Search Results

Search found 12601 results on 505 pages for 'index'.

Page 110/505 | < Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >

  • Controller instantiation in Yii framework by directory and namespace

    - by Einoras Bružas
    Yii framework supports modules and also subdirectories in controllers directory, so path to some specific action could be /index.php?r=module/controller/action or /index.php?r=subdirectoryInControllerDir/controller/action. My goal here is to have multiple subdirectories in controllers dir. Inside these folders I would create Controllers with the same names as parent ones using namespaces. However if I wrote namespace mynamespace; class MyController extends \MyController { } Yii would load MyController instead of mynamespace\MyController; Any suggestions here?

    Read the article

  • Where to buy a domain for my local server [closed]

    - by Pradyut Bhattacharya
    I have made a website and hosted in my local computer using a static ip Where can i buy a domain name such as www.something.com such that it can redirect to my static IP. So that if i m using a page like a http://localhost/index.jsp it can be accessed by http://www.something.com/index.jsp Does it matter if i run the server locally or should I buy a managed web hosting server from a big company if the traffic is low on my site?

    Read the article

  • How do I randomly generate a top-down 2D level with separate sections and is infinite?

    - by Bagofsheep
    I've read many other questions/answers about random level generation but most of them deal with either randomly/proceduraly generating 2D levels viewed from the side or 3D levels. What I'm trying to achieve is sort of like you were looking straight down on a Minecraft map. There is no height, but the borders of each "biome" or "section" of the map are random and varied. I already have basic code that can generate a perfectly square level with the same tileset (randomly picking segments from the tileset image), but I've encountered a major issue for wanting the level to be infinite: Beyond a certain point, the tiles' positions become negative on one or both of the axis. The code I use to only draw tiles the player can see relies on taking the tiles position and converting it to the index number that represents it in the array. As you well know, arrays cannot have a negative index. Here is some of my code: This generates the square (or rectangle) of tiles: //Scale is in tiles public void Generate(int sX, int sY) { scaleX = sX; scaleY = sY; for (int y = 0; y <= scaleY; y++) { tiles.Add(new List<Tile>()); for (int x = 0; x <= scaleX; x++) { tiles[tiles.Count - 1].Add(tileset.randomTile(x * tileset.TileSize, y * tileset.TileSize)); } } } Before I changed the code after realizing an array index couldn't be negative my for loops looked something like this to center the map around (0, 0): for (int y = -scaleY / 2; y <= scaleY / 2; y++) for (int x = -scaleX / 2; x <= scaleX / 2; x++) Here is the code that draws the tiles: int startX = (int)Math.Floor((player.Position.X - (graphics.Viewport.Width) - tileset.TileSize) / tileset.TileSize); int endX = (int)Math.Ceiling((player.Position.X + (graphics.Viewport.Width) + tileset.TileSize) / tileset.TileSize); int startY = (int)Math.Floor((player.Position.Y - (graphics.Viewport.Height) - tileset.TileSize) / tileset.TileSize); int endY = (int)Math.Ceiling((player.Position.Y + (graphics.Viewport.Height) + tileset.TileSize) / tileset.TileSize); for (int y = startY; y < endY; y++) { for (int x = startX; x < endX; x++) { if (x >= 0 && y >= 0 && x <= scaleX && y <= scaleY) tiles[y][x].Draw(spriteBatch); } } So to summarize what I'm asking: First, how do I randomly generate a top-down 2D map with different sections (not chunks per se, but areas with different tile sets) and second, how do I get past this negative array index issue?

    Read the article

  • prevent htaccess 301 redirects on sub-domain

    - by Ahmedk
    I have 301 redirects which direct /index.html to /site folder and when i created a sub-domain it also redirects the link to /site which causes 404 Not Found ex. members.mysite.com redirects to members.mysite/site which causes 404 error can I add execption for specific forlder or something without changing the redirect. htaccess content AddType text/x-server-parsed-html .htm .html RedirectMatch 301 ^/index.html(.*)$ /site$1

    Read the article

  • Free tools for SQL Server - Automating Execution Plan Analysis

    - by jchang
    Since this topic is being discussed, I will plug my own tools, SQL Exec Stats and (a little dated) documentation the main capability is cross-referencing index usuage with specific execution plans. another feature is generating execution plans for all stored procedures in a database, along with the index usage cross-reference. There are several sources of execution plans or plan handles, this could be a live trace, a previously saved trace, previously saved sqlplan files, from dm_exec_cached_plans,...(read more)

    Read the article

  • Fewer SQL Developers needed?

    - by Mercfh
    According to Tiobe, http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (not exactly reliable but still) and just noticing around here. I see less talk about SQL in general? Has there been a slump in web development that uses databases like Mysql, or Data Warehousing here recently? Or have alternate solutions like NoSQL/CouchDB/MongoDB started to take over or what? or have I just been missing something?

    Read the article

  • nginx rewrite rule to convert URL segments to query string parameters

    - by Nick
    I'm setting up an nginx server for the first time, and having some trouble getting the rewrite rules right for nginx. The Apache rules we used were: See if it's a real file or directory, if so, serve it, then send all requests for / to Director.php DirectoryIndex Director.php If the URL has one segment, pass it as rt RewriteRule ^/([a-zA-Z0-9\-\_]+)/$ /Director.php?rt=$1 [L,QSA] If the URL has two segments, pass it as rt and action RewriteRule ^/([a-zA-Z0-9\-\_]+)/([a-zA-Z0-9\-\_]+)/$ /Director.php?rt=$1&action=$2 [L,QSA] My nginx config file looks like: server { ... location / { try_files $uri $uri/ /index.php; } location ~ \.php$ { fastcgi_pass unix:/var/run/php5-fpm.sock; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; include fastcgi_params; } } How do I get the URL segments into Query String Parameters like in the Apache rules above? UPDATE 1 Trying Pothi's approach: # serve static files directly location ~* ^.+\.(jpg|jpeg|gif|css|png|js|ico|html)$ { access_log off; expires 30d; } location / { try_files $uri $uri/ /Director.php; rewrite "^/([a-zA-Z0-9\-\_]+)/$" "/Director.php?rt=$1" last; rewrite "^/([a-zA-Z0-9\-\_]+)/([a-zA-Z0-9\-\_]+)/$" "/Director.php?rt=$1&action=$2" last; } location ~ \.php$ { fastcgi_pass unix:/var/run/php5-fpm.sock; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; include fastcgi_params; } This produces the output No input file specified. on every request. I'm not clear on if the .php location gets triggered (and subsequently passed to php) when a rewrite in any block indicates a .php file or not. UPDATE 2 I'm still confused on how to setup these location blocks and pass the parameters. location /([a-zA-Z0-9\-\_]+)/ { fastcgi_pass unix:/var/run/php5-fpm.sock; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME ${document_root}Director.php?rt=$1{$args}; include fastcgi_params; } UPDATE 3 It looks like the root directive was missing, which caused the No input file specified. message. Now that this is fixed, I get the index file as if the URL were / on every request regardless of the number of URL segments. It appears that my location regular expression is being ignored. My current config is: # This location is ignored: location /([a-zA-Z0-9\-\_]+)/ { fastcgi_pass unix:/var/run/php5-fpm.sock; fastcgi_index Director.php; set $args $query_string&rt=$1; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; include fastcgi_params; } location / { try_files $uri $uri/ /Director.php; } location ~ \.php$ { fastcgi_pass unix:/var/run/php5-fpm.sock; fastcgi_index Director.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; include fastcgi_params; }

    Read the article

  • Sudo apt-get update problem 12.04

    - by user288291
    Please Guys help me to fix this issues with update my Ubuntu 12.04 desktop: Get:38 http://us.archive.ubuntu.com precise/universe Translation-en [3,341 kB] Fetched 24.5 MB in 7min 9s (57.1 kB/s) W: Failed to fetch http://extras.ubuntu.com/ubuntu/dists/precise/main/i18n/Index No Hash entry in Release file /var/lib/apt/lists/partial/extras.ubuntu.com_ubuntu_dists_precise_main_i18n_Index E: Some index files failed to download. They have been ignored, or old ones used instead.

    Read the article

  • Finding Tools Guidance in OUM

    - by user716869
    OUM is not tool – specific. However, it does include tool guidance.  Tool guidance in OUM includes: a mention of a tool that could be used to complete a specific task(s) templates created with a specific tool example work products in a specific tool links to tool resources Tool Supplemental Guides So how do you find all this helpful tool information? Start at the lowest level first – the Task Overview.  Even though the task overviews are written tool-agnostic, they sometimes mention suggestions, or examples of a tool that might be used to complete the task.  More specific tool information can be found in the Task Overview, Templates and Tools section.  In some cases, the tool used to create the template (for example, Microsoft Word, Powerpoint, Project and Visio) is useful. The Templates and Tools section also provides more specific tool guidance, such as links to: White Papers Viewlets Example Work Products Additional Resources Tool Supplemental Guides If you’re more interested in seeing what tools might be helpful in general for your project or to see if there is any tool guidance for a specific tool that your project is committed to using, go to the Supplemental Guidance page in OUM.  This page is available from the Method Navigation pull down located in the header of almost every OUM page. When you open the Supplemental Guidance page, the first thing you see is a table index of everything that is included on the page.  At the top of the right column are all the Tool Supplemental Guides available in OUM.  Use the index to navigate to any of the guides. Next in the right column is Discipline/Industry/View Resources and Samples.  Use the index to navigate to any of these topics and see what’s available and more specifically, if there is any tool guidance available.  For example, if you navigate to the Cloud Resources, you will find a link to the IT Strategies from Oracle page that provides information for Cloud Practitioner Guides, Cloud Reference Architectures and Cloud White Papers, including the Cloud Candidate Selection Tool and Cloud Computing Maturity Model. The section for Method Tool and Technique Cross References can take you to the Task to Tool Cross Reference.  This page provides a task listing with possible helpful tools and links to more information regarding the tools.  By no means is this tool guidance all inclusive.  You can use other tools not mentioned in OUM to complete an OUM task. The Method Tool and Technique Cross References can also take you to the various Technique pages (Index and Cross References).  While techniques are not necessarily “tools,” they can certainly provide valuable assistance in completing tasks. In the Other Resources section of the Supplemental Guidance page, you find links to the viewlets and white papers that are included within OUM.

    Read the article

  • Links don't work on new server

    - by Beko
    I've recently moved from server with php4 to php5. Now I cant open content in my page. Links look like this "page.com/news-it-is-rainy-day-1.html". But when I try to open link I just get the archive (news.html). I also use smarty template engine. My rewrite rule in .htacces looks like this: Options +FollowSymlinks RewriteEngine on RewriteRule ^news-(.*)\.html$ news.php?do=read&id=$1 RewriteRule ^news.html$ news.php RewriteRule ^index.html$ index.php AddType application/x-httpd-php .xml

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 2

    - by shiju
    In my previous post Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1, we have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. We have created generic repository and unit of work with EF Code First for our ASP.NET MVC 3 application and did basic CRUD operations against a simple domain entity. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. You can download the source code from http://efmvc.codeplex.com . The following frameworks will be used for this step by step tutorial.    1. ASP.NET MVC 3 RTM    2. EF Code First CTP 5    3. Unity 2.0 Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } }   View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below   public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. jquery-ui.js jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script>   Source Code You can download the source code from http://efmvc.codeplex.com/ . Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • ASP.NET MVC 3 Hosting :: How to Deploy Web Apps Using ASP.NET MVC 3, Razor and EF Code First - Part II

    - by mbridge
    In previous post, I have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } } View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. - jquery-ui.js - jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • Followup: Python 2.6, 3 abstract base class misunderstanding

    - by Aaron
    I asked a question at Python 2.6, 3 abstract base class misunderstanding. My problem was that python abstract base classes didn't work quite the way I expected them to. There was some discussion in the comments about why I would want to use ABCs at all, and Alex Martelli provided an excellent answer on why my use didn't work and how to accomplish what I wanted. Here I'd like to address why one might want to use ABCs, and show my test code implementation based on Alex's answer. tl;dr: Code after the 16th paragraph. In the discussion on the original post, statements were made along the lines that you don't need ABCs in Python, and that ABCs don't do anything and are therefore not real classes; they're merely interface definitions. An abstract base class is just a tool in your tool box. It's a design tool that's been around for many years, and a programming tool that is explicitly available in many programming languages. It can be implemented manually in languages that don't provide it. An ABC is always a real class, even when it doesn't do anything but define an interface, because specifying the interface is what an ABC does. If that was all an ABC could do, that would be enough reason to have it in your toolbox, but in Python and some other languages they can do more. The basic reason to use an ABC is when you have a number of classes that all do the same thing (have the same interface) but do it differently, and you want to guarantee that that complete interface is implemented in all objects. A user of your classes can rely on the interface being completely implemented in all classes. You can maintain this guarantee manually. Over time you may succeed. Or you might forget something. Before Python had ABCs you could guarantee it semi-manually, by throwing NotImplementedError in all the base class's interface methods; you must implement these methods in derived classes. This is only a partial solution, because you can still instantiate such a base class. A more complete solution is to use ABCs as provided in Python 2.6 and above. Template methods and other wrinkles and patterns are ideas whose implementation can be made easier with full-citizen ABCs. Another idea in the comments was that Python doesn't need ABCs (understood as a class that only defines an interface) because it has multiple inheritance. The implied reference there seems to be Java and its single inheritance. In Java you "get around" single inheritance by inheriting from one or more interfaces. Java uses the word "interface" in two ways. A "Java interface" is a class with method signatures but no implementations. The methods are the interface's "interface" in the more general, non-Java sense of the word. Yes, Python has multiple inheritance, so you don't need Java-like "interfaces" (ABCs) merely to provide sets of interface methods to a class. But that's not the only reason in software development to use ABCs. Most generally, you use an ABC to specify an interface (set of methods) that will likely be implemented differently in different derived classes, yet that all derived classes must have. Additionally, there may be no sensible default implementation for the base class to provide. Finally, even an ABC with almost no interface is still useful. We use something like it when we have multiple except clauses for a try. Many exceptions have exactly the same interface, with only two differences: the exception's string value, and the actual class of the exception. In many exception clauses we use nothing about the exception except its class to decide what to do; catching one type of exception we do one thing, and another except clause catching a different exception does another thing. According to the exception module's doc page, BaseException is not intended to be derived by any user defined exceptions. If ABCs had been a first class Python concept from the beginning, it's easy to imagine BaseException being specified as an ABC. But enough of that. Here's some 2.6 code that demonstrates how to use ABCs, and how to specify a list-like ABC. Examples are run in ipython, which I like much better than the python shell for day to day work; I only wish it was available for python3. Your basic 2.6 ABC: from abc import ABCMeta, abstractmethod class Super(): __metaclass__ = ABCMeta @abstractmethod def method1(self): pass Test it (in ipython, python shell would be similar): In [2]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods method1 Notice the end of the last line, where the TypeError exception tells us that method1 has not been implemented ("abstract methods method1"). That was the method designated as @abstractmethod in the preceding code. Create a subclass that inherits Super, implement method1 in the subclass and you're done. My problem, which caused me to ask the original question, was how to specify an ABC that itself defines a list interface. My naive solution was to make an ABC as above, and in the inheritance parentheses say (list). My assumption was that the class would still be abstract (can't instantiate it), and would be a list. That was wrong; inheriting from list made the class concrete, despite the abstract bits in the class definition. Alex suggested inheriting from collections.MutableSequence, which is abstract (and so doesn't make the class concrete) and list-like. I used collections.Sequence, which is also abstract but has a shorter interface and so was quicker to implement. First, Super derived from Sequence, with nothing extra: from abc import abstractmethod from collections import Sequence class Super(Sequence): pass Test it: In [6]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods __getitem__, __len__ We can't instantiate it. A list-like full-citizen ABC; yea! Again, notice in the last line that TypeError tells us why we can't instantiate it: __getitem__ and __len__ are abstract methods. They come from collections.Sequence. But, I want a bunch of subclasses that all act like immutable lists (which collections.Sequence essentially is), and that have their own implementations of my added interface methods. In particular, I don't want to implement my own list code, Python already did that for me. So first, let's implement the missing Sequence methods, in terms of Python's list type, so that all subclasses act as lists (Sequences). First let's see the signatures of the missing abstract methods: In [12]: help(Sequence.__getitem__) Help on method __getitem__ in module _abcoll: __getitem__(self, index) unbound _abcoll.Sequence method (END) In [14]: help(Sequence.__len__) Help on method __len__ in module _abcoll: __len__(self) unbound _abcoll.Sequence method (END) __getitem__ takes an index, and __len__ takes nothing. And the implementation (so far) is: from abc import abstractmethod from collections import Sequence class Super(Sequence): # Gives us a list member for ABC methods to use. def __init__(self): self._list = [] # Abstract method in Sequence, implemented in terms of list. def __getitem__(self, index): return self._list.__getitem__(index) # Abstract method in Sequence, implemented in terms of list. def __len__(self): return self._list.__len__() # Not required. Makes printing behave like a list. def __repr__(self): return self._list.__repr__() Test it: In [34]: a = Super() In [35]: a Out[35]: [] In [36]: print a [] In [37]: len(a) Out[37]: 0 In [38]: a[0] --------------------------------------------------------------------------- IndexError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() /home/aaron/projects/test/test.py in __getitem__(self, index) 10 # Abstract method in Sequence, implemented in terms of list. 11 def __getitem__(self, index): ---> 12 return self._list.__getitem__(index) 13 14 # Abstract method in Sequence, implemented in terms of list. IndexError: list index out of range Just like a list. It's not abstract (for the moment) because we implemented both of Sequence's abstract methods. Now I want to add my bit of interface, which will be abstract in Super and therefore required to implement in any subclasses. And we'll cut to the chase and add subclasses that inherit from our ABC Super. from abc import abstractmethod from collections import Sequence class Super(Sequence): # Gives us a list member for ABC methods to use. def __init__(self): self._list = [] # Abstract method in Sequence, implemented in terms of list. def __getitem__(self, index): return self._list.__getitem__(index) # Abstract method in Sequence, implemented in terms of list. def __len__(self): return self._list.__len__() # Not required. Makes printing behave like a list. def __repr__(self): return self._list.__repr__() @abstractmethod def method1(): pass class Sub0(Super): pass class Sub1(Super): def __init__(self): self._list = [1, 2, 3] def method1(self): return [x**2 for x in self._list] def method2(self): return [x/2.0 for x in self._list] class Sub2(Super): def __init__(self): self._list = [10, 20, 30, 40] def method1(self): return [x+2 for x in self._list] We've added a new abstract method to Super, method1. This makes Super abstract again. A new class Sub0 which inherits from Super but does not implement method1, so it's also an ABC. Two new classes Sub1 and Sub2, which both inherit from Super. They both implement method1 from Super, so they're not abstract. Both implementations of method1 are different. Sub1 and Sub2 also both initialize themselves differently; in real life they might initialize themselves wildly differently. So you have two subclasses which both "is a" Super (they both implement Super's required interface) although their implementations are different. Also remember that Super, although an ABC, provides four non-abstract methods. So Super provides two things to subclasses: an implementation of collections.Sequence, and an additional abstract interface (the one abstract method) that subclasses must implement. Also, class Sub1 implements an additional method, method2, which is not part of Super's interface. Sub1 "is a" Super, but it also has additional capabilities. Test it: In [52]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods method1 In [53]: a = Sub0() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Sub0 with abstract methods method1 In [54]: a = Sub1() In [55]: a Out[55]: [1, 2, 3] In [56]: b = Sub2() In [57]: b Out[57]: [10, 20, 30, 40] In [58]: print a, b [1, 2, 3] [10, 20, 30, 40] In [59]: a, b Out[59]: ([1, 2, 3], [10, 20, 30, 40]) In [60]: a.method1() Out[60]: [1, 4, 9] In [61]: b.method1() Out[61]: [12, 22, 32, 42] In [62]: a.method2() Out[62]: [0.5, 1.0, 1.5] [63]: a[:2] Out[63]: [1, 2] In [64]: a[0] = 5 --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: 'Sub1' object does not support item assignment Super and Sub0 are abstract and can't be instantiated (lines 52 and 53). Sub1 and Sub2 are concrete and have an immutable Sequence interface (54 through 59). Sub1 and Sub2 are instantiated differently, and their method1 implementations are different (60, 61). Sub1 includes an additional method2, beyond what's required by Super (62). Any concrete Super acts like a list/Sequence (63). A collections.Sequence is immutable (64). Finally, a wart: In [65]: a._list Out[65]: [1, 2, 3] In [66]: a._list = [] In [67]: a Out[67]: [] Super._list is spelled with a single underscore. Double underscore would have protected it from this last bit, but would have broken the implementation of methods in subclasses. Not sure why; I think because double underscore is private, and private means private. So ultimately this whole scheme relies on a gentleman's agreement not to reach in and muck with Super._list directly, as in line 65 above. Would love to know if there's a safer way to do that.

    Read the article

  • Apache 2.4 + PHP-FPM + ProxyPassMatch

    - by apfelbox
    I recently installed Apache 2.4 on my local machine, together with PHP 5.4.8 using PHP-FPM. Everything went quite smoothly (after a while...) but there is still a strange error: I configured Apache for PHP-FPM like this: <VirtualHost *:80> ServerName localhost DocumentRoot "/Users/apfelbox/WebServer" ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/Users/apfelbox/WebServer/$1 </VirtualHost> It works, for example if I call http://localhost/info.php I get the correct phpinfo() (it is just a test file). If I call a directory however, I get a 404 with body File not found. and in the error log: [Tue Nov 20 21:27:25.191625 2012] [proxy_fcgi:error] [pid 28997] [client ::1:57204] AH01071: Got error 'Primary script unknown\n' Update I now tried doing the proxying with mod_rewrite: <VirtualHost *:80> ServerName localhost DocumentRoot "/Users/apfelbox/WebServer" RewriteEngine on RewriteCond %{REQUEST_FILENAME} !-d RewriteRule ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/Users/apfelbox/WebServer/$1 [L,P] </VirtualHost> But the problem is: it is always redirecting, because on http://localhost/ automatically http://localhost/index.php is requested, because of DirectoryIndex index.php index.html Update 2 Ok, so I think "maybe check whether there is a file to give to the proxy first: <VirtualHost *:80> ServerName localhost DocumentRoot "/Users/apfelbox/WebServer" RewriteEngine on RewriteCond %{REQUEST_FILENAME} !-d RewriteCond %{REQUEST_FILENAME} -f RewriteRule ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/Users/apfelbox/WebServer/$1 [L,P] </VirtualHost> Now the complete rewriting does not work anymore... Update 3 Now I have this solution: ServerName localhost DocumentRoot "/Users/apfelbox/WebServer" RewriteEngine on RewriteCond /Users/apfelbox/WebServer/%{REQUEST_FILENAME} -f RewriteRule ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/Users/apfelbox/WebServer/$1 [L,P] First check, that there is a file to pass to PHP-FPM (with the full and absolute path) and then do the rewriting. This does not work when using URL rewriting inside a subdirectory, also it fails for URLs like http://localhost/index.php/test/ So back to square one. Any ideas?

    Read the article

  • Nginx as a proxy to Tomcat

    - by user36812
    Pardon me, this is my first attempt at Nginx-Jetty instead of Apache-JK-Tomcat. I deployed myapp.war file to $JETTY_HOME/webapps/, and the app is accessible at the url: http://myIP:8080/myapp I did a default installation of Nginx, and the default Nginx page is accessible at myIP Then, I modified the default domain under /etc/nginx/sites-enabled to the following: server { listen 80; server_name mydomain.com; access_log /var/log/nginx/localhost.access.log; location / { #root /var/www/nginx-default; #index index.html index.htm; proxy_pass http://127.0.0.1:8080/myapp/; } error_page 500 502 503 504 /50x.html; location = /50x.html { root /var/www/nginx-default; } } Now I get the index page of mypp (running in jetty) when I hit myIP, which is good. But all the links are malformed. eg. The link to css is mydomain.com/myapp/css/style.css while what it should have been is mydomain.com/css/style.css. It seems to be mapping mydomain.com to 127.0.0.1:8080 instead of 127.0.0.1:8080/myapp/ Any idea what am missing? Do I need to change anything on the Jetty side too?

    Read the article

  • Nginx as a proxy to Jetty

    - by user36812
    Pardon me, this is my first attempt at Nginx-Jetty instead of Apache-JK-Tomcat. I deployed myapp.war file to $JETTY_HOME/webapps/, and the app is accessible at the url: http://myIP:8080/myapp I did a default installation of Nginx, and the default Nginx page is accessible at myIP Then, I modified the default domain under /etc/nginx/sites-enabled to the following: server { listen 80; server_name mydomain.com; access_log /var/log/nginx/localhost.access.log; location / { #root /var/www/nginx-default; #index index.html index.htm; proxy_pass http://127.0.0.1:8080/myapp/; } error_page 500 502 503 504 /50x.html; location = /50x.html { root /var/www/nginx-default; } } Now I get the index page of mypp (running in jetty) when I hit myIP, which is good. But all the links are malformed. eg. The link to css is mydomain.com/myapp/css/style.css while what it should have been is mydomain.com/css/style.css. It seems to be mapping mydomain.com to 127.0.0.1:8080 instead of 127.0.0.1:8080/myapp/ Any idea what am missing? Do I need to change anything on the Jetty side too?

    Read the article

  • Need help in setting lighttpd on Ubuntu 9.10

    - by hap497
    Hi, I am trying to run lighttpd on Ubuntu 9.10. I get the conf file from the doc directory of lighttpd source. $ sudo ./lighttpd -f lighttpd.conf $ ps -ef | grep lighttpd root 2094 1 0 19:40 ? 00:00:00 ./lighttpd -f lighttpd.conf This is my lighttpd.conf: $ more lighttpd.conf # lighttpd configuration file # # use it as a base for lighttpd 1.0.0 and above # # $Id: lighttpd.conf,v 1.7 2004/11/03 22:26:05 weigon Exp $ ############ Options you really have to take care of #################### ## modules to load # at least mod_access and mod_accesslog should be loaded # all other module should only be loaded if really neccesary # - saves some time # - saves memory server.modules = ( # "mod_rewrite", # "mod_redirect", # "mod_alias", "mod_access", # "mod_trigger_b4_dl", # "mod_auth", # "mod_status", # "mod_setenv", # "mod_fastcgi", # "mod_proxy", # "mod_simple_vhost", # "mod_evhost", # "mod_userdir", # "mod_cgi", # "mod_compress", # "mod_ssi", # "mod_usertrack", # "mod_expire", # "mod_secdownload", # "mod_rrdtool", "mod_accesslog" ) ## A static document-root. For virtual hosting take a look at the ## mod_simple_vhost module. server.document-root = "/srv/www/htdocs/" ## where to send error-messages to server.errorlog = "/var/log/lighttpd/error.log" # files to check for if .../ is requested index-file.names = ( "index.php", "index.html", "index.htm", "default.htm" ) ## set the event-handler (read the performance section in the manual) # server.event-handler = "freebsd-kqueue" # needed on OS X # mimetype mapping mimetype.assign = ( ".pdf" => "application/pdf", ".sig" => "application/pgp-signature", ".spl" => "application/futuresplash", ".class" => "application/octet-stream", ".ps" => "application/postscript", ".torrent" => "application/x-bittorrent", ".dvi" => "application/x-dvi", ".gz" => "application/x-gzip", ".pac" => "application/x-ns-proxy-autoconfig", ".swf" => "application/x-shockwave-flash", ".tar.gz" => "application/x-tgz", ".tgz" => "application/x-tgz", ".tar" => "application/x-tar", ".zip" => "application/zip", ".mp3" => "audio/mpeg", ".m3u" => "audio/x-mpegurl", ".wma" => "audio/x-ms-wma", ".wax" => "audio/x-ms-wax", ".ogg" => "application/ogg", ".wav" => "audio/x-wav", ".gif" => "image/gif", ".jar" => "application/x-java-archive", ".jpg" => "image/jpeg", ".jpeg" => "image/jpeg", ".png" => "image/png", ".xbm" => "image/x-xbitmap", ".xpm" => "image/x-xpixmap", ".xwd" => "image/x-xwindowdump", ".css" => "text/css", ".html" => "text/html", ".htm" => "text/html", ".js" => "text/javascript", ".asc" => "text/plain", ".c" => "text/plain", ".cpp" => "text/plain", ".log" => "text/plain", ".conf" => "text/plain", ".text" => "text/plain", ".txt" => "text/plain", ".dtd" => "text/xml", ".xml" => "text/xml", ".mpeg" => "video/mpeg", ".mpg" => "video/mpeg", ".mov" => "video/quicktime", ".qt" => "video/quicktime", ".avi" => "video/x-msvideo", ".asf" => "video/x-ms-asf", ".asx" => "video/x-ms-asf", ".wmv" => "video/x-ms-wmv", ".bz2" => "application/x-bzip", ".tbz" => "application/x-bzip-compressed-tar", ".tar.bz2" => "application/x-bzip-compressed-tar", # default mime type "" => "application/octet-stream", ) # Use the "Content-Type" extended attribute to obtain mime type if possible #mimetype.use-xattr = "enable" ## send a different Server: header ## be nice and keep it at lighttpd # server.tag = "lighttpd" #### accesslog module accesslog.filename = "/var/log/lighttpd/access.log" ## deny access the file-extensions # # ~ is for backupfiles from vi, emacs, joe, ... # .inc is often used for code includes which should in general not be part # of the document-root url.access-deny = ( "~", ".inc" ) $HTTP["url"] =~ "\.pdf$" { server.range-requests = "disable" } ## # which extensions should not be handle via static-file transfer # # .php, .pl, .fcgi are most often handled by mod_fastcgi or mod_cgi static-file.exclude-extensions = ( ".php", ".pl", ".fcgi" ) ######### Options that are good to be but not neccesary to be changed ####### ## bind to port (default: 80) #server.port = 81 ## bind to localhost (default: all interfaces) #server.bind = "127.0.0.1" ## error-handler for status 404 #server.error-handler-404 = "/error-handler.html" #server.error-handler-404 = "/error-handler.php" ## to help the rc.scripts #server.pid-file = "/var/run/lighttpd.pid" ###### virtual hosts ## ## If you want name-based virtual hosting add the next three settings and load ## mod_simple_vhost ## ## document-root = ## virtual-server-root + virtual-server-default-host + virtual-server-docroot ## or ## virtual-server-root + http-host + virtual-server-docroot ## #simple-vhost.server-root = "/srv/www/vhosts/" #simple-vhost.default-host = "www.example.org" #simple-vhost.document-root = "/htdocs/" ## ## Format: <errorfile-prefix><status-code>.html ## -> ..../status-404.html for 'File not found' #server.errorfile-prefix = "/usr/share/lighttpd/errors/status-" #server.errorfile-prefix = "/srv/www/errors/status-" ## virtual directory listings #dir-listing.activate = "enable" ## select encoding for directory listings #dir-listing.encoding = "utf-8" ## enable debugging #debug.log-request-header = "enable" #debug.log-response-header = "enable" #debug.log-request-handling = "enable" #debug.log-file-not-found = "enable" ### only root can use these options # # chroot() to directory (default: no chroot() ) #server.chroot = "/" ## change uid to <uid> (default: don't care) #server.username = "wwwrun" ## change uid to <uid> (default: don't care) #server.groupname = "wwwrun" #### compress module #compress.cache-dir = "/var/cache/lighttpd/compress/" #compress.filetype = ("text/plain", "text/html") #### proxy module ## read proxy.txt for more info #proxy.server = ( ".php" => # ( "localhost" => # ( # "host" => "192.168.0.101", # "port" => 80 # ) # ) # ) #### fastcgi module ## read fastcgi.txt for more info ## for PHP don't forget to set cgi.fix_pathinfo = 1 in the php.ini #fastcgi.server = ( ".php" => # ( "localhost" => # ( # "socket" => "/var/run/lighttpd/php-fastcgi.s ocket", # "bin-path" => "/usr/local/bin/php-cgi" # ) # ) # ) #### CGI module #cgi.assign = ( ".pl" => "/usr/bin/perl", # ".cgi" => "/usr/bin/perl" ) # #### SSL engine #ssl.engine = "enable" #ssl.pemfile = "/etc/ssl/private/lighttpd.pem" #### status module #status.status-url = "/server-status" #status.config-url = "/server-config" #### auth module ## read authentication.txt for more info #auth.backend = "plain" #auth.backend.plain.userfile = "lighttpd.user" #auth.backend.plain.groupfile = "lighttpd.group" #auth.backend.ldap.hostname = "localhost" #auth.backend.ldap.base-dn = "dc=my-domain,dc=com" #auth.backend.ldap.filter = "(uid=$)" #auth.require = ( "/server-status" => # ( # "method" => "digest", # "realm" => "download archiv", # "require" => "user=jan" # ), # "/server-config" => # ( # "method" => "digest", # "realm" => "download archiv", # "require" => "valid-user" # ) # ) #### url handling modules (rewrite, redirect, access) #url.rewrite = ( "^/$" => "/server-status" ) #url.redirect = ( "^/wishlist/(.+)" => "http://www.123.org/$1" ) #### both rewrite/redirect support back reference to regex conditional using %n #$HTTP["host"] =~ "^www\.(.*)" { # url.redirect = ( "^/(.*)" => "http://%1/$1" ) #} # # define a pattern for the host url finding # %% => % sign # %0 => domain name + tld # %1 => tld # %2 => domain name without tld # %3 => subdomain 1 name # %4 => subdomain 2 name # #evhost.path-pattern = "/srv/www/vhosts/%3/htdocs/" #### expire module #expire.url = ( "/buggy/" => "access 2 hours", "/asdhas/" => "ac cess plus 1 seconds 2 minutes") #### ssi #ssi.extension = ( ".shtml" ) #### rrdtool #rrdtool.binary = "/usr/bin/rrdtool" #rrdtool.db-name = "/var/lib/lighttpd/lighttpd.rrd" #### setenv #setenv.add-request-header = ( "TRAV_ENV" => "mysql://user@host/db" ) #setenv.add-response-header = ( "X-Secret-Message" => "42" ) ## for mod_trigger_b4_dl # trigger-before-download.gdbm-filename = "/var/lib/lighttpd/trigger.db" # trigger-before-download.memcache-hosts = ( "127.0.0.1:11211" ) # trigger-before-download.trigger-url = "^/trigger/" # trigger-before-download.download-url = "^/download/" # trigger-before-download.deny-url = "http://127.0.0.1/index.html" # trigger-before-download.trigger-timeout = 10 #### variable usage: ## variable name without "." is auto prefixed by "var." and becomes "var.bar" #bar = 1 #var.mystring = "foo" ## integer add #bar += 1 ## string concat, with integer cast as string, result: "www.foo1.com" #server.name = "www." + mystring + var.bar + ".com" ## array merge #index-file.names = (foo + ".php") + index-file.names #index-file.names += (foo + ".php") #### include #include /etc/lighttpd/lighttpd-inc.conf ## same as above if you run: "lighttpd -f /etc/lighttpd/lighttpd.conf" #include "lighttpd-inc.conf" #### include_shell #include_shell "echo var.a=1" ## the above is same as: #var.a=1 When I go to browser and hit 'http://127.0.0.1', I get link not found. Any idea?

    Read the article

  • nginx + wordpress in /wordpress subdir

    - by nkr1pt
    I installed nginx and would like to setup wordpress as a final step. I followed many howtos but am unable to get it working. The setup is fairly straightforward, the root dir of the webserver is /data/Sites/nkr1pt.homelinux.net. In that root dir I created a symlink to the wordpress folder in /usr/local/wordpress, so in fact all wordpress files can be accessed at /data/Sites/nkr1pt.homelinux.net/wordpress. Permissions are ok. The plan is to get wordpress working at http://sirius/wordpress, the server's name is sirius. spawn-fcgi is running and listening on port 7777. Here you can see the relevant config: server { listen 80; listen 8080; server_name sirius; root /data/Sites/nkr1pt.homelinux.net; passenger_enabled on; passenger_base_uri /redmine; #charset koi8-r; #access_log logs/access.log main; location ^~ /data { root /data/Sites/nkr1pt.homelinux.net; autoindex on; auth_basic "Restricted"; auth_basic_user_file htpasswd; } location ^~ /dump { root /data/Sites/nkr1pt.homelinux.net; autoindex on; } location ^~ /wordpress { try_files $uri $uri/ /wordpress/index.php; } # pass the PHP scripts to FastCGI server listening on 127.0.0.1:7777 location ~ \.php$ { #fastcgi_split_path_info ^(/wordpress)(/.*)$; fastcgi_pass localhost:7777; #fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; include fastcgi_params; #index index.php; } please note that redmine, and the locations dump and data are working perfectly, it is only wordpress that I cannot get to work. Can you please help me to the correct wordpress configuration in nginx? All help is much appreciated!

    Read the article

  • Conditionally changing MIME type in nginx

    - by Peter
    I'm using nginx as a frontend to Rails. All pages are cached as .html files on disk, and nginx serves these files if they exist. I want to send the correct MIME type for feeds (application/rss+xml), but the way I have so far is quite ugly, and I'm wondering if there is a cleaner way. Here is my config: location ~ /feed/$ { types {} default_type application/rss+xml; root /var/www/cache/; if (-f request_filename/index.html) { rewrite (.*) $1/index.html break; } if (-f request_filename.html) { rewrite (.*) $1.html break; } if (-f request_filename) { break; } if (!-f request_filename) { proxy_pass http://mongrel; break; } } location / { root /var/www/cache/; if (-f request_filename/index.html) { rewrite (.*) $1/index.html break; } if (-f request_filename.html) { rewrite (.*) $1.html break; } if (-f request_filename) { break; } if (!-f request_filename) { proxy_pass http://mongrel; break; } } My questions: Is there a better way to change the MIME type? All cached files have .html extensions and I cannot change this. Is there a way to factor out the if conditions in /feed/$ and /? I understand that I can use include, but I'm hoping for a better way. Putting part of the config in a different file is not that readable. Can you spot any bugs in the if conditions? I'm using nginx 0.6.32 (Debian Lenny). I prefer to use the version in APT. Thanks.

    Read the article

  • One nginx rules for lots of subdomain

    - by komase
    I have lots of subdomain in a server. Every subdomain has its own Drupal boost rules, like in below codes: server { server_name subdomain1.website.com; location / { root /var/www/html/subdomain/subdomain1.website.com; index index.php; set $boost ""; set $boost_query "_"; if ( $request_method = GET ) { set $boost G; } if ($http_cookie !~ "DRUPAL_UID") { set $boost "${boost}D"; } if ($query_string = "") { set $boost "${boost}Q"; } if ( -f $document_root/cache/normal/$host$request_uri$boost_query.html ) { set $boost "${boost}F"; } if ($boost = GDQF){ rewrite ^.*$ /cache/normal/$host/$request_uri$boost_query.html break; } if (!-e $request_filename) { rewrite ^/(.*)$ /index.php?q=$1 last; break; } } location ~ \.php$ { fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME /var/www/html/subdomain/subdomain1.website.com$fastcgi_script_name; include fastcgi_params; } } I adding all subdomain rules manually from time to time. The size of ngin.conf has become too big. So, I need one nginx rules which do: subdomain1.website.com pointing to /var/www/html/subdomain/subdomain1.website.com subdomain2.website.com pointing to /var/www/html/subdomain/subdomain2.website.com subdomain3.website.com pointing to /var/www/html/subdomain/subdomain3.website.com ...and so on (So that no more adding rules for subdomain .website.com I need in the future.)

    Read the article

  • chrooting php-fpm with nginx

    - by dragonmantank
    I'm setting up a new server with PHP 5.3.9 and nginx, so I compiled PHP with the php-fpm SAPI options. By itself it works great using the following server entry in nginx: server { listen 80; server_name domain.com www.domain.com; root /var/www/clients/domain.com/www/public; index index.php; log_format gzip '$remote_addr - $remote_user [$time_local] "$request" $status $bytes_sent "$http_referer" "$http_user_agent" "$gzip_ratio"'; access_log /var/www/clients/domain.com/logs/www-access.log; error_log /var/www/clients/domain.com/logs/www-error.log error; location ~\.php$ { fastcgi_pass 127.0.0.1:9001; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME /var/www/clients/domain.com/www/public$fastcgi_script_name; fastcgi_param PATH_INFO $fastcgi_script_name; include /etc/nginx/fastcgi_params; } } It servers my PHP files just fine. For added security I wanted to chroot my FPM instance, so I added the following lines to my conf file for this FPM instance: # FPM config chroot = /var/www/clients/domain.com and changed the nginx config: #nginx config for chroot location ~\.php$ { fastcgi_pass 127.0.0.1:9001; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME www/public$fastcgi_script_name; fastcgi_param PATH_INFO $fastcgi_script_name; include /etc/nginx/fastcgi_params; } With those changes, nginx gives me a File not found message for any PHP scripts. Looking in the error log I can see that it's prepending the root path to my DOCUMENT_ROOT variable that's passed to fastcgi, so I tried to override it in the location block like this: fastcgi_param DOCUMENT_ROOT /www/public/; fastcgi_param SCRIPT_FILENAME $fastcgi_script_name; but I still get the same error, and the debug log shows the full, unchrooted path being sent to PHP-FPM. What am I missing to get this to work?

    Read the article

  • How to set up IP forwarding on Nexenta (Solaris)?

    - by Gleb
    I am trying to set up IP forwarding on my Nexenta box: root@hdd:~# uname -a SunOS hdd 5.11 NexentaOS_134f i86pc i386 i86pc Solaris The box has 2 network interfaces: root@hdd:~# ifconfig -a lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 e1000g1: flags=1001100843<UP,BROADCAST,RUNNING,MULTICAST,ROUTER,IPv4,FIXEDMTU> mtu 1500 index 2 inet 192.168.12.2 netmask ffffff00 broadcast 192.168.12.255 ether 68:5:ca:9:51:b8 myri10ge0: flags=1100843<UP,BROADCAST,RUNNING,MULTICAST,ROUTER,IPv4> mtu 9000 index 3 inet 10.10.10.10 netmask ffffff00 broadcast 10.10.10.255 ether 0:60:dd:47:87:2 lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252 index 1 inet6 ::1/128 192.168.12.0 is my normal LAN with 192.168.12.1 being the firewall/gateway 10.10.10.0 is a separate LAN for iSCSI (with no internet access) I want to set up IP forwarding so that a computer on 10.10.10.0 will be able to access the internet by using 10.10.10.10 as a gateway (I don't need any port forwarding) I have turned on IP forwarding: root@hdd:~# routeadm Configuration Current Current Option Configuration System State --------------------------------------------------------------- IPv4 routing disabled disabled IPv6 routing disabled disabled IPv4 forwarding enabled enabled IPv6 forwarding disabled disabled Routing services "route:default ripng:default" Routing daemons: STATE FMRI disabled svc:/network/routing/rdisc:default disabled svc:/network/routing/route:default disabled svc:/network/routing/legacy-routing:ipv4 disabled svc:/network/routing/legacy-routing:ipv6 disabled svc:/network/routing/ripng:default online svc:/network/routing/ndp:default But when I dry to start ipnat, I get an error: root@hdd:~# ipnat -CF -f /etc/ipf/ipnat.conf ioctl(SIOCGNATS): I/O error Here is the config: root@hdd:~# cat /etc/ipf/ipnat.conf #!/sbin/ipnat -f - # map e1000g1 10.10.10.10/24 -> 192.168.12.2/32 So the question is how to fix this.. Thanks in advance!

    Read the article

< Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >