Search Results

Search found 256 results on 11 pages for 'spark'.

Page 11/11 | < Previous Page | 7 8 9 10 11 

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • Allowing pop-up's and downloads with flex

    - by ShadowVariable
    I'm building an flex app that is basically a wrapper for a few websites. One of them is a google docs website, and I'm trying to get flex to allow downloads or popups or something that will allow me to do it. I've tried a whole bunch of solutions online and none of them have worked out. Here's the code so far: <?xml version="1.0" encoding="utf-8"?> <s:WindowedApplication xmlns:fx="http://ns.adobe.com/mxml/2009" xmlns:s="library://ns.adobe.com/flex/spark" xmlns:mx="library://ns.adobe.com/flex/mx" width="100%" height="100%" creationComplete="onCreationComplete()"> <s:layout> <s:HorizontalLayout/> </s:layout> <fx:Style source="style.css"/> <fx:Script> <![CDATA[ include "CustomHTMLLoader.as"; private function onCreationComplete():void { // ... other stuff ... var custom:object; custom.htmlHost = new MyHTMLHost(); } ]]> </fx:Script> <fx:Declarations> <!-- Place non-visual elements (e.g., services, value objects) here --> </fx:Declarations> <s:BorderContainer width="100%" height="100%" backgroundColor="#87BED0" styleName="container"> <s:Panel x="188" y="17" width="826" height="112" borderAlpha="0.15" chromeColor="#0C5A74" color="#FFFFFF" cornerRadius="20" dropShadowVisible="false" enabled="true" title="Customer Service Control Panel"> <s:controlBarContent/> <s:Button id="home" x="13" y="10" height="44" label="Phones" click="myViewStack.selectedChild=Home;" enabled="true" icon="@Embed('assets/iconmonstr-mobile-phone-6-icon-32.png')"/> <s:Button id="liveagent" x="131" y="10" height="44" label="Live Agent" click="myViewStack.selectedChild=live_agent;" icon="@Embed('assets/iconmonstr-speech-bubble-11-icon-32.png')"/> <s:Button id="bigcommerce" x="260" y="10" width="158" height="44" label="Big Commerce" click="myViewStack.selectedChild=bigcommerce_home;" icon="@Embed('assets/iconmonstr-coin-6-icon-48.png')"/> <s:Button id="faq" x="436" y="10" width="88" height="44" label="FAQ" click="myViewStack.selectedChild=freqaskquestions;" fontFamily="Arial" icon="@Embed('assets/iconmonstr-help-4-icon-32.png')"/> <s:Button id="call" x="540" y="10" width="131" height="44" label="Google Docs" click="myViewStack.selectedChild=call_notes;" icon="@Embed('assets/iconmonstr-text-file-4-icon-32.png')"/> <s:Button id="hoot" x="684" y="10" width="122" height="44" label="HootSuite" click="myViewStack.selectedChild=hoot_suite;" icon="@Embed('assets/iconmonstr-facebook-icon-32.png')"/> </s:Panel> <mx:ViewStack id="myViewStack" x="0" y="140" width="100%" height="100%" borderStyle="solid"> <s:NavigatorContent id="Home"> <s:BorderContainer width="100%" height="100%"> <mx:HTML x="0" y="0" width="100%" height="100%" borderVisible="false" horizontalScrollPolicy="off" location="http://mbvphone.mtbakervapor.org/vbx/messages/inbox" /> </s:BorderContainer> </s:NavigatorContent> <s:NavigatorContent id="bigcommerce_home"> <s:BorderContainer width="100%" height="100%"> <mx:HTML x="0" y="0" width="100%" height="100%" borderVisible="false" horizontalScrollPolicy="off" location="http://www.mtbakervapor.com/admin" /> </s:BorderContainer> </s:NavigatorContent> <s:NavigatorContent id="live_agent"> <s:BorderContainer width="100%" height="100%"> <mx:HTML x="0" y="0" width="100%" height="100%" borderVisible="false" horizontalScrollPolicy="off" location="http://mbvphone.mtbakervapor.org/liveagent/agent/#login" /> </s:BorderContainer> </s:NavigatorContent> <s:NavigatorContent id="freqaskquestions"> <s:BorderContainer width="100%" height="100%"> <mx:HTML x="0" y="0" width="100%" height="100%" borderVisible="false" horizontalScrollPolicy="off" location="http://mbvphone.mtbakervapor.org/liveagent/" /> </s:BorderContainer> </s:NavigatorContent> <s:NavigatorContent id="call_notes"> <s:BorderContainer width="100%" height="100%"> <mx:HTML id="html" x="0" y="0" width="100%" height="100%" borderVisible="false" horizontalScrollPolicy="off" location="https://drive.google.com/a/mtbakervapor.com/" htmlHost="{new CustomHost()}" /> </s:BorderContainer> </s:NavigatorContent> <s:NavigatorContent id="hoot_suite"> <s:BorderContainer width="100%" height="100%"> <mx:HTML x="0" y="0" width="100%" height="100%" borderVisible="false" horizontalScrollPolicy="off" location="https://hootsuite.com/login" /> </s:BorderContainer> </s:NavigatorContent> </mx:ViewStack> <s:Image x="0" y="0" width="180" height="140" scaleMode="letterbox" smooth="false" source="assets/mbvlogo_black.png"/> </s:BorderContainer> </s:WindowedApplication> and the custom class code: package { import flash.html.HTMLHost; import flash.html.HTMLWindowCreateOptions; import flash.html.HTMLLoader; public class MyHTMLHost extends HTMLHost { public function MyHTMLHost(defaultBehaviors:Boolean=true) { super(defaultBehaviors); } override public function createWindow(windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader { // all JS calls and HREFs to open a new window should use the existing window return HTMLLoader.createRootWindow(); } } } any help would be appreciated.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • How to shoot yourself in the foot (DO NOT Read in the office)

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/06/21/how-to-shoot-yourself-in-the-foot-do-not-read.aspxLet me make it absolutely clear - the following is:merely collated by your Geek from http://www.codeproject.com/Lounge.aspx?msg=3917012#xx3917012xxvery, very very funny so you read it in the presence of others at your own riskso here is the list - you have been warned!C You shoot yourself in the foot.   C++ You accidently create a dozen instances of yourself and shoot them all in the foot. Providing emergency medical assistance is impossible since you can't tell which are bitwise copies and which are just pointing at others and saying "That's me, over there."   FORTRAN You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you have no exception-handling facility.   Modula-2 After realizing that you can't actually accomplish anything in this language, you shoot yourself in the head.   COBOL USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to HOLSTER. CHECK whether shoelace needs to be retied.   Lisp You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds...   BASIC Shoot yourself in the foot with a water pistol. On big systems, continue until entire lower body is waterlogged.   Forth Foot yourself in the shoot.   APL You shoot yourself in the foot; then spend all day figuring out how to do it in fewer characters.   Pascal The compiler won't let you shoot yourself in the foot.   Snobol If you succeed, shoot yourself in the left foot. If you fail, shoot yourself in the right foot.   HyperTalk Put the first bullet of the gun into foot left of leg of you. Answer the result.   Prolog You tell your program you want to be shot in the foot. The program figures out how to do it, but the syntax doesn't allow it to explain.   370 JCL You send your foot down to MIS with a 4000-page document explaining how you want it to be shot. Three years later, your foot comes back deep-fried.   FORTRAN-77 You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you still can't do exception-processing.   Modula-2 (alternative) You perform a shooting on what might be currently a foot with what might be currently a bullet shot by what might currently be a gun.   BASIC (compiled) You shoot yourself in the foot with a BB using a SCUD missile launcher.   Visual Basic You'll really only appear to have shot yourself in the foot, but you'll have so much fun doing it that you won't care.   Forth (alternative) BULLET DUP3 * GUN LOAD FOOT AIM TRIGGER PULL BANG! EMIT DEAD IF DROP ROT THEN (This takes about five bytes of memory, executes in two to ten clock cycles on any processor and can be used to replace any existing function of the language as well as in any future words). (Welcome to bottom up programming - where you, too, can perform compiler pre-processing instead of writing code)   APL (alternative) You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened. or @#&^$%&%^ foot   Pascal (alternative) Same as Modula-2 except that the bullet is not the right type for the gun and your hand is blown off.   Snobol (alternative) You grab your foot with your hand, then rewrite your hand to be a bullet. The act of shooting the original foot then changes your hand/bullet into yet another foot (a left foot).   Prolog (alternative) You attempt to shoot yourself in the foot, but the bullet, failing to find its mark, backtracks to the gun, which then explodes in your face.   COMAL You attempt to shoot yourself in the foot with a water pistol, but the bore is clogged, and the pressure build-up blows apart both the pistol and your hand. or draw_pistol aim_at_foot(left) pull_trigger hop(swearing)   Scheme As Lisp, but none of the other appendages are aware of this happening.   Algol You shoot yourself in the foot with a musket. The musket is aesthetically fascinating and the wound baffles the adolescent medic in the emergency room.   Ada If you are dumb enough to actually use this language, the United States Department of Defense will kidnap you, stand you up in front of a firing squad and tell the soldiers, "Shoot at the feet." or The Department of Defense shoots you in the foot after offering you a blindfold and a last cigarette. or After correctly packaging your foot, you attempt to concurrently load the gun, pull the trigger, scream and shoot yourself in the foot. When you try, however, you discover that your foot is of the wrong type. or After correctly packing your foot, you attempt to concurrently load the gun, pull the trigger, scream, and confidently aim at your foot knowing it is safe. However the cordite in the round does an Unchecked Conversion, fires and shoots you in the foot anyway.   Eiffel   You create a GUN object, two FOOT objects and a BULLET object. The GUN passes both the FOOT objects a reference to the BULLET. The FOOT objects increment their hole counts and forget about the BULLET. A little demon then drives a garbage truck over your feet and grabs the bullet (both of it) on the way. Smalltalk You spend so much time playing with the graphics and windowing system that your boss shoots you in the foot, takes away your workstation and makes you develop in COBOL on a character terminal. or You send the message shoot to gun, with selectors bullet and myFoot. A window pops up saying Gunpowder doesNotUnderstand: spark. After several fruitless hours spent browsing the methods for Trigger, FiringPin and IdealGas, you take the easy way out and create ShotFoot, a subclass of Foot with an additional instance variable bulletHole. Object Oriented Pascal You perform a shooting on what might currently be a foot with what might currently be a bullet fired from what might currently be a gun.   PL/I You consume all available system resources, including all the offline bullets. The Data Processing & Payroll Department doubles its size, triples its budget, acquires four new mainframes and drops the original one on your foot. Postscript foot bullets 6 locate loadgun aim gun shoot showpage or It takes the bullet ten minutes to travel from the gun to your foot, by which time you're long since gone out to lunch. The text comes out great, though.   PERL You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife. or You pick up the gun and begin to load it. The gun and your foot begin to grow to huge proportions and the world around you slows down, until the gun fires. It makes a tiny hole, which you don't feel. Assembly Language You crash the OS and overwrite the root disk. The system administrator arrives and shoots you in the foot. After a moment of contemplation, the administrator shoots himself in the foot and then hops around the room rabidly shooting at everyone in sight. or You try to shoot yourself in the foot only to discover you must first reinvent the gun, the bullet, and your foot.or The bullet travels to your foot instantly, but it took you three weeks to load the round and aim the gun.   BCPL You shoot yourself somewhere in the leg -- you can't get any finer resolution than that. Concurrent Euclid You shoot yourself in somebody else's foot.   Motif You spend days writing a UIL description of your foot, the trajectory, the bullet and the intricate scrollwork on the ivory handles of the gun. When you finally get around to pulling the trigger, the gun jams.   Powerbuilder While attempting to load the gun you discover that the LoadGun system function is buggy; as a work around you tape the bullet to the outside of the gun and unsuccessfully attempt to fire it with a nail. In frustration you club your foot with the butt of the gun and explain to your client that this approximates the functionality of shooting yourself in the foot and that the next version of Powerbuilder will fix it.   Standard ML By the time you get your code to typecheck, you're using a shoot to foot yourself in the gun.   MUMPS You shoot 583149 AK-47 teflon-tipped, hollow-point, armour-piercing bullets into even-numbered toes on odd-numbered feet of everyone in the building -- with one line of code. Three weeks later you shoot yourself in the head rather than try to modify that line.   Java You locate the Gun class, but discover that the Bullet class is abstract, so you extend it and write the missing part of the implementation. Then you implement the ShootAble interface for your foot, and recompile the Foot class. The interface lets the bullet call the doDamage method on the Foot, so the Foot can damage itself in the most effective way. Now you run the program, and call the doShoot method on the instance of the Gun class. First the Gun creates an instance of Bullet, which calls the doFire method on the Gun. The Gun calls the hit(Bullet) method on the Foot, and the instance of Bullet is passed to the Foot. But this causes an IllegalHitByBullet exception to be thrown, and you die.   Unix You shoot yourself in the foot or % ls foot.c foot.h foot.o toe.c toe.o % rm * .o rm: .o: No such file or directory % ls %   370 JCL (alternative) You shoot yourself in the head just thinking about it.   DOS JCL You first find the building you're in in the phone book, then find your office number in the corporate phone book. Then you have to write this down, then describe, in cubits, your exact location, in relation to the door (right hand side thereof). Then you need to write down the location of the gun (loading it is a proprietary utility), then you load it, and the COBOL program, and run them, and, with luck, it may be run tonight.   VMS   $ MOUNT/DENSITY=.45/LABEL=BULLET/MESSAGE="BYE" BULLET::BULLET$GUN SYS$BULLET $ SET GUN/LOAD/SAFETY=OFF/SIGHT=NONE/HAND=LEFT/CHAMBER=1/ACTION=AUTOMATIC/ LOG/ALL/FULL SYS$GUN_3$DUA3:[000000]GUN.GNU $ SHOOT/LOG/AUTO SYS$GUN SYS$SYSTEM:[FOOT]FOOT.FOOT   %DCL-W-ACTIMAGE, error activating image GUN -CLI-E-IMGNAME, image file $3$DUA240:[GUN]GUN.EXE;1 -IMGACT-F-NOTNATIVE, image is not an OpenVMS Alpha AXP image or %SYS-F-FTSHT, foot shot (fifty lines of traceback omitted) sh,csh, etc You can't remember the syntax for anything, so you spend five hours reading manual pages, then your foot falls asleep. You shoot the computer and switch to C.   Apple System 7 Double click the gun icon and a window giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small bomb appears with note "Error of Type 1 has occurred."   Windows 3.1 Double click the gun icon and wait. Eventually a window opens giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small box appears with note "Unable to open Shoot.dll, check that path is correct."   Windows 95 Your gun is not compatible with this OS and you must buy an upgrade and install it before you can continue. Then you will be informed that you don't have enough memory.   CP/M I remember when shooting yourself in the foot with a BB gun was a big deal.   DOS You finally found the gun, but can't locate the file with the foot for the life of you.   MSDOS You shoot yourself in the foot, but can unshoot yourself with add-on software.   Access You try to point the gun at your foot, but it shoots holes in all your Borland distribution diskettes instead.   Paradox Not only can you shoot yourself in the foot, your users can too.   dBase You squeeze the trigger, but the bullet moves so slowly that by the time your foot feels the pain, you've forgotten why you shot yourself anyway. or You buy a gun. Bullets are only available from another company and are promised to work so you buy them. Then you find out that the next version of the gun is the one scheduled to actually shoot bullets.   DBase IV, V1.0 You pull the trigger, but it turns out that the gun was a poorly designed hand grenade and the whole building blows up.   SQL You cut your foot off, send it out to a service bureau and when it returns, it has a hole in it but will no longer fit the attachment at the end of your leg. or Insert into Foot Select Bullet >From Gun.Hand Where Chamber = 'LOADED' And Trigger = 'PULLED'   Clipper You grab a bullet, get ready to insert it in the gun so that you can shoot yourself in the foot and discover that the gun that the bullets fits has not yet been built, but should be arriving in the mail _REAL_SOON_NOW_. Oracle The menus for coding foot_shooting have not been implemented yet and you can't do foot shooting in SQL.   English You put your foot in your mouth, then bite it off. (For those who don't know, English is a McDonnell Douglas/PICK query language which allegedly requires 110% of system resources to run happily.) Revelation [an implementation of the PICK Operating System] You'll be able to shoot yourself in the foot just as soon as you figure out what all these bullets are for.   FlagShip Starting at the top of your head, you aim the gun at yourself repeatedly until, half an hour later, the gun is finally pointing at your foot and you pull the trigger. A new foot with a hole in it appears but you can't work out how to get rid of the old one and your gun doesn't work anymore.   FidoNet You put your foot in your mouth, then echo it internationally.   PicoSpan [a UNIX-based computer conferencing system] You can't shoot yourself in the foot because you're not a host. or (host variation) Whenever you shoot yourself in the foot, someone opens a topic in policy about it.   Internet You put your foot in your mouth, shoot it, then spam the bullet so that everybody gets shot in the foot.   troff rmtroff -ms -Hdrwp | lpr -Pwp2 & .*place bullet in footer .B .NR FT +3i .in 4 .bu Shoot! .br .sp .in -4 .br .bp NR HD -2i .*   Genetic Algorithms You create 10,000 strings describing the best way to shoot yourself in the foot. By the time the program produces the optimal solution, humans have evolved wings and the problem is moot.   CSP (Communicating Sequential Processes) You only fail to shoot everything that isn't your foot.   MS-SQL Server MS-SQL Server’s gun comes pre-loaded with an unlimited supply of Teflon coated bullets, and it only has two discernible features: the muzzle and the trigger. If that wasn't enough, MS-SQL Server also puts the gun in your hand, applies local anesthetic to the skin of your forefinger and stitches it to the gun's trigger. Meanwhile, another process has set up a spinal block to numb your lower body. It will then proceeded to surgically remove your foot, cryogenically freeze it for preservation, and attach it to the muzzle of the gun so that no matter where you aim, you will shoot your foot. In order to avoid shooting yourself in the foot, you need to unstitch your trigger finger, remove your foot from the muzzle of the gun, and have it surgically reattached. Then you probably want to get some crutches and go out to buy a book on SQL Server Performance Tuning.   Sybase Sybase's gun requires assembly, and you need to go out and purchase your own clip and bullets to load the gun. Assembly is complicated by the fact that Sybase has hidden the gun behind a big stack of reference manuals, but it hasn't told you where that stack is. While you were off finding the gun, assembling it, buying bullets, etc., Sybase was also busy surgically removing your foot and cryogenically freezing it for preservation. Instead of attaching it to the muzzle of the gun, though, it packed your foot on dry ice and sent it UPS-Ground to an unnamed hookah bar somewhere in the middle east. In order to shoot your foot, you must modify your gun with a GPS system for targeting and hire some guy named "Indy" to find the hookah bar and wire the coordinates back to you. By this time, you've probably become so daunted at the tasks stand between you and shooting your foot that you hire a guy who's read all the books on Sybase to help you shoot your foot. If you're lucky, he'll be smart enough both to find your foot and to stop you from shooting it.   Magic software You spend 1 week looking up the correct syntax for GUN. When you find it, you realise that GUN will not let you shoot in your own foot. It will allow you to shoot almost anything but your foot. You then decide to build your own gun. You can't use the standard barrel since this will only allow for standard bullets, which will not fire if the barrel is pointed at your foot. After four weeks, you have created your own custom gun. It blows up in your hand without warning, because you failed to initialise the safety catch and it doesn't know whether the initial state is "0", 0, NULL, "ZERO", 0.0, 0,0, "0.0", or "0,00". You fix the problem with your remaining hand by nesting 12 safety catches, and then decide to build the gun without safety catch. You then shoot the management and retire to a happy life where you code in languages that will allow you to shoot your foot in under 10 days.FirefoxLets you shoot yourself in as many feet as you'd like, while using multiple great addons! IEA moving target in terms of standard ammunition size and doesn't always work properly with non-Microsoft ammunition, so sometimes you shoot something other than your foot. However, it's the corporate world's standard foot-shooting apparatus. Hackers seem to enjoy rigging websites up to trigger cascading foot-shooting failures. Windows 98 About the same as Windows 95 in terms of overall bullet capacity and triggering mechanisms. Includes updated DirectShot API. A new version was released later on to support USB guns, Windows 98 SE.WPF:You get your baseball glove and a ball and you head out to your backyard, where you throw balls to your pitchback. Then your unkempt-haired-cargo-shorts-and-sandals-with-white-socks-wearing neighbor uses XAML to sculpt your arm into a gun, the ball into a bullet and the pitchback into your foot. By now, however, only the neighbor can get it to work and he's only around from 6:30 PM - 3:30 AM. LOGO: You very carefully lay out the trajectory of the bullet. Then you start the gun, which fires very slowly. You walk precisely to the point where the bullet will travel and wait, but just before it gets to you, your class time is up and one of the other kids has already used the system to hack into Sony's PS3 network. Flash: Someone has designed a beautiful-looking gun that anyone can shoot their feet with for free. It weighs six hundred pounds. All kinds of people are shooting themselves in the feet, and sending the link to everyone else so that they can too. That is, except for the criminals, who are all stealing iOS devices that the gun won't work with.APL: Its (mostly) all greek to me. Lisp: Place ((gun in ((hand sight (foot then shoot))))) (Lots of Insipid Stupid Parentheses)Apple OS/X and iOS Once a year, Steve Jobs returns from sick leave to tell millions of unwavering fans how they will be able to shoot themselves in the foot differently this year. They retweet and blog about it ad nauseam, and wait in line to be the first to experience "shoot different".Windows ME Usually fails, even at shooting you in the foot. Yo dawg, I heard you like shooting yourself in the foot. So I put a gun in your gun, so you can shoot yourself in the foot while you shoot yourself in the foot. (Okay, I'm not especially proud of this joke.) Windows 2000 Now you really do have to log in, before you are allowed to shoot yourself in the foot.Windows XPYou thought you learned your lesson: Don't use Windows ME. Then, along came this new creature, built on top of Windows NT! So you spend the next couple days installing antivirus software, patches and service packs, just so you can get that driver to install, and then proceed to shoot yourself in the foot. Windows Vista Newer! Glossier! Shootier! Windows 7 The bullets come out a lot smoother. Active Directory Each bullet now has an attached Bullet Identifier, and can be uniquely identified. Policies can be applied to dictate fragmentation, and the gun will occasionally have a confusing delay after the trigger has been pulled. PythonYou try to use import foot; foot.shoot() only to realize that's only available in 3.0, to which you can't yet upgrade from 2.7 because of all those extension libs lacking support. Solaris Shoots best when used on SPARC hardware, but still runs the trigger GUI under Java. After weeks of learning the appropriate STOP command to prevent the trigger from automatically being pressed on boot, you think you've got it under control. Then the one time you ever use dtrace, it hits a bug that fires the gun. MySQL The feature that allows you to shoot yourself in the foot has been in development for about 6 years, and they are adding it into the next version, which is coming out REAL SOON NOW, promise! But you can always check it out of source control and try it yourself (just not in any environment where data integrity is important because it will probably explode.) PostgreSQLAllows you to have a smug look on your face while you shoot yourself in the foot, because those MySQL guys STILL don't have that feature. NoSQL Barrel? Who needs a barrel? Just put the bullet on your foot, and strike it with a hammer. See? It's so much simpler and more efficient that way. You can even strike multiple bullets in one swing if you swing with a good enough arc, because hammers are easy to use. Getting them to synchronize is a little difficult, though.Eclipse There are about a dozen different packages for shooting yourself in the foot, with weird interdependencies on outdated components. Once you finally navigate the morass and get one installed, you then have something to look at while you shoot yourself in the foot with that package: You can watch the screen redraw.Outlook Makes it really easy to let everyone know you shot yourself in the foot!Shooting yourself in the foot using delegates.You really need to shoot yourself in the foot but you hate firearms (you don't want any dependency on the specifics of shooting) so you delegate it to somebody else. You don't care how it is done as long is shooting your foot. You can do it asynchronously in case you know you may faint so you are called back/slapped in the face by your shooter/friend (or background worker) when everything is done.C#You prepare the gun and the bullet, carefully modeling all of the physics of a bullet traveling through a foot. Just before you're about to pull the trigger, you stumble on System.Windows.BodyParts.Foot.ShootAt(System.Windows.Firearms.IGun gun) in the extended framework, realize you just wasted the entire afternoon, and shoot yourself in the head.PHP<?phprequire("foot_safety_check.php");?><!DOCTYPE HTML><html><head> <!--Lower!--><title>Shooting me in the foot</title></head> <body> <!--LOWER!!!--><leg> <!--OK, I made this one up...--><footer><?php echo (dungSift($_SERVER['HTTP_USER_AGENT'], "ie"))?("Your foot is safe, but you might want to wear a hard hat!"):("<div class=\"shot\">BANG!</div>"); ?></footer></leg> </body> </html>

    Read the article

  • StackOverflowException throws often when .net application built with Debug mode

    - by user1487950
    I have an application which access an external webservice often, when i are trying to debug it, means debuging in vistual studio. it often throws out StackOverflowException at the webserverice call point. when building in Release mode , the exception thrown out only occasionally. I checked the call stack, looks like there is no recursive call. can you please suggest? thank you very much. call statck attached. [In a sleep, wait, or join] mscorlib.dll!System.Threading.WaitHandle.InternalWaitOne(System.Runtime.InteropServices.SafeHandle waitableSafeHandle, long millisecondsTimeout, bool hasThreadAffinity, bool exitContext) + 0x2b bytes mscorlib.dll!System.Threading.WaitHandle.WaitOne(int millisecondsTimeout, bool exitContext) + 0x2d bytes System.dll!System.Net.NetworkAddressChangePolled.CheckAndReset() + 0x9d bytes System.dll!System.Net.NclUtilities.LocalAddresses.get() + 0x49 bytes System.dll!System.Net.WebProxyScriptHelper.myIpAddress() + 0x27 bytes [Native to Managed Transition] System.dll!System.Net.WebProxyScriptHelper.MyMethodInfo.Invoke(object target, System.Reflection.BindingFlags bindingAttr, System.Reflection.Binder binder, object[] args, System.Globalization.CultureInfo culture) + 0x6b bytes MTOqoHCT.dll!JScript 0.myIpAddress(object this, Microsoft.JScript.Vsa.VsaEngine vsa Engine, object arguments) + 0x91 bytes MTOqoHCT.dll!JScript 0.FindProxyForURL(object this, Microsoft.JScript.Vsa.VsaEngine vsa Engine, object arguments, object url, object host) + 0x3c6e bytes MTOqoHCT.dll!__WebProxyScript.__WebProxyScript.ExecuteFindProxyForURL(object url, object host) + 0x11d bytes [Native to Managed Transition] Microsoft.JScript.dll!System.Net.VsaWebProxyScript.CallMethod(object targetObject, string name, object[] args) + 0x11a bytes Microsoft.JScript.dll!System.Net.VsaWebProxyScript.Run(string url, string host) + 0x74 bytes [Native to Managed Transition] [Managed to Native Transition] mscorlib.dll!System.Runtime.Remoting.Messaging.StackBuilderSink.SyncProcessMessage(System.Runtime.Remoting.Messaging.IMessage msg, int methodPtr, bool fExecuteInContext) + 0x1ef bytes mscorlib.dll!System.Runtime.Remoting.Messaging.StackBuilderSink.SyncProcessMessage(System.Runtime.Remoting.Messaging.IMessage msg) + 0xf bytes mscorlib.dll!System.Runtime.Remoting.Messaging.ServerObjectTerminatorSink.SyncProcessMessage(System.Runtime.Remoting.Messaging.IMessage reqMsg) + 0x66 bytes mscorlib.dll!System.Runtime.Remoting.Messaging.ServerContextTerminatorSink.SyncProcessMessage(System.Runtime.Remoting.Messaging.IMessage reqMsg) + 0x8a bytes mscorlib.dll!System.Runtime.Remoting.Channels.CrossContextChannel.SyncProcessMessageCallback(object[] args) + 0x94 bytes mscorlib.dll!System.Threading.Thread.CompleteCrossContextCallback(System.Threading.InternalCrossContextDelegate ftnToCall, object[] args) + 0x8 bytes [Native to Managed Transition] [Managed to Native Transition] mscorlib.dll!System.Runtime.Remoting.Channels.CrossContextChannel.SyncProcessMessage(System.Runtime.Remoting.Messaging.IMessage reqMsg) + 0xa7 bytes mscorlib.dll!System.Runtime.Remoting.Channels.ChannelServices.SyncDispatchMessage(System.Runtime.Remoting.Messaging.IMessage msg) + 0x92 bytes mscorlib.dll!System.Runtime.Remoting.Channels.CrossAppDomainSink.DoDispatch(byte[] reqStmBuff, System.Runtime.Remoting.Messaging.SmuggledMethodCallMessage smuggledMcm, out System.Runtime.Remoting.Messaging.SmuggledMethodReturnMessage smuggledMrm) + 0xed bytes mscorlib.dll!System.Runtime.Remoting.Channels.CrossAppDomainSink.DoTransitionDispatchCallback(object[] args) + 0x8a bytes mscorlib.dll!System.Threading.Thread.CompleteCrossContextCallback(System.Threading.InternalCrossContextDelegate ftnToCall, object[] args) + 0x8 bytes [Appdomain Transition] mscorlib.dll!System.Runtime.Remoting.Channels.CrossAppDomainSink.DoTransitionDispatch(byte[] reqStmBuff, System.Runtime.Remoting.Messaging.SmuggledMethodCallMessage smuggledMcm, out System.Runtime.Remoting.Messaging.SmuggledMethodReturnMessage smuggledMrm) + 0x74 bytes mscorlib.dll!System.Runtime.Remoting.Channels.CrossAppDomainSink.SyncProcessMessage(System.Runtime.Remoting.Messaging.IMessage reqMsg) + 0xa3 bytes mscorlib.dll!System.Runtime.Remoting.Proxies.RemotingProxy.CallProcessMessage(System.Runtime.Remoting.Messaging.IMessageSink ms, System.Runtime.Remoting.Messaging.IMessage reqMsg, System.Runtime.Remoting.Contexts.ArrayWithSize proxySinks, System.Threading.Thread currentThread, System.Runtime.Remoting.Contexts.Context currentContext, bool bSkippingContextChain) + 0x50 bytes mscorlib.dll!System.Runtime.Remoting.Proxies.RemotingProxy.InternalInvoke(System.Runtime.Remoting.Messaging.IMethodCallMessage reqMcmMsg, bool useDispatchMessage, int callType) + 0x1d5 bytes mscorlib.dll!System.Runtime.Remoting.Proxies.RemotingProxy.Invoke(System.Runtime.Remoting.Messaging.IMessage reqMsg) + 0x66 bytes mscorlib.dll!System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(ref System.Runtime.Remoting.Proxies.MessageData msgData, int type) + 0xee bytes System.dll!System.Net.NetWebProxyFinder.GetProxies(System.Uri destination, out System.Collections.Generic.IList<string> proxyList) + 0x83 bytes System.dll!System.Net.AutoWebProxyScriptEngine.GetProxies(System.Uri destination, out System.Collections.Generic.IList<string> proxyList, ref int syncStatus) + 0x84 bytes System.dll!System.Net.WebProxy.GetProxiesAuto(System.Uri destination, ref int syncStatus) + 0x2e bytes System.dll!System.Net.ProxyScriptChain.GetNextProxy(out System.Uri proxy) + 0x2e bytes System.dll!System.Net.ProxyChain.ProxyEnumerator.MoveNext() + 0x98 bytes System.dll!System.Net.ServicePointManager.FindServicePoint(System.Uri address, System.Net.IWebProxy proxy, out System.Net.ProxyChain chain, ref System.Net.HttpAbortDelegate abortDelegate, ref int abortState) + 0x120 bytes System.dll!System.Net.HttpWebRequest.FindServicePoint(bool forceFind) + 0xb1 bytes System.dll!System.Net.HttpWebRequest.GetRequestStream(out System.Net.TransportContext context) + 0x247 bytes System.dll!System.Net.HttpWebRequest.GetRequestStream() + 0xe bytes System.Web.Services.dll!System.Web.Services.Protocols.SoapHttpClientProtocol.Invoke(string methodName, object[] parameters) + 0xc0 bytes Gfinet.Config.dll!Gfinet.Config.Service.cfg_webservice.addOrUpdateProperties(string string, int intVal, Gfinet.Config.Service.PropertiesDataM[] propertiesDataMs) + 0xa3 bytes Gfinet.Config.dll!Gfinet.Config.Service.WSServiceImpl.AddOrUpdateProperties(int setId, Gfinet.Config.Service.PropertiesDataM[] properties) + 0x46 bytes [Native to Managed Transition] Gfinet.Config.dll!Gfinet.Config.Service.ServiceAspect.InvocationHandler(object target, System.Reflection.MethodBase method, object[] parameters) + 0x49e bytes Gfinet.Config.dll!Gfinet.Config.DynamicProxy.DynamicProxyImpl.Invoke(System.Runtime.Remoting.Messaging.IMessage message) + 0x110 bytes mscorlib.dll!System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(ref System.Runtime.Remoting.Proxies.MessageData msgData, int type) + 0xee bytes Tici.Kraps.Services.dll!Tici.Kraps.Services.Configuration.GFINetConfiguration.StoreElement(string application, string category, string id, string elementValue, bool save) Line 303 + 0x55 bytes C# Tici.Kraps.Services.dll!Tici.Kraps.Services.Configuration.GFINetConfiguration.SaveAllInternal() Line 582 + 0x6e bytes C# Tici.Kraps.Services.dll!Tici.Kraps.Services.Configuration.GFINetConfiguration.SaveAll(bool async) Line 434 + 0x8 bytes C# Tici.Kraps.Services.dll!Tici.Kraps.Services.Configuration.GFINetConfiguration.SaveAll() Line 406 + 0xa bytes C# Tici.Kraps.Services.dll!Tici.Kraps.Services.Container.Persistor.Save() Line 59 + 0xc bytes C# Spark.exe!Tici.Kraps.RibbonShell.OnBtnSaveWorkspaceItemClick(object sender, DevExpress.XtraBars.ItemClickEventArgs e) Line 642 + 0xf bytes C# DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.BarItem.OnClick(DevExpress.XtraBars.BarItemLink link) + 0x108 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.BarBaseButtonItem.OnClick(DevExpress.XtraBars.BarItemLink link) + 0x47 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.BarItemLink.OnLinkClick() + 0x245 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.BarItemLink.OnLinkAction(DevExpress.XtraBars.BarLinkAction action, object actionArgs) + 0xb3 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.BarButtonItemLink.OnLinkAction(DevExpress.XtraBars.BarLinkAction action, object actionArgs) + 0x47e bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.BarItemLink.OnLinkActionCore(DevExpress.XtraBars.BarLinkAction action, object actionArgs) + 0x82 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.ViewInfo.BarSelectionInfo.ClickLink(DevExpress.XtraBars.BarItemLink link) + 0x85 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.ViewInfo.BarSelectionInfo.UnPressLink(DevExpress.XtraBars.BarItemLink link) + 0x1e5 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.Ribbon.Handler.BaseRibbonHandler.OnUnPressItem(DevExpress.Utils.DXMouseEventArgs e, DevExpress.XtraBars.Ribbon.ViewInfo.RibbonHitInfo hitInfo) + 0xa7 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.Ribbon.Handler.BaseRibbonHandler.OnUnPress(DevExpress.Utils.DXMouseEventArgs e, DevExpress.XtraBars.Ribbon.ViewInfo.RibbonHitInfo hitInfo) + 0x5f bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.Ribbon.Handler.BaseRibbonHandler.OnMouseUp(DevExpress.Utils.DXMouseEventArgs e) + 0x19a bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.Ribbon.Handler.RibbonHandler.OnMouseUp(DevExpress.Utils.DXMouseEventArgs e) + 0x47 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.Ribbon.RibbonControl.OnMouseUp(System.Windows.Forms.MouseEventArgs e) + 0x95 bytes System.Windows.Forms.dll!System.Windows.Forms.Control.WmMouseUp(ref System.Windows.Forms.Message m, System.Windows.Forms.MouseButtons button, int clicks) + 0x2d1 bytes System.Windows.Forms.dll!System.Windows.Forms.Control.WndProc(ref System.Windows.Forms.Message m) + 0x93a bytes DevExpress.Utils.v11.2.dll!DevExpress.Utils.Controls.ControlBase.WndProc(ref System.Windows.Forms.Message m) + 0x81 bytes DevExpress.XtraBars.v11.2.dll!DevExpress.XtraBars.Ribbon.RibbonControl.WndProc(ref System.Windows.Forms.Message m) + 0x85 bytes System.Windows.Forms.dll!System.Windows.Forms.Control.ControlNativeWindow.OnMessage(ref System.Windows.Forms.Message m) + 0x13 bytes System.Windows.Forms.dll!System.Windows.Forms.Control.ControlNativeWindow.WndProc(ref System.Windows.Forms.Message m) + 0x31 bytes System.Windows.Forms.dll!System.Windows.Forms.NativeWindow.Callback(System.IntPtr hWnd, int msg, System.IntPtr wparam, System.IntPtr lparam) + 0x96 bytes [Native to Managed Transition] [Managed to Native Transition] DevExpress.Utils.v11.2.dll!DevExpress.Utils.Win.Hook.ControlWndHook.WindowProc(System.IntPtr hWnd, int message, System.IntPtr wParam, System.IntPtr lParam) + 0x159 bytes [Native to Managed Transition] [Managed to Native Transition] System.Windows.Forms.dll!System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(System.IntPtr dwComponentID, int reason, int pvLoopData) + 0x287 bytes System.Windows.Forms.dll!System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(int reason, System.Windows.Forms.ApplicationContext context) + 0x16c bytes System.Windows.Forms.dll!System.Windows.Forms.Application.ThreadContext.RunMessageLoop(int reason, System.Windows.Forms.ApplicationContext context) + 0x61 bytes System.Windows.Forms.dll!System.Windows.Forms.Application.Run(System.Windows.Forms.Form mainForm) + 0x31 bytes Tici.Kraps.Services.dll!Tici.Kraps.Services.Container.DefaultApplicationRunner.Run() Line 41 + 0x17 bytes C# Kraps.exe!Tici.Kraps.Program.Main() Line 105 + 0x9 bytes C# [Native to Managed Transition] [Managed to Native Transition] mscorlib.dll!System.AppDomain.ExecuteAssembly(string assemblyFile, System.Security.Policy.Evidence assemblySecurity, string[] args) + 0x6d bytes Microsoft.VisualStudio.HostingProcess.Utilities.dll!Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() + 0x2a bytes mscorlib.dll!System.Threading.ThreadHelper.ThreadStart_Context(object state) + 0x63 bytes mscorlib.dll!System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext executionContext, System.Threading.ContextCallback callback, object state, bool ignoreSyncCtx) + 0xb0 bytes mscorlib.dll!System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext executionContext, System.Threading.ContextCallback callback, object state) + 0x2c bytes mscorlib.dll!System.Threading.ThreadHelper.ThreadStart() + 0x44 bytes [Native to Managed Transition]

    Read the article

  • YouTube API Security Error Flex

    - by 23tux
    Hi, I've tried to use the YoutTube API within a Flex project. But i got this error: *** Security Sandbox Violation *** SecurityDomain 'http://www.youtube.com/apiplayer?version=3' tried to access incompatible context 'file:///Users/YouTubePlayer/bin-debug/YouTubePlayer.html' Here are the two files: <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="http://ns.adobe.com/mxml/2009" xmlns:s="library://ns.adobe.com/flex/spark" xmlns:mx="library://ns.adobe.com/flex/halo" minWidth="1024" minHeight="768" xmlns:youtube="youtube.*" creationComplete="init();"> <fx:Script> <![CDATA[ [Bindable] private var ready:Boolean = true; private function init():void { Security.allowInsecureDomain("*"); Security.allowDomain("*"); Security.allowDomain('www.youtube.com'); Security.allowDomain('youtube.com'); Security.allowDomain('s.ytimg.com'); Security.allowDomain('i.ytimg.com'); } private function changing():void { /* trace("currentTime: " + player.getCurrentTime()); trace("startTime: " + player.startTime); trace("stopTime: " + player.stopTime); timeSlider.value = player.getCurrentTime() */ } private function startPlaying():void { player.play(); } private function checkStartSlider():void { if(startSlider.value > stopSlider.value) stopSlider.value = startSlider.value + 1; } private function checkStopSlider():void { if(stopSlider.value < startSlider.value) startSlider.value = stopSlider.value - 1; } ]]> </fx:Script> <s:VGroup> <youtube:Player id="player" videoID="DVFvcVuWyfE" change="changing();" ready="ready=true"/> <s:HGroup> <s:Button label="play" click="startPlaying();" /> </s:HGroup> <s:HGroup> <s:HSlider id="timeSlider" width="250" minimum="0" maximum="{player.stopTime}" snapInterval=".01" enabled="{ready}"/> <s:Label id="currentTimeLbl" text="current time: 0" /> </s:HGroup> <s:HGroup> <s:HSlider id="startSlider" width="250" minimum="0" maximum="{player.stopTime}" snapInterval=".01" change="checkStartSlider();" enabled="{ready}" value="0"/> <s:Label id="startTimeLbl" text="start time: {player.startTime}" /> </s:HGroup> <s:HGroup> <s:HSlider id="stopSlider" width="250" minimum="0" maximum="{player.stopTime}" snapInterval=".01" change="checkStopSlider();" enabled="{ready}" value="{player.stopTime}"/> <s:Label id="stopTimeLbl" text="stop time: {player.stopTime}" /> </s:HGroup> </s:VGroup> </s:Application> Here is the player package youtube { import flash.display.Loader; import flash.events.Event; import flash.events.TimerEvent; import flash.net.URLRequest; import flash.system.Security; import flash.utils.Timer; import mx.core.UIComponent; [Event(name="change", type="flash.events.Event")] [Event(name="ready", type="flash.events.Event")] public class Player extends UIComponent { private var player:Object; private var loader:Loader; private var _startTime:Number = 0; private var _stopTime:Number = 0; private var _videoID:String; private var metadataTimer:Timer = new Timer(200); private var playTimer:Timer = new Timer(200); public function Player() { // The player SWF file on www.youtube.com needs to communicate with your host // SWF file. Your code must call Security.allowDomain() to allow this // communication. Security.allowInsecureDomain("*"); Security.allowDomain("*"); // This will hold the API player instance once it is initialized. loader = new Loader(); loader.contentLoaderInfo.addEventListener(Event.INIT, onLoaderInit); loader.load(new URLRequest("http://www.youtube.com/apiplayer?version=3")); } private function onLoaderInit(event:Event):void { addChild(loader); loader.content.addEventListener("onReady", onPlayerReady); loader.content.addEventListener("onError", onPlayerError); loader.content.addEventListener("onStateChange", onPlayerStateChange); loader.content.addEventListener("onPlaybackQualityChange", onVideoPlaybackQualityChange); } private function onPlayerReady(event:Event):void { // Event.data contains the event parameter, which is the Player API ID trace("player ready:", Object(event).data); // Once this event has been dispatched by the player, we can use // cueVideoById, loadVideoById, cueVideoByUrl and loadVideoByUrl // to load a particular YouTube video. player = loader.content; // Set appropriate player dimensions for your application player.setSize(0, 0); } private function onPlayerError(event:Event):void { // Event.data contains the event parameter, which is the error code trace("player error:", Object(event).data); } private function onPlayerStateChange(event:Event):void { // Event.data contains the event parameter, which is the new player state trace("player state:", Object(event).data); } private function onVideoPlaybackQualityChange(event:Event):void { // Event.data contains the event parameter, which is the new video quality trace("video quality:", Object(event).data); } [Bindable] public function get videoID():String { return _videoID; } public function set videoID(value:String):void { _videoID = value; } [Bindable] public function get stopTime():Number { return _stopTime; } public function set stopTime(value:Number):void { _stopTime = value; } [Bindable] public function get startTime():Number { return _startTime; } public function set startTime(value:Number):void { _startTime = value; } public function play():void { if(_videoID!="") { player.loadVideoById(_videoID, 0); // add the event listener, so that all 200 milliseconds is an event dispatched metadataTimer.addEventListener(TimerEvent.TIMER, metadataTimeHandler); // if the timer is running, stop and reset it if(metadataTimer.running) metadataTimer.reset(); else metadataTimer.start(); } } private function metadataTimeHandler(e:TimerEvent):void { if(player.getDuration() > 0) { startTime = 0; stopTime = player.getDuration(); metadataTimer.reset(); metadataTimer.stop(); metadataTimer.removeEventListener(TimerEvent.TIMER, metadataTimeHandler); player.playVideo(); playTimer.addEventListener(TimerEvent.TIMER, playTimerHandler); dispatchEvent(new Event("ready")); } } private function playTimerHandler(e:TimerEvent):void { if(getCurrentTime() > _stopTime) { seekTo(startTime); } dispatchEvent(new Event(Event.CHANGE)); } public function getCurrentTime():Number { if(!player.getCurrentTime()) return 0; else return player.getCurrentTime(); } public function seekTo(time:uint):void { player.seekTo(time); } } } Hope someone can help. thx, tux

    Read the article

< Previous Page | 7 8 9 10 11