Search Results

Search found 30858 results on 1235 pages for 'database tuning'.

Page 110/1235 | < Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >

  • SQL SERVER – Reducing CXPACKET Wait Stats for High Transactional Database

    - by pinaldave
    While engaging in a performance tuning consultation for a client, a situation occurred where they were facing a lot of CXPACKET Waits Stats. The client asked me if I could help them reduce this huge number of wait stats. I usually receive this kind of request from other client as well, but the important thing to understand is whether this question has any merits or benefits, or not. Before we continue the resolution, let us understand what CXPACKET Wait Stats are. The official definition suggests that CXPACKET Wait Stats occurs when trying to synchronize the query processor exchange iterator. You may consider lowering the degree of parallelism if a conflict concerning this wait type develops into a problem. (from BOL) In simpler words, when a parallel operation is created for SQL Query, there are multiple threads for a single query. Each query deals with a different set of the data (or rows). Due to some reasons, one or more of the threads lag behind, creating the CXPACKET Wait Stat. Threads which came first have to wait for the slower thread to finish. The Wait by a specific completed thread is called CXPACKET Wait Stat. Note that CXPACKET Wait is done by completed thread and not the one which are unfinished. “Note that not all the CXPACKET wait types are bad. You might experience a case when it totally makes sense. There might also be cases when this is also unavoidable. If you remove this particular wait type for any query, then that query may run slower because the parallel operations are disabled for the query.” Now let us see what the best practices to reduce the CXPACKET Wait Stats are. The suggestions, with which you will find that if you search online through the browser, would play a major role as and might be asked about their jobs In addition, might tell you that you should set ‘maximum degree of parallelism’ to 1. I do agree with these suggestions, too; however, I think this is not the final resolutions. As soon as you set your entire query to run on single CPU, you will get a very bad performance from the queries which are actually performing okay when using parallelism. The best suggestion to this is that you set ‘the maximum degree of parallelism’ to a lower number or 1 (be very careful with this – it can create more problems) but tune the queries which can be benefited from multiple CPU’s. You can use query hint OPTION (MAXDOP 0) to run the server to use parallelism. Here is the two-quick script which helps to resolve these issues: Change MAXDOP at Server Level EXEC sys.sp_configure N'max degree of parallelism', N'1' GO RECONFIGURE WITH OVERRIDE GO Run Query with all the CPU (using parallelism) USE AdventureWorks GO SELECT * FROM Sales.SalesOrderDetail ORDER BY ProductID OPTION (MAXDOP 0) GO Below is the blog post which will help you to find all the parallel query in your server. SQL SERVER – Find Queries using Parallelism from Cached Plan Please note running Queries in single CPU may worsen your performance and it is not recommended at all. Infect this can be very bad advise. I strongly suggest that you identify the queries which are offending and tune them instead of following any other suggestions. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • Master Note for Generic Data Warehousing

