Search Results

Search found 4698 results on 188 pages for 'red lynx'.

Page 11/188 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • Taking our Friendships to the next level.

    - by RedAndTheCommunity
    Red Gate have been running the Friends of Red Gate program for years now, and over that time we've built some great relationships with some truly awesome members of the SQL and .NET communities. When I took over the running of the program from Annabel in 2011, I was overwhelmed by the enthusiasm and commitment of our Friends. There were just so many of them, however, that it was hard to make the most of the relationships we had with people, and I wanted to fix that. I decided to survey all our Friends, to find out what they wanted to get out of, and put into, being in the Friends of Red Gate (FoRG) program. From the results of that survey, I identified 30 FoRGs that were really willing and able to go that step further to help Red Gate improve their tools, improve their relationship with the community, and improve the Friends of Red Gate program. Those 30 Friends of Red Gate have been awarded 'FoRG+' status. That means they'll: Have a closer relationship with the product teams, by getting involved in projects Have even more access to the inside track about the tools they're interested in Get the opportunity to come visit us at the Red Gate office and really influence the development of the tools. Plus more, depending on how the individual FoRG+ wants to work with us. This doesn't mean I've forgotten our other Friends; I'm working on ways to improve their experience of the Friends of Red Gate program. I'll write about them in another post. If you're an existing Friend of Red Gate, and you're interested in finding out how to get involved in the FoRG+ program, then I'd love to chat to you. For anyone that's interested in joining the Friend of Red Gate program, take a look at the web page dedicated to the program, and get in touch at [email protected] to be put on the waiting list for our 2013 program.

    Read the article

  • Get used color names from image

    - by atmorell
    Hello, I would like to check what colors is present in a image. This will be stored in the database and used for a search form. (red=1, green=1, blue=0, yellow=1, black=1, white=1 etc.) img = Magick::Image.read('phosto-file.jpg').first img = img.quantize(10 h = img.color_histogram pp h {red=12815, green=18494, blue=15439, opacity=0=>13007, red=44662, green=47670, blue=51967, opacity=0=>18254, red=17608, green=43331, blue=48321, opacity=0=>11597, red=21105, green=25865, blue=39467, opacity=0=>10604, red=15125, green=36629, blue=22824, opacity=0=>10223, red=52102, green=42405, blue=10063, opacity=0=>12928, red=39043, green=28726, blue=40855, opacity=0=>7728, red=10410, green=8880, blue=7826, opacity=0=>13795, red=25484, green=25337, blue=24235, opacity=0=>7351, red=44485, green=12617, blue=11169, opacity=0=>14513} How do I convert the 10 values to color names? red, green, NOMATCH, yellow, black, white etc. Only need the rough color name - not LimeGreen but Green etc. Best regards. Asbjørn Morell

    Read the article

  • LIVE: Oracle FY13 Partner Kickoff - Red Stack. Red Team. Engineered to Win.

    - by Kristin Rose
    Oracle’s FY13 Partner Kickoff is still in full swing and what an exciting day it has already been! Oracle executives started their mornings off at 5 a.m. to address our partners from around the world. The day began with the EMEA region, closely followed by the North America region in front of a live audience, and then on to Latin America! But hang tight because Japan and APAC are up next!If you haven’t already done so, be sure you register to watch the rest of the show. Also, join the Twitter conversation via #OPN and @OraclePartners and keep sending in those questions. Here is what the rest of the day looks like: JAPAN - 6:00pm – 7:30pm PT APAC - 8:00 pm – 9:30pm PT We also had a chance to speak with Nick Kritikos, VP of Partner Enablement and host of the PKO after show, “Partner Pulse”, to get his thoughts on the day. See what Nick had to say below: To all of our Partners, thanks for tuning in! Until next year, Good Selling,The OPN Communications Team

    Read the article

  • Why should you choose Oracle WebLogic 12c instead of JBoss EAP 6?

    - by Ricardo Ferreira
    In this post, I will cover some technical differences between Oracle WebLogic 12c and JBoss EAP 6, which was released a couple days ago from Red Hat. This article claims to help you in the evaluation of key points that you should consider when choosing for an Java EE application server. In the following sections, I will present to you some important aspects that most customers ask us when they are seriously evaluating for an middleware infrastructure, specially if you are considering JBoss for some reason. I would suggest that you keep the following question in mind while you are reading the points: "Why should I choose JBoss instead of WebLogic?" 1) Multi Datacenter Deployment and Clustering - D/R ("Disaster & Recovery") architecture support is embedded on the WebLogic Server 12c product. JBoss EAP 6 on the other hand has no direct D/R support included, Red Hat relies on third-part tools with higher prices. When you consider a middleware solution to host your business critical application, you should worry with every architectural aspect that are related with the solution. Fail-over support is one little aspect of a truly reliable solution. If you do not worry about D/R, your solution will not be reliable. Having said that, with Red Hat and JBoss EAP 6, you have this extra cost that will increase considerably the total cost of ownership of the solution. As we commonly hear from analysts, open-source are not so cheaper when you start seeing the big picture. - WebLogic Server 12c supports advanced LAN clustering, detection of death servers and have a common alert framework. JBoss EAP 6 on the other hand has limited LAN clustering support with no server death detection. They do not generate any alerts when servers goes down (only if you buy JBoss ON which is a separated technology, but until now does not support JBoss EAP 6) and manual intervention are required when servers goes down. In most cases, admin people must rely on "kill -9", "tail -f someFile.log" and "ps ax | grep java" commands to manage failures and clustering anomalies. - WebLogic Server 12c supports the concept of Node Manager, which is a separated process that runs on the physical | virtual servers that allows extend the administration of the cluster to WebLogic managed servers that are often distributed across multiple machines and geographic locations. JBoss EAP 6 on the other hand has no equivalent technology. Whole server instances must be managed individually. - WebLogic Server 12c Node Manager supports Coherence to boost performance when managing servers. JBoss EAP 6 on the other hand has no similar technology. There is no way to coordinate JBoss and infiniband instances provided by JBoss using high throughput and low latency protocols like InfiniBand. The Node Manager feature also allows another very important feature that JBoss EAP lacks: secure the administration. When using WebLogic Node Manager, all the administration tasks are sent to the managed servers in a secure tunel protected by a certificate, which means that the transport layer that separates the WebLogic administration console from the managed servers are secured by SSL. - WebLogic Server 12c are now integrated with OTD ("Oracle Traffic Director") which is a web server technology derived from the former Sun iPlanet Web Server. This software complements the web server support offered by OHS ("Oracle HTTP Server"). Using OTD, WebLogic instances are load-balanced by a high powerful software that knows how to handle SDP ("Socket Direct Protocol") over InfiniBand, which boost performance when used with engineered systems technologies like Oracle Exalogic Elastic Cloud. JBoss EAP 6 on the other hand only offers support to Apache Web Server with custom modules created to deal with JBoss clusters, but only across standard TCP/IP networks.  2) Application and Runtime Diagnostics - WebLogic Server 12c have diagnostics capabilities embedded on the server called WLDF ("WebLogic Diagnostic Framework") so there is no need to rely on third-part tools. JBoss EAP 6 on the other hand has no diagnostics capabilities. Their only diagnostics tool is the log generated by the application server. Admin people are encouraged to analyse thousands of log lines to find out what is going on. - WebLogic Server 12c complement WLDF with JRockit MC ("Mission Control"), which provides to administrators and developers a complete insight about the JVM performance, behavior and possible bottlenecks. WebLogic Server 12c also have an classloader analysis tool embedded, and even a log analyzer tool that enables administrators and developers to view logs of multiple servers at the same time. JBoss EAP 6 on the other hand relies on third-part tools to do something similar. Again, only log searching are offered to find out whats going on. - WebLogic Server 12c offers end-to-end traceability and monitoring available through Oracle EM ("Enterprise Manager"), including monitoring of business transactions that flows through web servers, ESBs, application servers and database servers, all of this with high deep JVM analysis and diagnostics. JBoss EAP 6 on the other hand, even using JBoss ON ("Operations Network"), which is a separated technology, does not support those features. Red Hat relies on third-part tools to provide direct Oracle database traceability across JVMs. One of those tools are Oracle EM for non-Oracle middleware that manage JBoss, Tomcat, Websphere and IIS transparently. - WebLogic Server 12c with their JRockit support offers a tool called JRockit Flight Recorder, which can give developers a complete visibility of a certain period of application production monitoring with zero extra overhead. This automatic recording allows you to deep analyse threads latency, memory leaks, thread contention, resource utilization, stack overflow damages and GC ("Garbage Collection") cycles, to observe in real time stop-the-world phenomenons, generational, reference count and parallel collects and mutator threads analysis. JBoss EAP 6 don't even dream to support something similar, even because they don't have their own JVM. 3) Application Server Administration - WebLogic Server 12c offers a complete administration console complemented with scripting and macro-like recording capabilities. A single WebLogic console can managed up to hundreds of WebLogic servers belonging to the same domain. JBoss EAP 6 on the other hand has a limited console and provides a XML centric administration. JBoss, after ten years, started the development of a rudimentary centralized administration that still leave a lot of administration tasks aside, so admin people and developers must touch scripts and XML configuration files for most advanced and even simple administration tasks. This lead applications to error prone and risky deployments. Even using JBoss ON, JBoss EAP are not able to offer decent administration features for admin people which must be high skilled in JBoss internal architecture and its managing capabilities. - Oracle EM is available to manage multiple domains, databases, application servers, operating systems and virtualization, with a complete end-to-end visibility. JBoss ON does not provide management capabilities across the complete architecture, only basic monitoring. Even deployment must be done aside JBoss ON which does no integrate well with others softwares than JBoss. Until now, JBoss ON does not supports JBoss EAP 6, so even their minimal support for JBoss are not available for JBoss EAP 6 leaving customers uncovered and subject to high skilled JBoss admin people. - WebLogic Server 12c has the same administration model whatever is the topology selected by the customer. JBoss EAP 6 on the other hand differentiates between two operational models: standalone-mode and domain-mode, that are not consistent with each other. Depending on the mode used, the administration skill is different. - WebLogic Server 12c has no point-of-failures processes, and it does not need to define any specialized server. Domain model in WebLogic is available for years (at least ten years or more) and is production proven. JBoss EAP 6 on the other hand needs special processes to garantee JBoss integrity, the PC ("Process-Controller") and the HC ("Host-Controller"). Different from WebLogic, the domain model in JBoss is quite new (one year at tops) of maturity, and need to mature considerably until start doing things like WebLogic domain model does. - WebLogic Server 12c supports parallel deployment model which enables some artifacts being deployed at the same time. JBoss EAP 6 on the other hand does not have any similar feature. Every deployment are done atomically in the containers. This means that if you have a huge EAR (an EAR of 120 MB of size for instance) and deploy onto JBoss EAP 6, this EAR will take some minutes in order to starting accept thread requests. The same EAR deployed onto WebLogic Server 12c will reduce the deployment time at least in 2X compared to JBoss. 4) Support and Upgrades - WebLogic Server 12c has patch management available. JBoss EAP 6 on the other hand has no patch management available, each JBoss EAP instance should be patched manually. To achieve such feature, you need to buy a separated technology called JBoss ON ("Operations Network") that manage this type of stuff. But until now, JBoss ON does not support JBoss EAP 6 so, in practice, JBoss EAP 6 does not have this feature. - WebLogic Server 12c supports previuous WebLogic domains without any reconfiguration since its kernel is robust and mature since its creation in 1995. JBoss EAP 6 on the other hand has a proven lack of supportability between JBoss AS 4, 5, 6 and 7. Different kernels and messaging engines were implemented in JBoss stack in the last five years reveling their incapacity to create a well architected and proven middleware technology. - WebLogic Server 12c has patch prescription based on customer configuration. JBoss EAP 6 on the other hand has no such capability. People need to create ticket supports and have their installations revised by Red Hat support guys to gain some patch prescription from them. - Oracle WebLogic Server independent of the version has 8 years of support of new patches and has lifetime release of existing patches beyond that. JBoss EAP 6 on the other hand provides patches for a specific application server version up to 5 years after the release date. JBoss EAP 4 and previous versions had only 4 years. A good question that Red Hat will argue to answer is: "what happens when you find issues after year 5"?  5) RAC ("Real Application Clusters") Support - WebLogic Server 12c ships with a specific JDBC driver to leverage Oracle RAC clustering capabilities (Fast-Application-Notification, Transaction Affinity, Fast-Connection-Failover, etc). Oracle JDBC thin driver are also available. JBoss EAP 6 on the other hand ships only the standard Oracle JDBC thin driver. Load balancing with Oracle RAC are not supported. Manual intervention in case of planned or unplanned RAC downtime are necessary. In JBoss EAP 6, situation does not reestablish automatically after downtime. - WebLogic Server 12c has a feature called Active GridLink for Oracle RAC which provides up to 3X performance on OLTP applications. This seamless integration between WebLogic and Oracle database enable more value added to critical business applications leveraging their investments in Oracle database technology and Oracle middleware. JBoss EAP 6 on the other hand has no performance gains at all, even when admin people implement some kind of connection-pooling tuning. - WebLogic Server 12c also supports transaction and web session affinity to the Oracle RAC, which provides aditional gains of performance. This is particularly interesting if you are creating a reliable solution that are distributed not only in an LAN cluster, but into a different data center. JBoss EAP 6 on the other hand has no such support. 6) Standards and Technology Support - WebLogic Server 12c is fully Java EE 6 compatible and production ready since december of 2011. JBoss EAP 6 on the other hand became fully compatible with Java EE 6 only in the community version after three months, and production ready only in a few days considering that this article was written in June of 2012. Red Hat says that they are the masters of innovation and technology proliferation, but compared with Oracle and even other proprietary vendors like IBM, they historically speaking are lazy to deliver the most newest technologies and standards adherence. - Oracle is the steward of Java, driving innovation into the platform from commercial and open-source vendors. Red Hat on the other hand does not have its own JVM and relies on third-part JVMs to complete their application server offer. 95% of Red Hat customers are using Oracle HotSpot as JVM, which means that without Oracle involvement, their support are limited exclusively to the application server layer and we all know that most problems are happens in the JVM layer. - WebLogic Server 12c supports natively JDK 7, which empower developers to explore the maximum of the Java platform productivity when writing code. This feature differentiate WebLogic from others application servers (except GlassFish that are also managed by Oracle) because the usage of JDK 7 introduce such remarkable productivity features like the "try-with-resources" enhancement, catching multiple exceptions with one try block, Strings in the switch statements, JVM improvements in terms of JDBC, I/O, networking, security, concurrency and of course, the most important feature of Java 7: native support for multiple non-Java languages. More features regarding JDK 7 can be found here. JBoss EAP 6 on the other hand does not support JDK 7 officially, they comment in their community version that "Java SE 7 can be used with JBoss 7" which does not gives you any guarantees of enterprise support for JDK 7. - Oracle WebLogic Server 12c supports integration with Spring framework allowing Spring applications to use WebLogic special transaction manager, exposing bean interfaces to WebLogic MBeans to take advantage of all WebLogic monitoring and administration advantages. JBoss EAP 6 on the other hand has no special integration with Spring. In fact, Red Hat offers a suspicious package called "JBoss Web Platform" that in theory supports Spring, but in practice this package does not offers any special integration. It is just a facility for Red Hat customers to have support from both JBoss and Spring technology using the same customer support. 7) Lightweight Development - Oracle WebLogic Server 12c and Oracle GlassFish are completely integrated and can share applications without any modifications. Starting with the 12c version, WebLogic now understands natively GlassFish deployment descriptors and specific configurations in order to offer you a truly and reliable migration path from a community Java EE application server to a enterprise middleware product like WebLogic. JBoss EAP 6 on the other hand has no support to natively reuse an existing (or still in development) application from JBoss AS community server. Users of JBoss suffer of critical issues during deployment time that includes: changing the libraries and dependencies of the application, patching the DTD or XSD deployment descriptors, refactoring of the application layers due classloading issues and anomalies, rebuilding of persistence, business and web layers due issues with "usage of the certified version of an certain dependency" or "frameworks that Red Hat potentially does not recommend" etc. If you have the culture or enterprise IT directive of developing Java EE applications using community middleware to in a certain future, transition to enterprise (supported by a vendor) middleware, Oracle WebLogic plus Oracle GlassFish offers you a more sustainable solution. - WebLogic Server 12c has a very light ZIP distribution (less than 165 MB). JBoss EAP 6 ZIP size is around 130 MB, together with JBoss ON you have more 100 MB resulting in a higher download footprint. This is particularly interesting if you plan to use automated setup of application server instances (for example, to rapidly setup a development or staging environment) using Maven or Hudson. - WebLogic Server 12c has a complete integration with Maven allowing developers to setup WebLogic domains with few commands. Tasks like downloading WebLogic, installation, domain creation, data sources deployment are completely integrated. JBoss EAP 6 on the other hand has a limited offer integration with those tools.  - WebLogic Server 12c has a startup mode called WLX that turns-off EJB, JMS and JCA containers leaving enabled only the web container with Java EE 6 web profile. JBoss EAP 6 on the other hand has no such feature, you need to disable manually the containers that you do not want to use. - WebLogic Server 12c supports fastswap, which enables you to change classes without redeployment. This is particularly interesting if you are developing patches for the application that is already deployed and you do not want to redeploy the entire application. This is the same behavior that most application servers offers to JSP pages, but with WebLogic Server 12c, you have the same feature for Java classes in general. JBoss EAP 6 on the other hand has no such support. Even JBoss EAP 5 does not support this until now. 8) JMS and Messaging - WebLogic Server 12c has a proven and high scalable JMS implementation since its initial release in 1995. JBoss EAP 6 on the other hand has a still immature technology called HornetQ, which was introduced in JBoss EAP 5 replacing everything that was implemented in the previous versions. Red Hat loves to introduce new technologies across JBoss versions, playing around with customers and their investments. And when they are asked about why they have changed the implementation and caused such a mess, their answer is always: "the previous implementation was inadequate and not aligned with the community strategy so we are creating a new a improved one". This Red Hat practice leads to uncomfortable investments that in a near future (sometimes less than a year) will be affected in someway. - WebLogic Server 12c has troubleshooting and monitoring features included on the WebLogic console and WLDF. JBoss EAP 6 on the other hand has no direct monitoring on the console, activity is reflected only on the logs, no debug logs available in case of JMS issues. - WebLogic Server 12c has extremely good performance and scalability. JBoss EAP 6 on the other hand has a JMS storage mechanism relying on Oracle database or MySQL. This means that if an issue in production happens and Red Hat affirms that an performance issue is happening due to database problems, they will not support you on the performance issue. They will orient you to call Oracle instead. - WebLogic Server 12c supports messaging enterprise features like SAF ("Store and Forward"), Distributed Queues/Topics and Foreign JMS providers support that leverage JMS implementations without compromise developer code making things completely transparent. JBoss EAP 6 on the other hand do not even dream to support such features. 9) Caching and Grid - Coherence, which is the leading and most mature data grid technology from Oracle, is available since early 2000 and was integrated with WebLogic in 2009. Coherence and WebLogic clusters can be both managed from WebLogic administrative console. Even Node Manager supports Coherence. JBoss on the other hand discontinued JBoss Cache, which was their caching implementation just like they did with the messaging implementation (JBossMQ) which was a issue for long term customers. JBoss EAP 6 ships InfiniSpan version 1.0 which is immature and lack a proven record of successful cases and reliability. - WebLogic Server 12c has a feature called ActiveCache which uses Coherence to, without any code changes, replicate HTTP sessions from both WebLogic and other application servers like JBoss, Tomcat, Websphere, GlassFish and even Microsoft IIS. JBoss EAP 6 on the other hand does have such support and even when they do in the future, they probably will support only their own application server. - Coherence can be used to manage both L1 and L2 cache levels, providing support to Oracle TopLink and others JPA compliant implementations, even Hibernate. JBoss EAP 6 and Infinispan on the other hand supports only Hibernate. And most important of all: Infinispan does not have any successful case of L1 or L2 caching level support using Hibernate, which lead us to reflect about its viability. 10) Performance - WebLogic Server 12c is certified with Oracle Exalogic Elastic Cloud and can run unchanged applications at this engineered system. This approach can benefit customers from Exalogic optimization's of both kernel and JVM layers to boost performance in terms of 10X for web, OLTP, JMS and grid applications. JBoss EAP 6 on the other hand has no investment on engineered systems: customers do not have the choice to deploy on a Java ultra fast system if their project becomes relevant and performance issues are detected. - WebLogic Server 12c maintains a performance gain across each new release: starting on WebLogic 5.1, the overall performance gain has been close to 4X, which close to a 20% gain release by release. JBoss on the other hand does not provide SPECJAppServer or SPECJEnterprise performance benchmarks. Their so called "performance gains" remains hidden in their customer environments, which lead us to think if it is true or not since we will never get access to those environments. - WebLogic Server 12c has industry performance benchmarks with submissions across platforms and configurations leading SPECJ. Oracle WebLogic leads SPECJAppServer performance in multiple categories, fitting all customer topologies like: dual-node, single-node, multi-node and multi-node with RAC. JBoss... again, does not provide any SPECJAppServer performance benchmarks. - WebLogic Server 12c has a feature called work manager which allows your application to embrace new performance levels based on critical resource utilization of the CPUs usage. Work managers prioritizes work and allocates threads based on an execution model that takes into account administrator-defined parameters and actual run-time performance and throughput. JBoss EAP 6 on the other hand has no compared feature and probably they never will. Not supporting such feature like work managers, JBoss EAP 6 forces admin people and specially developers to uncover performance gains in a intrusive way, rewriting the code and doing performance refactorings. 11) Professional Services Support - WebLogic Server 12c and any other technology sold by Oracle give customers the possibility of hire OCS ("Oracle Consulting Services") to manage critical scenarios, deployment assistance of new applications, high skilled consultancy of architecture, best practices and people allocation together with customer teams. All OCS services are available without any restrictions, having the customer bought software from Oracle or just starting their implementation before any acquisition. JBoss EAP 6 or Red Hat to be more specifically, only offers professional services if you buy subscriptions from them. If you are developing a new critical application for your business and need the help of Red Hat for a serious issue or architecture decision, they will probably say: "OK... I can help you but after you buy subscriptions from me". Red Hat also does not allows their professional services consultants to manage environments that uses community based software. They will probably force you to first buy a subscription, download their "enterprise" version and them, optionally hire their consultants. - Oracle provides you our university to educate your team into our technologies, including of course specialized trainings of WebLogic application server. At any time and location, you can hire Oracle to train your team so you get trustful knowledge according to your specific needs. Certifications for the products are also available if your technical people desire to differentiate themselves as professionals. Red Hat on the other hand have a limited pool of resources to train your team in their technologies. Basically they are selling training and certification for RHEL ("Red Hat Enterprise Linux") but if you demand more specialized training in JBoss middleware, they will probably connect you to some "certified" partner localized training since they are apparently discontinuing their education center, at least here in Brazil. They were not able to reproduce their success with RHEL education to their middleware division since they need first sell the subscriptions to after gives you specialized training. And again, they only offer you specialized training based on their enterprise version (EAP in the case of JBoss) which means that the courses will be a quite outdated. There are reports of developers that took official training's from Red Hat at this year (2012) and in a certain JBoss advanced course, Red Hat supposedly covered JBossMQ as the messaging subsystem, and even the printed material provided was based on JBossMQ since the training was created for JBoss EAP 4.3. 12) Encouraging Transparency without Ulterior Motives - WebLogic Server 12c like any other software from Oracle can be downloaded any time from anywhere, you should only possess an OTN ("Oracle Technology Network") credential and you can download any enterprise software how many times you want. And is not some kind of "trial" version. It is the official binaries that will be running for ever in your data center. Oracle does not encourages the usage of "specific versions" of our software. The binaries you buy from Oracle are the same binaries anyone in the world could download and use for testing and personal education. JBoss EAP 6 on the other hand are not available for download unless you buy a subscription and get access to the Red Hat enterprise repositories. If you need to test, learn or just start creating your application using Red Hat's middleware software, you should download it from the community website. You are not allowed to download the enterprise version that, according to Red Hat are more secure, reliable and robust. But no one of us want to start the development of a software with an unsecured, unreliable and not scalable middleware right? So what you do? You are "invited" by Red Hat to buy subscriptions from them to get access to the "cool" version of the software. - WebLogic Server 12c prices are publicly available in the Oracle website. If you want to know right now how much WebLogic will cost to your organization, just click here and get access to our price list. In the case of WebLogic, check out the "US Oracle Technology Commercial Price List". Oracle also encourages you to get in touch with a sales representative to discuss discounts that would make possible the investment into our technology. But you are not required to do this, only if you are interested in buying our technology or maybe you want to discuss some discount scenarios. JBoss EAP 6 on the other hand does not have its cost publicly available in Red Hat's website or in any other media, at least is not so easy to get such information. The only link you will possibly find in their website is a "Contact a Sales Representative" link. This is not a very good relationship between an customer and an vendor. This is not an example of transparency, mainly when the software are sold as open. In this situations, customers expects to see the software prices publicly available, so they can have the chance to decide, based on the existing features of the software, if the cost is fair or not. Conclusion Oracle WebLogic is the most mature, secure, reliable and scalable Java EE application server of the market, and have a proven record of success around the globe to prove it's majority. Don't lose the chance to discover today how WebLogic could fit your needs and sustain your global IT middleware strategy, no matter if your strategy are completely based on the Cloud or not.

    Read the article

  • JBoss Application Server 6 disponible, le serveur d'application Java de Red Hat offre le support complet de Java EE 6

    JBoss Application Server 6 disponible Le serveur d'application Java de Red Hat offre le support complet de Java EE 6 La nouvelle version de JBoss, le serveur d'application Java est disponible. Il s'agit de l'un des premiers serveurs à offrir un support complet et prêt pour la production de Java Entreprise Edition 6 (JEE 6), la spécification du langage Java qui peine encore a se faire une place dans les entreprises. JBoss est un projet open-source gratuit, racheté et mené depuis 2006 par Red Hat, qui offre aussi un support payant dans le cadre du package JBoss Enterprise Middleware et de JBoss Enterprise Application Platform. Pour mémoire, GlassFish, ...

    Read the article

  • Guidelines to an Iterator Class

    - by isurulucky
    Hi, I have a Red Black tree implemented in c++. It supports the functionality of a STL map. Tree nodes contain keys and the values mapped. I want to write an iterator class for this, but I'm stuck with how to do it. Should I make it an inner class of the Tree class? Can anyone give me some guidelines on how to write it + some resources?? Thank You!!

    Read the article

  • How to Smooth the drawing Stroke?

    - by user1852420
    I am creating drawing.. i can undo, and put colors on it. but when i draw using my fingers the stroke is not that smooth and has edge lines,, here my codes. on which I can Paint on a view, Undo, change color, and the opacity. stroke.h #import <UIKit/UIKit.h> @interface stroke : UIView{ NSMutableArray *strokeArray; UIColor *strokeColor; int strokeSize; float strokeAlpha; int strokeAlpha2; IBOutlet UISlider *slides; float red; float green; float blue; CGPoint mid1; CGPoint mid2; CGPoint endingPoint,previousPoint1,previousPoint2; CGPoint currentTouch; } @property (nonatomic, retain) UIColor *strokeColor; @property (nonatomic) int strokeSize; @property (nonatomic, retain) NSMutableArray *strokeArray; - (IBAction)changeAlphaValue; -(void)loadSLider; -(void)blueColor; -(void)darkvioletColor; -(void)violetColor; -(void)pinkColor; -(void)darkbrownColor; -(void)redColor; -(void)magentaRedColor; -(void)lightBrownColor; -(void)lightOrangeColor; -(void)OrangeColor; -(void)YellowColor; -(void)greenColor; -(void)lightYellowColor; -(void)darkGreenColor; -(void)TurquioseColor; -(void)PaleTurquioseColor; -(void)skyBlueColor; -(void)whiteColor; -(void)DirtyWhiteColor; -(void)SilverColor; -(void)LightGrayColor; -(void)GrayColor; -(void)LightBlackColor; -(void)BlackColor; @end stroke.m #import "stroke.h" @implementation stroke @synthesize strokeColor; @synthesize strokeSize; @synthesize strokeArray; - (void) awakeFromNib{ self.strokeArray = [[NSMutableArray alloc] init]; self.strokeColor = [UIColor colorWithRed:0 green:0 blue:232 alpha:1]; self.strokeSize = 3; } - (void)drawRect:(CGRect)rect{ NSMutableArray *stroke; for (stroke in strokeArray) { CGContextRef contextRef = UIGraphicsGetCurrentContext(); CGContextSetLineWidth(contextRef, [[stroke objectAtIndex:1] intValue]); CGFloat *color = CGColorGetComponents([[stroke objectAtIndex:2] CGColor]); CGContextSetRGBStrokeColor(contextRef, color[0], color[1], color[2], color[3]); CGContextBeginPath(contextRef); CGPoint points[[stroke count]]; for (NSUInteger i = 3; i < [stroke count]; i++) { points[i-3] = [[stroke objectAtIndex:i] CGPointValue]; } CGContextAddLines(contextRef, points, [stroke count]-3); CGContextStrokePath(contextRef); } } -(void)loadSLider{ } - (IBAction)changeAlphaValue{ strokeAlpha2 =((int)slides.value); } -(void)blueColor{ red = 0/255.0; green = 0/255.0; blue = 255/255.0; } -(void)darkvioletColor{ red = 75/255.0; green = 0/255.0; blue = 130/255.0; } -(void)violetColor{ red = 128/255.0; green = 0/255.0; blue = 128/255.0; } -(void)pinkColor{ red = 255/255.0; green = 0/255.0; blue = 255/255.0; } -(void)darkbrownColor{ red = 0.200; green = 0.0; blue = 0.0; } -(void)redColor{ red = 255/255.0; green = 0/255.0; blue = 0/255.0; } -(void)magentaRedColor{ red = 0.350; green = 0.0; blue = 0.0; } -(void)lightBrownColor{ red = 0.480; green = 0.0; blue = 0.0; } -(void)lightOrangeColor{ red = 0.600; green = 0.200; blue = 0.0; } -(void)OrangeColor{ red = 1.0; green = 0.300; blue = 0.0; } -(void)YellowColor{ red = 0.950; green = 0.450; blue = 0.0; } -(void)greenColor{ red = 0.0; green = 1.0; blue = 0.0; } -(void)lightYellowColor{ red = 1.0; green = 1.0; blue = 0.0; } -(void)darkGreenColor{ red = 0.0; green = 0.500; blue = 0.0; } -(void)TurquioseColor{ red = 0.0; green = 0.700; blue = 0.200; } -(void)PaleTurquioseColor{ red = 0.0; green = 0.700; blue = 0.600; } -(void)skyBlueColor{ red = 0.0; green = 0.400; blue = 0.800; } -(void)whiteColor{ red = 1.0; green = 1.0; blue = 1.0; } -(void)DirtyWhiteColor{ red = 0.800; green = 0.800; blue = 0.800; } -(void)SilverColor{ red = 0.600; green = 0.600; blue = 0.600; } -(void)LightGrayColor{ red = 0.500; green = 0.500; blue = 0.500; } -(void)GrayColor{ red = 0.300; green = 0.300; blue = 0.300; } -(void)LightBlackColor{ red = 0.150; green = 0.150; blue = 0.150; } -(void)BlackColor{ red = 0.0; green = 0.0; blue = 0.0; } - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { UITouch *touch; NSEnumerator *counter = [touches objectEnumerator]; while ((touch = (UITouch *)[counter nextObject])) { switch (strokeAlpha2) { case 1: strokeAlpha = .1; break; case 2: strokeAlpha = .2; break; case 3: strokeAlpha = .3; break; case 4: strokeAlpha = .4; break; case 5: strokeAlpha = .5; break; case 6: strokeAlpha = .6; break; case 7: strokeAlpha = .7; break; case 8: strokeAlpha = .8; break; case 9: strokeAlpha = .9; break; case 10: strokeAlpha = 1; break; default: strokeAlpha = 1; break; } self.strokeColor = [UIColor colorWithRed:red green:green blue:blue alpha:strokeAlpha]; NSValue *touchPos = [NSValue valueWithCGPoint:[touch locationInView:self]]; UIColor *color = [UIColor colorWithCGColor:strokeColor.CGColor]; NSNumber *size = [NSNumber numberWithInt:strokeSize]; NSMutableArray *stroke = [NSMutableArray arrayWithObjects: touch, size, color, touchPos, nil]; [strokeArray addObject:stroke]; } } - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event { UITouch *touch; NSEnumerator *counter = [touches objectEnumerator]; while ((touch = (UITouch *)[counter nextObject])) { NSMutableArray *stroke; for (stroke in strokeArray) { if ([stroke objectAtIndex:0] == touch) { [stroke addObject:[NSValue valueWithCGPoint:[touch locationInView:self]]]; } [self setNeedsDisplay]; } } } @end

    Read the article

  • Intel I217LM ethernet controller not detected by Ubuntu 12.04LTS

    - by Alexandr Kurilin
    My last installation of Ubuntu 12.04 on a machine using an ASUS Q87M-E motherboard with an Intel I217LM Ethernet controller has failed to detect the ethernet card. The only thing displayed by ifconfig -a is the loopback. I double-checked in the BIOS, and the controller should be online. $ rfkill list all 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no $ lspci 00:00.0 Host bridge: Intel Corporation Haswell DRAM Controller (rev 06) 00:01.0 PCI bridge: Intel Corporation Haswell PCI Express x16 Controller (rev 06) 00:02.0 VGA compatible controller: Intel Corporation Haswell Integrated Graphics Controller (rev 06) 00:03.0 Audio device: Intel Corporation Haswell HD Audio Controller (rev 06) 00:14.0 USB controller: Intel Corporation Lynx Point USB xHCI Host Controller (rev 04) 00:16.0 Communication controller: Intel Corporation Lynx Point MEI Controller #1 (rev 04) 00:16.3 Serial controller: Intel Corporation Lynx Point KT Controller (rev 04) 00:19.0 Ethernet controller: Intel Corporation Device 153a (rev 04) 00:1a.0 USB controller: Intel Corporation Lynx Point USB Enhanced Host Controller #2 (rev 04) 00:1b.0 Audio device: Intel Corporation Lynx Point HD Audio Controller (rev 04) 00:1d.0 USB controller: Intel Corporation Lynx Point USB Enhanced Host Controller #1 (rev 04) 00:1f.0 ISA bridge: Intel Corporation Lynx Point LPC Controller (rev 04) 00:1f.2 SATA controller: Intel Corporation Lynx Point 6-Port SATA AHCI Controller (rev 04) 00:1f.3 SMBus: Intel Corporation Lynx Point SMBus Controller (rev 04) $ lsmod Module Size Used by vesafb 13844 1 snd_hda_codec_realtek 224173 1 arc4 12529 2 joydev 17693 0 usbhid 47238 0 hid 99636 1 usbhid rfcomm 47604 0 rt73usb 31735 0 crc_itu_t 12707 1 rt73usb rt2x00usb 20808 1 rt73usb rt2x00lib 55326 2 rt73usb,rt2x00usb mac80211 506862 2 rt2x00usb,rt2x00lib cfg80211 205774 2 rt2x00lib,mac80211 eeepc_wmi 13109 0 bnep 18281 2 asus_wmi 24456 1 eeepc_wmi sparse_keymap 13890 1 asus_wmi psmouse 97485 0 bluetooth 180153 10 rfcomm,bnep ppdev 17113 0 snd_hda_intel 33719 6 snd_hda_codec 127706 2 snd_hda_codec_realtek,snd_hda_intel snd_seq_midi 13324 0 snd_hwdep 17764 1 snd_hda_codec snd_rawmidi 30748 1 snd_seq_midi serio_raw 13211 0 snd_pcm 97275 2 snd_hda_intel,snd_hda_codec snd_seq_midi_event 14899 1 snd_seq_midi snd_seq 61929 2 snd_seq_midi,snd_seq_midi_event snd_timer 29990 2 snd_pcm,snd_seq snd_seq_device 14540 3 snd_seq_midi,snd_rawmidi,snd_seq parport_pc 32866 1 snd 79041 21 snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_rawmidi,snd_pcm,snd_seq,snd_timer,snd_seq_device video 19651 0 soundcore 15091 1 snd wmi 19256 1 asus_wmi snd_page_alloc 18529 2 snd_hda_intel,snd_pcm mac_hid 13253 0 lp 17799 0 parport 46562 3 ppdev,parport_pc,lp $ ifconfig lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:1091 errors:0 dropped:0 overruns:0 frame:0 TX packets:1091 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:80048 (80.0 KB) TX bytes:80048 (80.0 KB) wlan0 Link encap:Ethernet HWaddr 00:fd:07:91:a8:b9 inet addr:172.16.42.4 Bcast:172.16.42.255 Mask:255.255.255.0 inet6 addr: fe80::2fd:7ff:fe91:a8b9/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:56644 errors:0 dropped:0 overruns:0 frame:0 TX packets:36417 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:85270918 (85.2 MB) TX bytes:3413849 (3.4 MB) additionally, running sudo lshw -C network returns: *-network UNCLAIMED description: Ethernet Controller [...] I'm pretty stumped at this point. This doesn't sound like a very uncommon ethernet controller and I figured it would be picked up by the system. Does anybody have advice for how to deal with this? Anything specific I should look into to figure out what could be causing this? Edit: It seems that following the guide on the Intel e1000e drivers page allowed the card to start working. Is this a real fix or is there a better way?

    Read the article

  • Interval tree algorithm that supports merging of intervals with no overlap

    - by Dave Griffiths
    I'm looking for an interval tree algorithm similar to the red-black interval tree in CLR but that supports merging of intervals by default so that there are never any overlapping intervals. In other words if you had a tree containing two intervals [2,3] and [5,6] and you added the interval [4,4], the result would be a tree containing just one interval [2,6]. Thanks Update: the use case I'm considering is calculating transitive closure. Interval sets are used to store the successor sets because they have been found to be quite compact. But if you represent interval sets just as a linked list I have found that in some situations they can become quite large and hence so does the time required to find the insertion point. Hence my interest in interval trees. Also there may be quite a lot of merging one tree with another (i.e. a set OR operation) - if both trees are large then it may be better to create a new tree using inorder walks of both trees rather than repeated insertions of each interval.

    Read the article

  • Podcast Show Notes: The Red Room Interview &ndash; Part 2

    - by Bob Rhubart
    Room bloggers Sean Boiling, Richard Ward, and Mervin Chaing bring their in-the-trenches perspective to the conversation once again in this week’s edition of the OTN ArchBeat Podcast. Listen. (Missed last week? No problemo: Listen to Part 1) In this segment the conversation turns to SOA governance and balancing the need for reuse against the need for speed.  It’s no mystery that many people react to the term “SOA Governance” in much the same way as they would to the sound of Darth Vader’s respirator. But Mervin explains how a simple change in terminology can go a long way toward lowering blood pressure. Those interested in connecting with Sean, Richard, or Mervin can do so via the links listed below: Sean Boiling - Sales Consulting Manager for Oracle Fusion Middleware LinkedIn | Twitter | Blog Richard Ward - SOA Channel Development Manager at Oracle LinkedIn | Blog Mervin Chiang - Consulting Principal at Leonardo Consulting LinkedIn | Twitter | Blog And you’ll find the complete list of the Red Room SOA Best Practice Posts in last week’s show notes. The third and final segment of the Red Room series runs next week.  I have enough material from the original interview for a fourth program,  but it’ll have to wait. Also, as mentioned last week, the podcast name change is now complete, from Arch2Arch, to ArchBeat. As WPBH-TV9 weatherman Phil Connors says, “Anything different is good.”   Technorati Tags: archbeat,podcast. arch2arch,soa,soa governance,oracle,otn Flickr Tags: archbeat,podcast. arch2arch,soa,soa governance,oracle,otn

    Read the article

  • Podcast Show Notes: Red Room Interview &ndash; Part 3: Ninja BPM

    - by Bob Rhubart
    The third and final segment of my conversation with Red Room bloggers Sean Boiling, Richard Ward, and Mervin Chaing is now available. Listen to Part 1 Listen to Part 2 Listen to Part 3 As you’ll hear, this segment gets its title from another example of Mervin’s tactic for tweaking terminology to make it easier to sell stakeholders on certain SOA concepts. These are some very bright, very knowledgeable guys, so I encourage you to connect with them via the links below to pick their brains on any SOA or related issues that might have you reaching for the aspirin bottle. Sean Boiling - Sales Consulting Manager for Oracle Fusion Middleware LinkedIn | Twitter | Blog Richard Ward - SOA Channel Development Manager at Oracle LinkedIn | Blog Mervin Chiang - Consulting Principal at Leonardo Consulting LinkedIn | Twitter | Blog Once again, you’ll find the complete list of Red Room SOA Best Practice Posts in here. Up Next Next week’s program features another panel discussion recorded during a virtual min meet-up. The panel includes Oracle ACE Directors Mike van Alst (IT-Eye) and Jordan Braunstein (TUSC) along with The Definitive Guide to SOA: Oracle Service Bus author Jeff Davies. Stay tuned: RSS   Technorati Tags: oracle technology network,oracle,archbeat,podcast. arch2arch,soa,bpm del.icio.us Tags: oracle technology network,oracle,archbeat,podcast. arch2arch,soa,bpm

    Read the article

  • SQL Server Developer Tools &ndash; Codename Juneau vs. Red-Gate SQL Source Control

    - by Ajarn Mark Caldwell
    So how do the new SQL Server Developer Tools (previously code-named Juneau) stack up against SQL Source Control?  Read on to find out. At the PASS Community Summit a couple of weeks ago, it was announced that the previously code-named Juneau software would be released under the name of SQL Server Developer Tools with the release of SQL Server 2012.  This replacement for Database Projects in Visual Studio (also known in a former life as Data Dude) has some great new features.  I won’t attempt to describe them all here, but I will applaud Microsoft for making major improvements.  One of my favorite changes is the way database elements are broken down.  Previously every little thing was in its own file.  For example, indexes were each in their own file.  I always hated that.  Now, SSDT uses a pattern similar to Red-Gate’s and puts the indexes and keys into the same file as the overall table definition. Of course there are really cool features to keep your database model in sync with the actual source scripts, and the rename refactoring feature is now touted as being more than just a search and replace, but rather a “semantic-aware” search and replace.  Funny, it reminds me of SQL Prompt’s Smart Rename feature.  But I’m not writing this just to criticize Microsoft and argue that they are late to the party with this feature set.  Instead, I do see it as a viable alternative for folks who want all of their source code to be version controlled, but there are a couple of key trade-offs that you need to know about when you choose which tool set to use. First, the basics Both tool sets integrate with a wide variety of source control systems including the most popular: Subversion, GIT, Vault, and Team Foundation Server.  Both tools have integrated functionality to produce objects to upgrade your target database when you are ready (DACPACs in SSDT, integration with SQL Compare for SQL Source Control).  If you regularly live in Visual Studio or the Business Intelligence Development Studio (BIDS) then SSDT will likely be comfortable for you.  Like BIDS, SSDT is a Visual Studio Project Type that comes with SQL Server, and if you don’t already have Visual Studio installed, it will install the shell for you.  If you already have Visual Studio 2010 installed, then it will just add this as an available project type.  On the other hand, if you regularly live in SQL Server Management Studio (SSMS) then you will really enjoy the SQL Source Control integration from within SSMS.  Both tool sets store their database model in script files.  In SSDT, these are on your file system like other source files; in SQL Source Control, these are stored in the folder structure in your source control system, and you can always GET them to your file system if you want to browse them directly. For me, the key differentiating factors are 1) a single, unified check-in, and 2) migration scripts.  How you value those two features will likely make your decision for you. Unified Check-In If you do a continuous-integration (CI) style of development that triggers an automated build with unit testing on every check-in of source code, and you use Visual Studio for the rest of your development, then you will want to really consider SSDT.  Because it is just another project in Visual Studio, it can be added to your existing Solution, and you can then do a complete, or unified single check-in of all changes whether they are application or database changes.  This is simply not possible with SQL Source Control because it is in a different development tool (SSMS instead of Visual Studio) and there is no way to do one unified check-in between the two.  You CAN do really fast back-to-back check-ins, but there is the possibility that the automated build that is triggered from the first check-in will cause your unit tests to fail and the CI tool to report that you broke the build.  Of course, the automated build that is triggered from the second check-in which contains the “other half” of your changes should pass and so the amount of time that the build was broken may be very, very short, but if that is very, very important to you, then SQL Source Control just won’t work; you’ll have to use SSDT. Refactoring and Migrations If you work on a mature system, or on a not-so-mature but also not-so-well-designed system, where you want to refactor the database schema as you go along, but you can’t have data suddenly disappearing from your target system, then you’ll probably want to go with SQL Source Control.  As I wrote previously, there are a number of changes which you can make to your database that the comparison tools (both from Microsoft and Red Gate) simply cannot handle without the possibility (or probability) of data loss.  Currently, SSDT only offers you the ability to inject PRE and POST custom deployment scripts.  There is no way to insert your own script in the middle to override the default behavior of the tool.  In version 3.0 of SQL Source Control (Early Access version now available) you have that ability to create your own custom migration script to take the place of the commands that the tool would have done, and ensure the preservation of your data.  Or, even if the default tool behavior would have worked, but you simply know a better way then you can take control and do things your way instead of theirs. You Decide In the environment I work in, our automated builds are not triggered off of check-ins, but off of the clock (currently once per night) and so there is no point at which the automated build and unit tests will be triggered without having both sides of the development effort already checked-in.  Therefore having a unified check-in, while handy, is not critical for us.  As for migration scripts, these are critically important to us.  We do a lot of new development on systems that have already been in production for years, and it is not uncommon for us to need to do a refactoring of the database.  Because of the maturity of the existing system, that often involves data migrations or other additional SQL tasks that the comparison tools just can’t detect on their own.  Therefore, the ability to create a custom migration script to override the tool’s default behavior is very important to us.  And so, you can see why we will continue to use Red Gate SQL Source Control for the foreseeable future.

    Read the article

  • FREE! SQL Scripts Manager – a Christmas gift from Red Gate

    Red Gate has released SQL Scripts Manager, a free tool containing over 25 scripts written by SQL Server experts, to help you automate common troubleshooting, diagnostic, and maintenance tasks. Join SQL Backup’s 35,000+ customers to compress and strengthen your backups "SQL Backup will be a REAL boost to any DBA lucky enough to use it." Jonathan Allen. Download a free trial now.

    Read the article

  • What's happening in Red Gate's .NET Developer Tools division?

    .NET 4.0, Silverlight 4, F# decompilation in .NET Reflector, our crazy shipping schedule, and some prize draw winners. Yes, with a list of topics that broad, it can only be another update on what's happening in Red Gate's .NET Developer Tools division....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • SQL Server 2008: If Multiple Values Set In Other Mutliple Values Set

    - by AJH
    In SQL, is there anyway to accomplish something like this? This is based off a report built in SQL Server Report Builder, where the user can specify multiple text values as a single report parameter. The query for the report grabs all of the values the user selected and stores them in a single variable. I need a way for the query to return only records that have associations to EVERY value the user specified. -- Assume there's a table of Elements with thousands of entries. -- Now we declare a list of properties for those Elements to be associated with. create table #masterTable ( ElementId int, Text varchar(10) ) insert into #masterTable (ElementId, Text) values (1, 'Red'); insert into #masterTable (ElementId, Text) values (1, 'Coarse'); insert into #masterTable (ElementId, Text) values (1, 'Dense'); insert into #masterTable (ElementId, Text) values (2, 'Red'); insert into #masterTable (ElementId, Text) values (2, 'Smooth'); insert into #masterTable (ElementId, Text) values (2, 'Hollow'); -- Element 1 is Red, Coarse, and Dense. Element 2 is Red, Smooth, and Hollow. -- The real table is actually much much larger than this; this is just an example. -- This is me trying to replicate how SQL Server Report Builder treats -- report parameters in its queries. The user selects one, some, all, -- or no properties from a list. The written query treats the user's -- selections as a single variable called @Properties. -- Example scenario 1: User only wants to see Elements that are BOTH Red and Dense. select e.* from Elements e where (@Properties) --ideally a set containing only Red and Dense in (select Text from #masterTable where ElementId = e.Id) --ideally a set containing only Red, Coarse, and Dense --Both Red and Dense are within Element 1's properties (Red, Coarse, Dense), so Element 1 gets returned, but not Element 2. -- Example scenario 2: User only wants to see Elements that are BOTH Red and Hollow. select e.* from Elements e where (@Properties) --ideally a set containing only Red and Hollow in (select Text from #masterTable where ElementId = e.Id) --Both Red and Hollow are within Element 2's properties (Red, Smooth, Hollow), so Element 2 gets returned, but not Element 1. --Example Scenario 3: User only picked the Red option. select e.* from Elements e where (@Properties) --ideally a set containing only Red in (select Text from #masterTable where ElementId = e.Id) --Red is within both Element 1 and Element 2's properties, so both Element 1 and Element 2 get returned. The above syntax doesn't actually work because SQL doesn't seem to allow multiple values on the left side of the "in" comparison. Error that returns: Subquery returned more than 1 value. This is not permitted when the subquery follows =, !=, <, <= , >, >= or when the subquery is used as an expression. Am I even on the right track here? Sorry if the example looks long-winded or confusing.

    Read the article

  • Mono Project: How to install Mono framework on Red Hat Linux which is compiled on centOS ?

    - by funwithcoding
    We have Red Hat Enterprise Linux servers at work place. However we dont have Red Hat Linux desktops. So I used CentOS 5.4 to compile the Mono sources and generated the Mono framework for CentOS and tested with some sample codes and I am satisfied. I want to transfer this compiled framework to Red Hat Enterprise Linux 5. How Can I do that? Do I have to compile the Mono framework statically or do I have to copy the linked libraries as well? I am not familiar with linux much. Any help is highly appreciated.

    Read the article

  • Mono Project: How to install Mono framework on Red Hat Linux which is compiled on centOS ?

    - by funwithcoding
    We have Red Hat Enterprise Linux servers at work place. However we dont have Red Hat Linux desktops. So I used CentOS 5.4 to compile the Mono sources and generated the Mono framework for CentOS and tested with some sample codes and I am satisfied. I want to transfer this compiled framework to Red Hat Enterprise Linux 5. How Can I do that? Do I have to compile the Mono framework statically or do I have to copy the linked libraries as well? I am not familiar with linux much. Any help is highly appreciated.

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • nokia cell phone not accepting IP from dnsmasq dhcp server

    - by samix
    Hello, I having problem connecting a NOkia cell phone to my home wifi network. The wifi network is provided by a wireless card in a machine running Debian Testing and 2.6.26-2-686 kernel. The cars is D-Link DWL-G520 working in ap mode and has WPA encryption enabled. The wireless network is provided by hostapd using madwifi driver. Windows and Mac machines work properly with this wifi network. When I try to get the Nokia phone to connect to the wifi network, I get these lines in my dnsmasq log (to see lines without wrapping, here is the pastebin link for convenience - http://pastebin.com/m466c8fd2): Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 IEEE 802.11: disassociated Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 IEEE 802.11: associated Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 RADIUS: starting accounting session 4AE664FA-00000036 Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 WPA: pairwise key handshake completed (WPA) Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 WPA: group key handshake completed (WPA) Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 Available DHCP range: 192.168.5.150 -- 192.168.5.199 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 DHCPDISCOVER(ath0) 0.0.0.0 11:22:33:44:55:66 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 DHCPOFFER(ath0) 192.168.5.21 11:22:33:44:55:66 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 requested options: 12:hostname, 6:dns-server, 15:domain-name, Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 requested options: 1:netmask, 3:router, 28:broadcast, 120:sip-server Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 tags: known, ath0 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 next server: 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 1 option: 53:message-type 02 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 54:server-identifier 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 51:lease-time 00:00:46:50 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 58:T1 00:00:23:28 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 59:T2 00:00:3d:86 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 1:netmask 255.255.255.0 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 28:broadcast 192.168.5.255 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 3:router 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 6:dns-server 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 8 option: 15:domain-name home.pvt Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 3 option: 12:hostname NokiaCellPhone Anybody know the problem might be? If I switch off dnsmasq dhcp queries logging, i.e. if I decrease the verbosity of the log, all I see are two lines of DHCPDISCOVER(ath0) and DHCPOFFER(ath0) repeatedly in the log with no acceptance by the cell phone. It appears as though the phone is not accepting the dhcp offer. However, if I give the phone a static IP address in its configuration, it works properly on the wifi network. So it appears as though the problem is dhcp related. Hints? Suggestions? Installed stuff: $ dpkg -l dnsmasq hostap* | grep ^i ii dnsmasq 2.50-1 A small caching DNS proxy and DHCP/TFTP server ii dnsmasq-base 2.50-1 A small caching DNS proxy and DHCP/TFTP server ii hostapd 1:0.6.9-3 user space IEEE 802.11 AP and IEEE 802.1X/WPA/ Thanks. PS: Here is the DHCP tcp dump for more information (with mac addresses changed): $ sudo dhcpdump -i ath0 -h ^11:22:33:44:55:66 TIME: 2009-10-30 12:15:32.916 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:32.918 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:32.918 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:34.922 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:34.922 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:34.923 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:38.919 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:38.920 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:38.921 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:46.944 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:46.944 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:46.945 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:48.952 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 ... and so on ...

    Read the article

  • What's the difference between Scala and Red Hat's Ceylon language?

    - by John Bryant
    Red Hat's Ceylon language has some interesting improvements over Java: The overall vision: learn from Java's mistakes, keep the good, ditch the bad The focus on readability and ease of learning/use Static Typing (find errors at compile time, not run time) No “special” types, everything is an object Named and Optional parameters (C# 4.0) Nullable types (C# 2.0) No need for explicit getter/setters until you are ready for them (C# 3.0) Type inference via the "local" keyword (C# 3.0 "var") Sequences (arrays) and their accompanying syntactic sugariness (C# 3.0) Straight-forward implementation of higher-order functions I don't know Scala but have heard it offers some similar advantages over Java. How would Scala compare to Ceylon in this respect?

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >