a lot to read, but I've been working on this problem for a while and I've tried a lot of different things to get this working. Let me reiterate, I can get it to work, but not using service discovery protocol. I've tried a several different UUIDs and on two different computers, although I only have my HTC Incredible to test with. I've also heard some rumors that the BT stack wasn't working on the HTC Droid, but that isn't the case, at least, for PC interaction.

    Read the article

< Previous Page | 7 8 9 10 11