    - by lajos.varady(at)oracle.com
    ++++++++++++++++++++++++++++++++++++++++++++++++++++ The complete and the most recent version of this article can be viewed from My Oracle Support Knowledge Section. Master Note for Generic Data Warehousing [ID 1269175.1] ++++++++++++++++++++++++++++++++++++++++++++++++++++In this Document   Purpose   Master Note for Generic Data Warehousing      Components covered      Oracle Database Data Warehousing specific documents for recent versions      Technology Network Product Homes      Master Notes available in My Oracle Support      White Papers      Technical Presentations Platforms: 1-914CU; This document is being delivered to you via Oracle Support's Rapid Visibility (RaV) process and therefore has not been subject to an independent technical review. Applies to: Oracle Server - Enterprise Edition - Version: 9.2.0.1 to 11.2.0.2 - Release: 9.2 to 11.2Information in this document applies to any platform. Purpose Provide navigation path Master Note for Generic Data Warehousing Components covered Read Only Materialized ViewsQuery RewriteDatabase Object PartitioningParallel Execution and Parallel QueryDatabase CompressionTransportable TablespacesOracle Online Analytical Processing (OLAP)Oracle Data MiningOracle Database Data Warehousing specific documents for recent versions 11g Release 2 (11.2)11g Release 1 (11.1)10g Release 2 (10.2)10g Release 1 (10.1)9i Release 2 (9.2)9i Release 1 (9.0)Technology Network Product HomesOracle Partitioning Advanced CompressionOracle Data MiningOracle OLAPMaster Notes available in My Oracle SupportThese technical articles have been written by Oracle Support Engineers to provide proactive and top level information and knowledge about the components of thedatabase we handle under the "Database Datawarehousing".Note 1166564.1 Master Note: Transportable Tablespaces (TTS) -- Common Questions and IssuesNote 1087507.1 Master Note for MVIEW 'ORA-' error diagnosis. For Materialized View CREATE or REFRESHNote 1102801.1 Master Note: How to Get a 10046 trace for a Parallel QueryNote 1097154.1 Master Note Parallel Execution Wait Events Note 1107593.1 Master Note for the Oracle OLAP OptionNote 1087643.1 Master Note for Oracle Data MiningNote 1215173.1 Master Note for Query RewriteNote 1223705.1 Master Note for OLTP Compression Note 1269175.1 Master Note for Generic Data WarehousingWhite Papers Transportable Tablespaces white papers Database Upgrade Using Transportable Tablespaces:Oracle Database 11g Release 1 (February 2009) Platform Migration Using Transportable Database Oracle Database 11g and 10g Release 2 (August 2008) Database Upgrade using Transportable Tablespaces: Oracle Database 10g Release 2 (April 2007) Platform Migration using Transportable Tablespaces: Oracle Database 10g Release 2 (April 2007)Parallel Execution and Parallel Query white papers Best Practices for Workload Management of a Data Warehouse on the Sun Oracle Database Machine (June 2010) Effective resource utilization by In-Memory Parallel Execution in Oracle Real Application Clusters 11g Release 2 (Feb 2010) Parallel Execution Fundamentals in Oracle Database 11g Release 2 (November 2009) Parallel Execution with Oracle Database 10g Release 2 (June 2005)Oracle Data Mining white paper Oracle Data Mining 11g Release 2 (March 2010)Partitioning white papers Partitioning with Oracle Database 11g Release 2 (September 2009) Partitioning in Oracle Database 11g (June 2007)Materialized Views and Query Rewrite white papers Oracle Materialized Views  and Query Rewrite (May 2005) Improving Performance using Query Rewrite in Oracle Database 10g (December 2003)Database Compression white papers Advanced Compression with Oracle Database 11g Release 2 (September 2009) Table Compression in Oracle Database 10g Release 2 (May 2005)Oracle OLAP white papers On-line Analytic Processing with Oracle Database 11g Release 2 (September 2009) Using Oracle Business Intelligence Enterprise Edition with the OLAP Option to Oracle Database 11g (July 2008)Generic white papers Enabling Pervasive BI through a Practical Data Warehouse Reference Architecture (February 2010) Optimizing and Protecting Storage with Oracle Database 11g Release 2 (November 2009) Oracle Database 11g for Data Warehousing and Business Intelligence (August 2009) Best practices for a Data Warehouse on Oracle Database 11g (September 2008)Technical PresentationsA selection of ObE - Oracle by Examples documents: Generic Using Basic Database Functionality for Data Warehousing (10g) Partitioning Manipulating Partitions in Oracle Database (11g Release 1) Using High-Speed Data Loading and Rolling Window Operations with Partitioning (11g Release 1) Using Partitioned Outer Join to Fill Gaps in Sparse Data (10g) Materialized View and Query Rewrite Using Materialized Views and Query Rewrite Capabilities (10g) Using the SQLAccess Advisor to Recommend Materialized Views and Indexes (10g) Oracle OLAP Using Microsoft Excel With Oracle 11g Cubes (how to analyze data in Oracle OLAP Cubes using Excel's native capabilities) Using Oracle OLAP 11g With Oracle BI Enterprise Edition (Creating OBIEE Metadata for OLAP 11g Cubes and querying those in BI Answers) Building OLAP 11g Cubes Querying OLAP 11g Cubes Creating Interactive APEX Reports Over OLAP 11g CubesSelection of presentations from the BIWA website:Extreme Data Warehousing With Exadata  by Hermann Baer (July 2010) (slides 2.5MB, recording 54MB)Data Mining Made Easy! Introducing Oracle Data Miner 11g Release 2 New "Work flow" GUI   by Charlie Berger (May 2010) (slides 4.8MB, recording 85MB )Best Practices for Deploying a Data Warehouse on Oracle Database 11g  by Maria Colgan (December 2009)  (slides 3MB, recording 18MB, white paper 3MB )

    Read the article

  • Oracle Database Upcoming Event dates to know

    - by mandy.ho
    February may be a short month, but it's not short of exciting Oracle events. From information packed "Real Performance Days" to participation in one of the biggest IT Security events - look out for Oracle Database and let us know if you are there with us! Feb 13-18, 2011 - Las Vegas, NV TDWI World Conference Series Join Oracle in highlighting Exadata x2-2 and x2-8, along with Oracle Business Intelligence, Enterprise Performance management and Data Warehousing solutions. Oracle will be presenting a workshop - Oracle Data Integration: Best-of-Breed Solutions for the Enterprise Wednesday, February 16, 2011 7p.m - 9p.m Glen Goodrich, Director of Product Management Christophe Dupupet, Director of Product Management, Data Integration http://events.tdwi.org/events/las-vegas-world-conference-2011/sessions/session-list.aspx Feb 14-17, 2011 - Barcelona, Spain Mobile World Congress MWC is an event where Oracle showcases the near complete breadth and depth of value that our Communications Industry strategy and Hardware and Software Solutions can deliver. Oracle supports Communications Service Providers today and delivers platforms and flexibility primed for the future. Oracle will have a two story Pavilion, along with an Oracle Java and Embedded Solutions Center - App Planet. The Exhibition times are Monday, 14th February 09.00 - 19.00 Tuesday, 15th February 09.00 - 19.00 Wednesday, 16th February 09.00 - 19.00 Thursday, 17th February 09.00 - 16.00 Have questions? Meet with Oracle Sales representatives at the Oracle Café. Open every day from 9am to 17:00pm. http://eventreg.oracle.com/webapps/events/ns/EventsDetail.jsp?p_eventId=109912&src=6973382&src=6973382&Act=4 Feb 14-18, 2011 - San Francisco, CA RSA Conference As the world's most complete, open, integrated business software and hardware systems provider, Oracle can uniquely safeguard your information throughout its entire lifecycle. Learn more by attending these sessions: Cloud Computing: A Brave New World for Security and Privacy (CLD-201) Wednesday, February 16 at 8:30 a.m. Databases Under Attack - Securing Heterogeneous Database Infrastructures (DAS-301) Thursday, February 17, 2011 at 8:30 a.m. Seven Steps to Protecting Databases (DAS-402) Friday, February 18 at 10:10 a.m. RSA Conference Attendees will also have the opportunity to meet with Oracle Security Solution experts, see live product demos and more by visiting booth # 1559. Hours: Monday, February 14, 6:00 p.m. - 8:00 p.m., Tuesday, February 15, 11:00 a.m. - 6:00 p.m. and 4:30 p.m. - 6:00p.m., Wednesday, February 16, 11:00 a.m. - 6:00 p.m., and Thursday, February 17, 11:00 a.m. - 3:00 p.m. http://eventreg.oracle.com/webapps/events/ns/EventsDetail.jsp?p_eventId=127657&src=6967733&src=6967733&Act=12 Feb 21-25, 2011 - Various Locations IOUG Presents - A Day of Real World Performance with Tom Kyte, Andrew Holdsworth and Graham Wood These Oracle experts will debate, discuss and delineate the best practices for designing hardware architectures, deploying Oracle databases, and developing applications that deliver the fastest possible performance for your business.Topics are covered in a conversational format - with all three chiming in where appropriate. Each presenter has their own screen projector to demonstrate their individual points to the participants. Customers will have the opportunity to get their specific performance/tuning questions answered and learn how to balance all the different environmental requirements for their applications to improve performance. Register today for the following dates and locations • February 21 in San Diego, CA • February 22 in Los Angeles, CA • February 23 in Seattle, WA • February 25 in Phoenix, AZ http://www.ioug.org/tabid/194/Default.aspx Feb 8-24 - Various Oracle Enterprise Cloud Summit This series of full-day events with cloud experts, sharing real-world best practices, reference architectures and more continues during the month of February. Attend the Oracle Enterprise Cloud Summit to learn how to: • Build a state-of-the-art cloud architecture • Leverage your existing IT investments • Optimize your IT management processes Whether you are considering a move to cloud computing or have already adopted a cloud model, this event offers you the insights you need to take full advantage of cloud computing. Check below to see if the event is coming to a city near you. http://www.oracle.com/us/corporate/events/cloud-events-214342.html

    Read the article

  • SQL SERVER – How to See Active SQL Server Connections For Database

    - by Pinal Dave
    Another question received via email - “How do I I know which user is connected to my database with how many connection?” Here is the script which will give us answer to the question. SELECT DB_NAME(dbid) AS DBName, COUNT(dbid) AS NumberOfConnections, loginame FROM    sys.sysprocesses GROUP BY dbid, loginame ORDER BY DB_NAME(dbid) Here is the resultset: Reference: Pinal Dave (http://blog.SQLAuthority.com)Filed under: PostADay, SQL, SQL Authority, SQL DMV, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Creating an ASP.NET Database using MS SQL 2008 in Visual Web Developer 2008

    This article illustrates how to create a database in ASP.NET. We ll be using Microsoft SQL Server 2 8 and developing it in Visual Web Developer Express 2 8. Given the importance of databases to most websites nowadays you should find this information useful when building just about any website based on Microsoft technology.... Email Marketing Software No Mthly Fees - Powerful email marketing software that installs on your server.

    Read the article

  • 24 Hours of PASS – Database Design Fundamentals

    - by drsql
    Well, I have to admit when I got the invite to speak during this event, I was honored (and still am for that matter). But I have to admit, I hope people don’t come in with any belief that I will be Celebrating SQL Server 2008 R2.  Most of what I will present could have been celebrated with SQL Server 6.5, as I will be doing my bread and butter Database Design Fundamentals session that I have done multiple times over the past few years. Ironically, had the people that you and I work with/for...(read more)

    Read the article

  • Oracle Data Integration Solutions and the Oracle EXADATA Database Machine

    - by João Vilanova
    Oracle's data integration solutions provide a complete, open and integrated solution for building, deploying, and managing real-time data-centric architectures in operational and analytical environments. Fully integrated with and optimized for the Oracle Exadata Database Machine, Oracle's data integration solutions take data integration to the next level and delivers extremeperformance and scalability for all the enterprise data movement and transformation needs. Easy-to-use, open and standards-based Oracle's data integration solutions dramatically improve productivity, provide unparalleled efficiency, and lower the cost of ownership.You can watch a video about this subject, after clicking on the link below.DIS for EXADATA Video

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Oracle Database 11gR2 už i na Windows

    - by david.krch
    Na konci týdne byla na OTN uvedena verze Oracle Database 11g Release 2 pro Windows - jak 32-bit, tak i 64-bit. Doplnila tak již dríve dostupné verze pro Linux, Solaris (jak na SPARC, tak i x86), AIX a HP-UX. Jako obvykle je možné stahnout instalacní soubory na všechny tyto platformy z OTN.

    Read the article

  • How To Backup Of MySQL Database Using PhpMyAdmin

    - by Jyoti
    It is very important to do backup of your MySql database, you will probably realize it when it is too late. A lot of web applications use MySql for storing the content. This can be blogs, and a lot of other things. When you have all your content as html files on your web server [...]

    Read the article

  • 7 Ways To Crash a Database

    Many articles on database administration take the perspective of trying to help you do your job better. We thought we might take a different tack and poke a little fun at some of more egregious mistakes we've seen over the years at IT shops.

    Read the article

  • Oracle Database to SQL Server Comparisons

    One of the initial obstacles a database administrator encounters is learning where features of his/her system live or reside on a less familiar system. Steve Callan approaches this feature comparison by taking SQL Server and mapping its features back into Oracle.

    Read the article

  • Explicit GRANTs and ROLES in Oracle Database 11g

    Many database shops have no idea of the security breaches that occur across user granted privilege and floating unused synonyms. James Koopmann offers tips for granting privileges explicitly to a user or group of users, and assigning privileges to a role and then granting that role to users.

    Read the article

  • Good practices - database programming, unit testing

    - by Piotr Rodak
    Jason Brimhal wrote today on his blog that new book, Defensive Database Programming , written by Alex Kuznetsov ( blog ) is coming to bookstores. Alex writes about various techniques that make your code safer to run. SQL injection is not the only one vulnerability the code may be exposed to. Some other include inconsistent search patterns, unsupported character sets, locale settings, issues that may occur during high concurrency conditions, logic that breaks when certain conditions are not met. The...(read more)

    Read the article

  • SQLAuthority News MS Access Database is the Way to Go April 1st Humor

    First of all, today is April 1- April Fools Day, so I have written this post for some light entertainment. My friend has just sent me an email about why a person should go for Access Database. For a short background, I used to be an MS Access user once (I will not call myself [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Customized Database Listener Names Now Supported for EBS

    - by sreelatha.mahendra(at)oracle.com
    The database listener name can now be configured using AutoConfig with newly introduced context variable s_db_listener. Prior to this certification it was not possible to use AutoConfig generated listener.ora files for managing listeners from SRVCTL when there were multiple RAC instances on the same server.To use this feature E-Business Suite customers need to apply the following patch:11.5.10CU2 - Roll Up Patch 9535311 (RUP-U) or higher12.0.x - R12.TXK.A.delta.7 or higher 12.1.x - R12.TXK.B.delta 3 or higher

    Read the article

  • Towards Database Continuous Delivery – What Next after Continuous Integration? A Checklist

    - by Ben Rees
    .dbd-banner p{ font-size:0.75em; padding:0 0 10px; margin:0 } .dbd-banner p span{ color:#675C6D; } .dbd-banner p:last-child{ padding:0; } @media ALL and (max-width:640px){ .dbd-banner{ background:#f0f0f0; padding:5px; color:#333; margin-top: 5px; } } -- Database delivery patterns & practices STAGE 4 AUTOMATED DEPLOYMENT If you’ve been fortunate enough to get to the stage where you’ve implemented some sort of continuous integration process for your database updates, then hopefully you’re seeing the benefits of that investment – constant feedback on changes your devs are making, advanced warning of data loss (prior to the production release on Saturday night!), a nice suite of automated tests to check business logic, so you know it’s going to work when it goes live, and so on. But what next? What can you do to improve your delivery process further, moving towards a full continuous delivery process for your database? In this article I describe some of the issues you might need to tackle on the next stage of this journey, and how to plan to overcome those obstacles before they appear. Our Database Delivery Learning Program consists of four stages, really three – source controlling a database, running continuous integration processes, then how to set up automated deployment (the middle stage is split in two – basic and advanced continuous integration, making four stages in total). If you’ve managed to work through the first three of these stages – source control, basic, then advanced CI, then you should have a solid change management process set up where, every time one of your team checks in a change to your database (whether schema or static reference data), this change gets fully tested automatically by your CI server. But this is only part of the story. Great, we know that our updates work, that the upgrade process works, that the upgrade isn’t going to wipe our 4Tb of production data with a single DROP TABLE. But – how do you get this (fully tested) release live? Continuous delivery means being always ready to release your software at any point in time. There’s a significant gap between your latest version being tested, and it being easily releasable. Just a quick note on terminology – there’s a nice piece here from Atlassian on the difference between continuous integration, continuous delivery and continuous deployment. This piece also gives a nice description of the benefits of continuous delivery. These benefits have been summed up by Jez Humble at Thoughtworks as: “Continuous delivery is a set of principles and practices to reduce the cost, time, and risk of delivering incremental changes to users” There’s another really useful piece here on Simple-Talk about the need for continuous delivery and how it applies to the database written by Phil Factor – specifically the extra needs and complexities of implementing a full CD solution for the database (compared to just implementing CD for, say, a web app). So, hopefully you’re convinced of moving on the the next stage! The next step after CI is to get some sort of automated deployment (or “release management”) process set up. But what should I do next? What do I need to plan and think about for getting my automated database deployment process set up? Can’t I just install one of the many release management tools available and hey presto, I’m ready! If only it were that simple. Below I list some of the areas that it’s worth spending a little time on, where a little planning and prep could go a long way. It’s also worth pointing out, that this should really be an evolving process. Depending on your starting point of course, it can be a long journey from your current setup to a full continuous delivery pipeline. If you’ve got a CI mechanism in place, you’re certainly a long way down that path. Nevertheless, we’d recommend evolving your process incrementally. Pages 157 and 129-141 of the book on Continuous Delivery (by Jez Humble and Dave Farley) have some great guidance on building up a pipeline incrementally: http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912 For now, in this post, we’ll look at the following areas for your checklist: You and Your Team Environments The Deployment Process Rollback and Recovery Development Practices You and Your Team It’s a cliché in the DevOps community that “It’s not all about processes and tools, really it’s all about a culture”. As stated in this DevOps report from Puppet Labs: “DevOps processes and tooling contribute to high performance, but these practices alone aren’t enough to achieve organizational success. The most common barriers to DevOps adoption are cultural: lack of manager or team buy-in, or the value of DevOps isn’t understood outside of a specific group”. Like most clichés, there’s truth in there – if you want to set up a database continuous delivery process, you need to get your boss, your department, your company (if relevant) onside. Why? Because it’s an investment with the benefits coming way down the line. But the benefits are huge – for HP, in the book A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet FutureSmart Firmware, these are summarized as: -2008 to present: overall development costs reduced by 40% -Number of programs under development increased by 140% -Development costs per program down 78% -Firmware resources now driving innovation increased by a factor of 8 (from 5% working on new features to 40% But what does this mean? It means that, when moving to the next stage, to make that extra investment in automating your deployment process, it helps a lot if everyone is convinced that this is a good thing. That they understand the benefits of automated deployment and are willing to make the effort to transform to a new way of working. Incidentally, if you’re ever struggling to convince someone of the value I’d strongly recommend just buying them a copy of this book – a great read, and a very practical guide to how it can really work at a large org. I’ve spoken to many customers who have implemented database CI who describe their deployment process as “The point where automation breaks down. Up to that point, the CI process runs, untouched by human hand, but as soon as that’s finished we revert to manual.” This deployment process can involve, for example, a DBA manually comparing an environment (say, QA) to production, creating the upgrade scripts, reading through them, checking them against an Excel document emailed to him/her the night before, turning to page 29 in his/her notebook to double-check how replication is switched off and on for deployments, and so on and so on. Painful, error-prone and lengthy. But the point is, if this is something like your deployment process, telling your DBA “We’re changing everything you do and your toolset next week, to automate most of your role – that’s okay isn’t it?” isn’t likely to go down well. There’s some work here to bring him/her onside – to explain what you’re doing, why there will still be control of the deployment process and so on. Or of course, if you’re the DBA looking after this process, you have to do a similar job in reverse. You may have researched and worked out how you’d like to change your methodology to start automating your painful release process, but do the dev team know this? What if they have to start producing different artifacts for you? Will they be happy with this? Worth talking to them, to find out. As well as talking to your DBA/dev team, the other group to get involved before implementation is your manager. And possibly your manager’s manager too. As mentioned, unless there’s buy-in “from the top”, you’re going to hit problems when the implementation starts to get rocky (and what tool/process implementations don’t get rocky?!). You need to have support from someone senior in your organisation – someone you can turn to when you need help with a delayed implementation, lack of resources or lack of progress. Actions: Get your DBA involved (or whoever looks after live deployments) and discuss what you’re planning to do or, if you’re the DBA yourself, get the dev team up-to-speed with your plans, Get your boss involved too and make sure he/she is bought in to the investment. Environments Where are you going to deploy to? And really this question is – what environments do you want set up for your deployment pipeline? Assume everyone has “Production”, but do you have a QA environment? Dedicated development environments for each dev? Proper pre-production? I’ve seen every setup under the sun, and there is often a big difference between “What we want, to do continuous delivery properly” and “What we’re currently stuck with”. Some of these differences are: What we want What we’ve got Each developer with their own dedicated database environment A single shared “development” environment, used by everyone at once An Integration box used to test the integration of all check-ins via the CI process, along with a full suite of unit-tests running on that machine In fact if you have a CI process running, you’re likely to have some sort of integration server running (even if you don’t call it that!). Whether you have a full suite of unit tests running is a different question… Separate QA environment used explicitly for manual testing prior to release “We just test on the dev environments, or maybe pre-production” A proper pre-production (or “staging”) box that matches production as closely as possible Hopefully a pre-production box of some sort. But does it match production closely!? A production environment reproducible from source control A production box which has drifted significantly from anything in source control The big question is – how much time and effort are you going to invest in fixing these issues? In reality this just involves figuring out which new databases you’re going to create and where they’ll be hosted – VMs? Cloud-based? What about size/data issues – what data are you going to include on dev environments? Does it need to be masked to protect access to production data? And often the amount of work here really depends on whether you’re working on a new, greenfield project, or trying to update an existing, brownfield application. There’s a world if difference between starting from scratch with 4 or 5 clean environments (reproducible from source control of course!), and trying to re-purpose and tweak a set of existing databases, with all of their surrounding processes and quirks. But for a proper release management process, ideally you have: Dedicated development databases, An Integration server used for testing continuous integration and running unit tests. [NB: This is the point at which deployments are automatic, without human intervention. Each deployment after this point is a one-click (but human) action], QA – QA engineers use a one-click deployment process to automatically* deploy chosen releases to QA for testing, Pre-production. The environment you use to test the production release process, Production. * A note on the use of the word “automatic” – when carrying out automated deployments this does not mean that the deployment is happening without human intervention (i.e. that something is just deploying over and over again). It means that the process of carrying out the deployment is automatic in that it’s not a person manually running through a checklist or set of actions. The deployment still requires a single-click from a user. Actions: Get your environments set up and ready, Set access permissions appropriately, Make sure everyone understands what the environments will be used for (it’s not a “free-for-all” with all environments to be accessed, played with and changed by development). The Deployment Process As described earlier, most existing database deployment processes are pretty manual. The following is a description of a process we hear very often when we ask customers “How do your database changes get live? How does your manual process work?” Check pre-production matches production (use a schema compare tool, like SQL Compare). Sometimes done by taking a backup from production and restoring in to pre-prod, Again, use a schema compare tool to find the differences between the latest version of the database ready to go live (i.e. what the team have been developing). This generates a script, User (generally, the DBA), reviews the script. This often involves manually checking updates against a spreadsheet or similar, Run the script on pre-production, and check there are no errors (i.e. it upgrades pre-production to what you hoped), If all working, run the script on production.* * this assumes there’s no problem with production drifting away from pre-production in the interim time period (i.e. someone has hacked something in to the production box without going through the proper change management process). This difference could undermine the validity of your pre-production deployment test. Red Gate is currently working on a free tool to detect this problem – sign up here at www.sqllighthouse.com, if you’re interested in testing early versions. There are several variations on this process – some better, some much worse! How do you automate this? In particular, step 3 – surely you can’t automate a DBA checking through a script, that everything is in order!? The key point here is to plan what you want in your new deployment process. There are so many options. At one extreme, pure continuous deployment – whenever a dev checks something in to source control, the CI process runs (including extensive and thorough testing!), before the deployment process keys in and automatically deploys that change to the live box. Not for the faint hearted – and really not something we recommend. At the other extreme, you might be more comfortable with a semi-automated process – the pre-production/production matching process is automated (with an error thrown if these environments don’t match), followed by a manual intervention, allowing for script approval by the DBA. One he/she clicks “Okay, I’m happy for that to go live”, the latter stages automatically take the script through to live. And anything in between of course – and other variations. But we’d strongly recommended sitting down with a whiteboard and your team, and spending a couple of hours mapping out “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” NB: Most of what we’re discussing here is about production deployments. It’s important to note that you will also need to map out a deployment process for earlier environments (for example QA). However, these are likely to be less onerous, and many customers opt for a much more automated process for these boxes. Actions: Sit down with your team and a whiteboard, and draw out the answers to the questions above for your production deployments – “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” Repeat for earlier environments (QA and so on). Rollback and Recovery If only every deployment went according to plan! Unfortunately they don’t – and when things go wrong, you need a rollback or recovery plan for what you’re going to do in that situation. Once you move in to a more automated database deployment process, you’re far more likely to be deploying more frequently than before. No longer once every 6 months, maybe now once per week, or even daily. Hence the need for a quick rollback or recovery process becomes paramount, and should be planned for. NB: These are mainly scenarios for handling rollbacks after the transaction has been committed. If a failure is detected during the transaction, the whole transaction can just be rolled back, no problem. There are various options, which we’ll explore in subsequent articles, things like: Immediately restore from backup, Have a pre-tested rollback script (remembering that really this is a “roll-forward” script – there’s not really such a thing as a rollback script for a database!) Have fallback environments – for example, using a blue-green deployment pattern. Different options have pros and cons – some are easier to set up, some require more investment in infrastructure; and of course some work better than others (the key issue with using backups, is loss of the interim transaction data that has been added between the failed deployment and the restore). The best mechanism will be primarily dependent on how your application works and how much you need a cast-iron failsafe mechanism. Actions: Work out an appropriate rollback strategy based on how your application and business works, your appetite for investment and requirements for a completely failsafe process. Development Practices This is perhaps the more difficult area for people to tackle. The process by which you can deploy database updates is actually intrinsically linked with the patterns and practices used to develop that database and linked application. So you need to decide whether you want to implement some changes to the way your developers actually develop the database (particularly schema changes) to make the deployment process easier. A good example is the pattern “Branch by abstraction”. Explained nicely here, by Martin Fowler, this is a process that can be used to make significant database changes (e.g. splitting a table) in a step-wise manner so that you can always roll back, without data loss – by making incremental updates to the database backward compatible. Slides 103-108 of the following slidedeck, from Niek Bartholomeus explain the process: https://speakerdeck.com/niekbartho/orchestration-in-meatspace As these slides show, by making a significant schema change in multiple steps – where each step can be rolled back without any loss of new data – this affords the release team the opportunity to have zero-downtime deployments with considerably less stress (because if an increment goes wrong, they can roll back easily). There are plenty more great patterns that can be implemented – the book Refactoring Databases, by Scott Ambler and Pramod Sadalage is a great read, if this is a direction you want to go in: http://www.amazon.com/Refactoring-Databases-Evolutionary-paperback-Addison-Wesley/dp/0321774515 But the question is – how much of this investment are you willing to make? How often are you making significant schema changes that would require these best practices? Again, there’s a difference here between migrating old projects and starting afresh – with the latter it’s much easier to instigate best practice from the start. Actions: For your business, work out how far down the path you want to go, amending your database development patterns to “best practice”. It’s a trade-off between implementing quality processes, and the necessity to do so (depending on how often you make complex changes). Socialise these changes with your development group. No-one likes having “best practice” changes imposed on them, so good to introduce these ideas and the rationale behind them early.   Summary The next stages of implementing a continuous delivery pipeline for your database changes (once you have CI up and running) require a little pre-planning, if you want to get the most out of the work, and for the implementation to go smoothly. We’ve covered some of the checklist of areas to consider – mainly in the areas of “Getting the team ready for the changes that are coming” and “Planning our your pipeline, environments, patterns and practices for development”, though there will be more detail, depending on where you’re coming from – and where you want to get to. This article is part of our database delivery patterns & practices series on Simple Talk. Find more articles for version control, automated testing, continuous integration & deployment.

    Read the article

  • Database Security Events in April

    - by Troy Kitch
    Wed, Apr 18, Executive Oracle Database Security Round Table - Tampa, FL Tue, Apr 24, ISC(2) Leadership Regional Event Series - San Diego, CA April 24 - May 17,  Independent Oracle Users Group Enterprise Data at Risk Seminar Series Tue, Apr 24 IOUG Enterprise Data at Risk Seminar Series - Toronto Wed, Apr 25 IOUG Enterprise Data at Risk Seminar Series - New York Thu, Apr 26 IOUG Enterprise Data at Risk Seminar Series - Boston Thu, Apr 26 ISC(2) Leadership Regional Event Series - San Jose, CA

    Read the article

  • Database Activity Monitoring Part 2 - SQL Injection Attacks

    If you think through the web sites you visit on a daily basis the chances are that you will need to login to verify who you are. In most cases your username would be stored in a relational database along with all the other registered users on that web site. Hopefully your password will be encrypted and not stored in plain text.

    Read the article

  • An XEvent a Day (29 of 31) – The Future – Looking at Database Startup in Denali

    - by Jonathan Kehayias
    As I have said previously in this series, one of my favorite aspects of Extended Events is that it allows you to look at what is going on under the covers in SQL Server, at a level that has never previously been possible. SQL Server Denali CTP1 includes a number of new Events that expand on the information that we can learn about how SQL Server operates and in today’s blog post we’ll look at how we can use those Events to look at what happens when a database starts up inside of SQL Server. First...(read more)

    Read the article

< Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >